5500-18 HW 2

1. "Inverse brachistochrone": Assume that the fastest trajectory between points $A=(1,0)$ and $\mathrm{B}=(0,1)$ is a part of a circle

$$
y(x)=\sqrt{1-x^{2}}
$$

Find the dependence of speed $v(y)$ on y.
2. Using transversality condition and brachistochrone equation, find the fastest path from the point $(0,0)$ to a point on the circle $x^{2}+y^{2}=1$.
3. Consider the 1-periodic "square wave"

$$
f(x)=2\left[H(x)-H\left(x-\frac{1}{2}\right)\right]-1 \quad x \in[0,1], \quad f(x+1)=f(x)
$$

where $H(x)$ is Heaviside function. The Fourier series of f is

$$
f(x)=\frac{4}{\pi} \sum_{n=1,3,5, \ldots}^{\infty} \frac{1}{n} \sin (2 n \pi x) .
$$

1. Find the smooth approximation of f, writing the variational problem

$$
\min _{u(x)} \int_{0}^{L}\left[p+(f-u)^{2}\right] d x
$$

where the stabilizer p is:
a) $p=p_{a}=\alpha^{2}\left(u^{\prime}\right)^{2}$
b) $p=p_{b}=\alpha^{2}\left(u^{\prime \prime}\right)^{2}$
2. Find the Fourier series for the approximations u_{a} and u_{b}.
3. Graph $f(x)$ and the approximations u_{a} and u_{b} using different values of α.

