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1 Canonical system and Hamiltonian

In this section, we bring Euler equations to the standard form using a modified
form of Lagrangian.

1.1 Canonical form of Euler equations

The Euler equations for a vector minimizer u = (u1, . . . , uN ) is a system of N
second order differential equations:

d

dx

∂L

∂u′i
− ∂L

∂ui
= 0, i = 1, . . . , N (1)

with boundary conditions

Θa(u, u′)|x=a = 0, Θb(u, u
′)|x=b = 0 (2)

where Θa and Θb are some N -dimensional vector functions.
The structure of this system can be simplified and unified if instead of N

second-order equations the system is rewritten as a system of 2N first order
differential equations in a standard form

zi = Yi(z1, . . . , z2N ), i = 1, . . . , 2N
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where z(x) is a 2N -dimensional vector of unknowns and Y is a vector-valued
function of z.

This system can be obtained from (1) if new variables pi are introduced,

pi(x) =
∂L(x, u, u′)

∂u′i
, i = 1, . . . , N (3)

Variables pi are called dual variables. In mechanics, p = (p1, . . . , pN ) is called
the vector of impulse.

The Euler equation takes the form

p′ =
∂L(x, u, u′)

∂u
= f(x, u, u′), (4)

where f is a vector-valued function of x, u, u′. The system (3), (4) becomes
symmetric with respect to p and u if we algebraically solve (3) for u′:

u′ = φ(x, u, p). (5)

Then, substitute this expression into (4) and obtain:

p′ = f(x, u, φ(x, u, p)) = ψ(x, u, p) (6)

where ψ is a function of the variables u and p but not of their derivatives.
Equations (5), (6) form the canonical system of 2N equations for 2N unknown
functions ui, pj , i, j = 1, . . . , N .

The boundary conditions (2) are rewritten in terms of u and p excluding u′

using (5); they take the form

Θa(u, φ(a, u, p), )|x=a = θa(u, p) = 0, Θb(u, u
′)|x=b = θb(u, p) = 0 (7)

where θa and θb are N -dimensional vector functions.
In summary, new variable p, see (3), transforms Euler equation to the canon-

ical form (5), (6) (known also as Cauchy, normal, or standard form):

u′ = φ(x, u, p)
p′ = ψ(x, u, p)

(8)

θa(u, p) = 0, θb(u, p) = 0. (9)

The solution to the canonical system is entirely determined by the algebraic
vector functions φ, ψ in the right-hand side which does not contain derivatives,
and by the boundary conditions. Notice that functions u and p are differentiable.

Example 1.1 (Quadratic Lagrangian) Assume that Lagrangian L and bound-
ary conditions are:

L =
1

2
a(x)u′2 +

1

2
b(x)u2, u(x0) = u0,

∂L

∂u′
|x=x1 = 0
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The Euler equation
(a u′)′ − bu = 0

is transformed as follows. We introduce p as in (3)

p =
∂L(x, u, u′)

∂u′
= au′

and obtain the canonical system and boundary conditions

u′ = 1
a(x)p

p′ = b(x)u
u(x0) = u0, p(x1) = 0

Notice that the coefficient a(x) is moved into denominator.

1.2 Hamiltonian

We can rewrite the system (8) in a more symmetric form introducing a spe-
cial potential function called Hamiltonian. The Hamiltonian is defined by the
formula u′ ∂L∂u′ − L where u′ is excluded by the relation u′ = φ(x, u, p):

H(x, u, p) = pu′ − L(x, u, u′) u′ = φ(x, u, p) (10)

or
H(x, u, p) = pφ(x, u, p)− L(x, u, φ(x, u, p)). (11)

Here u is a stationary trajectory – the solution of Euler equation.
Hamiltonian allows writing canonical system (8) in a remarkable symmetric

form

p′ = −∂H
∂u

, u′ = −∂H
∂p

(12)

To demonstrate this, compute the partial derivatives of H (11) : We have

∂H

∂u
= p

∂φ

∂u
− ∂L

∂u
− ∂L

∂φ

∂φ

∂u

By the definition (3) of p, p = ∂L
∂u′ = ∂L

∂φ , hence the first and third term in the

right-hand side cancel. By virtue of the Euler equation (4), the remaining term
∂L
∂u is equal to p′ and we obtain the first equation in (12)

Next, compute ∂H
∂p . We have

∂H

∂p
= φ+ p

∂φ

∂p
− ∂L

∂φ

∂φ

∂p

By definition of p, the second and the third term in the right-hand side cancel,
and by definition of φ (φ = u′) we obtain the second equation in (12)

The right-hand side functions in the canonical system (8) are expressed
through the partial derivatives of a single potential function H(u, p).
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Lagrangian L, Hamiltonian H in Example (1.1) are as follows

L =
1

2

(
a(x)u′2 + b(x)u2

)
=

1

2

(
1

a(x)
p2 + b(x)u2

)

H = p
(p
a

)
− L =

1

2

(
1

a(x)
p2 − b(x)u2

)
the canonical system is

∂H

∂u
= −b(x)u = −p′, ∂H

∂p
=

1

a(x)
p = u′

which coincides with the system in Example (1.1).

1.3 The first integrals through the Hamiltonian

System (12) demonstrates that

if H = constant(ui), then pi = constant (13)

and
if H = constant(pi), then ui = constant (14)

These equations correspond to the first integrals in the Euler equation

d

dx

∂L

∂u′i
− ∂L

∂ui
= 0, i = 1, . . . , N

Indeed,
if Lagrangian L is independent of ui,

∂L
∂ui

= 0, ∂L
∂u′

i
= constant;

if Lagrangian is independent of u′i,
∂L
∂u′

i
= 0, then ∂L

∂ui
= 0. Since ∂L

∂ui
= p′i, pi is

constant.

Conservative system: Lagrangian is independent of x If F = F (u, u′),
than

H(u, p) = constant (15)

Indeed, compute the time derivative of the Hamiltonian using the chain rule

d

dx
H(x, u, p) =

∂H

∂x
+
∂H

∂u
u′ +

∂H

∂p
p′ =

∂H

∂x

because of equalities (12), u′ = ∂H
∂p and p′ = −∂H∂u . If Lagrangian does not

explicitly depend on x, ∂L
∂x = 0 the Hamiltonian does not explicitly depend on

x as well, ∂H∂x = 0, and we arrive at (15). In mechanics, (15) corresponds to the
conservation of the total energy.
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Natural boundary conditions The natural or variational boundary condi-
tions that are imposed at the endpoint b from the requirement of minimization
of the functional, are ∂L

∂u′ = 0 at x = b. By definition of the impulse, it is
rewritten as

p = 0 at x = b;

Transversality condition The transversality condition (25) at the unknown
endpoint x = b of the trajectory u(x) is expressed through Lagrangian L(x, u, u′)
as

L− u′ ∂L
∂u′

= 0

The expression in the left-hand side is Hamiltonian, therefore the condition
takes a simple form:

H = 0 at x = b.

If the system is conservative, the Hamiltonian is constant (15); therefore, there
is no optimal endpoint for such systems.

Weierstrass-Erdmann condition This condition states that at all points
of the optimal trajectory, ∂L

∂u′ is continuous. It translates into a statement
that impulse p is continuous everywhere. Notice that by virtue of (12), p is
differentiable.

Lagrangian and Hamiltonian Both functions describe the same process,
but

• Hamiltonian is an algebraic function of differentiable arguments p and u,
and Lagrangian is an expression for u, and it’s derivative u′, the derivative
may be discontinuous.

• Optimality conditions for Hamiltonian are expressed as a system of first-
order differential equations in canonical form. Optimality conditions for
Lagrangian are expressed as a system of second-order differential equa-
tions.

• Invariant properties and boundary conditions are more conveniently ex-
pressed through Hamiltonian.

• Lagrangian deals with the minimizer and its derivatives; its minimization
is a realization of the minimal principle.
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2 Examples

2.1 Lagrangian mechanics

Canonical system for equations of Lagrangian mechanics The equa-
tions of Lagrangian mechanics correspond to stationarity of the functional

L(t, q, q′) = T (q, q′)− V (q), T (q, q′) =
1

2
(q′)TR(q)q′

that callee the action. Here q is the N dimensional vector of generalized coordi-
nates q = q1, . . . , N , T (q, q′) is the kinetic energy, R(q) is a symmetric positively
defined matrix of inertia, and the potential energy V (q) is a convex function of
q of the N dimensional vector of generalized coordinates q = q1, . . . , N .

The vector-valued Euler equation

d

dt

∂T

∂q′
=
∂T

∂q
− ∂V

∂q
(16)

is of order 2N .
To bring the system (16) to canonical form, we introduce vector of impulses

p =
∂T

∂q′
= R(q)q′

The Euler equation becomes:

p′ =
∂T

∂q
− ∂V

∂q

Kinetic energy T is expressed through p as

T =
1

2
(q′)TRq′ =

1

2
pT
(
R−1

)
p. (17)

The first term in the right-hand side of (16) becomes

∂T

∂q
=

1

2
pT
(
dR−1

dq

)
p

The canonical system becomes

q′ = R−1p,

p′ = ∂T
∂q −

∂V
∂q = 1

2p
T
(
dR−1

dq

)
p− ∂V

∂q

Hamiltonian for Lagrangian mechanics In Lagrangian mechanics, La-
grangian L = T − V implies that Hamiltonian H is the sum of kinetic and
potential energy H = T + V ,

H(q, p) = T (q, q′) + V (q)
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where q′ is expressed through p and q and q′ = R(q)−1p. Indeed, we obtain
using (17)

pT q′ = pTR−1(q)p = 2T

and
H = pT q′ − L = 2T − (T − V ) = T + V

The Hamiltonian is equal to the whole energy of the system.

2.2 Orbiting mass

Consider a point mass m attached by a spring to a fixed point; call this point
the origin. The force F in the spring is the derivative of a potential V (|r|),
where r = (r1, r2, r3) is the vector of coordinates of a point, |r| =

√
r21 + r22 + r23

is the distance fro the origin. The force F is computed as

F =
dV

dr
=
dV ′

d|r|
d|r|
dr

=

(
dV

d|r|
1

|r|

)
r = φ(|r|)r

where

φ(|r|) =
dV

d|r|
1

|r|
The Lagrangian is

L = T − V =
1

2
mr′

T
r′ − V (|r|)

Euler equations are

(mr′)′ +
∂V

∂r
= 0 or (mr′)′ + φ(|r|)r = 0

Introducing the impulse vector p = mr′ and we write canonical system as

r′ =
1

m
p, p′ = −φ(|r|)r (18)

Planar motion Analyzing system (18), we conclude that the movement is
planar. Indeed, consider vector product z = r× p and compute its time deriva-
tive:

dz

dt
=

d

dt
(r × p) = r′ × p+ r × p′ = 0

This vector is constant because vector r′ is proportional to p and p′ is propor-
tional to r, see (18). The constancy of z indicates that vectors r(t) and p(t)
remain all the time perpendicular to vector z; they are moving in a plane L,
that passes through the point of initial conditions r(0) = r0, p(0) = p0 and the
origin.

In the plane L, we introduce polar coordinates ρ, θ; Potential energy depends
only on ρ, V = V (ρ), and kinetic energy becomes

T =
m

2
(ρ′2 + ρ2θ′2) =

1

2
pTR−1p
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where

p =

(
p1
p2

)
R =

(
m 0
0 mρ2

)
The canonical system becomes

ρ̇ =
1

m
p1, (19)

θ̇ =
1

mρ2
p2, (20)

ṗ1 = − 2

mρ3
p1 −

∂V

∂ρ
(21)

ṗ2 = 0 (22)

Hamiltonian The Hamiltonian is

H = T + V =
1

2m

(
ρ̇2 +

1

ρ2
θ̇2
)

+ V (ρ) (23)

One can check that the equations (19)-(22) can be obtained by differentiation
of H with respect of ρ, θ, p1, and p2

Invariants The Hamiltonian is independent of θ; therefore p2 is constant,
p2 = C1, see (22), and Hamiltonian becomes function of ρ and p1 only:

H =
1

2m
(ρ′

2
+

1

ρ2
C2

1 ) + V (ρ) (24)

The Hamiltonian (24) is independent of time t therefore is constant,

H =
1

2m

(
ρ′

2
+

1

ρ2
C2

1

)
+ V (ρ) = C2. (25)

This equality allows to find p1 as a function of ρ:

p1 =

√
2m(C2 − V (ρ))− 1

ρ2
C2

1

Then using (19) we end up with the first-order equation for ρ(t) that permit
separation of variables

m
dρ

dt
=

√
2m(C2 − V (ρ))− 1

ρ2
C2

1

2.3 Geometrical optics

In geometrical optics, Lagrangian

F = w(y)
√

1 + y′2
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corresponds to Euler equation

d

dt

(
w(y)y′√
1 + y′2

)
=
dw

dy

√
1 + y′2

To find the canonical system, we use the outlined procedure: Define a vari-
able p by the relation p = ∂L

∂y′

p = ± wy′√
1 + (y′)2

. (26)

Solving for y′, we obtain first canonical equation:

y′ =
p√

w2 − p2
= φ(x, y, p), (27)

Excluding y′ from expression for L(x, y, y′) using (27), we find

L(x, y, y′) = L∗(x, y, y
′(p)) =

w2√
w2 − p2

.

and recalling the representation for the solution y of the Euler equation

p′ =
∂L

∂y
=
∂L∗
∂w

∂w

∂y

we obtain the second canonical equation:

p′ = − w√
w2 − p2

∂w

∂y
(28)

Hamiltonian Hamiltonian H = pφ−L∗(x, y, p) can be simplified to the form

H = −
√
w2 − p2

It satisfies the remarkably symmetric relation

H2 + p2 = w2

that contains the whole information about the geometric optic problem. The
elegancy of this relation should be compared with messy straightforward calcu-
lations that we performed previously.
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