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Figure 1: Convex set, convex function on a convex set

1 Convexity: Vector function

1.1 Convex function of vector argument

Convex set, convex hull A domain Ω in Rn is called convex if for any points
x1 and x2 in Ω and for any m in the interval [0, 1], all points x = (1−m)x1+mx2
belong to Ω. In other words, any point of the line segment belong to Ω if its
ends x1 and x2 are in Ω.

The convex hull or convex envelope CΩ of a nonconvex set Ω is the smallest
convex set that contains Ω. It can be also defined as the set of all convex
combinations zof points x ∈ Ω.

z(x) = {x : x =
∑
i

(mixi), ∀xi ∈ Ω
∑
i

mi = 1,mi ≥ 0}

Particularly, the convex envelope of a set of any n points a1, . . . an in Rn is
a polygon

P (x) = {x : x =

n∑
i=1

mi ai,
∑
i

mi = 1,mi ≥ 0}

stretched at these points. Parameters mi with the stated properties are called
the barycentric coordinates of x in the polygone P .

Convex function Consider a real-valued continuous function f(x), where
x ∈ Rn belongs to a convex set Ω. Function f is called convex if the inequality
(??) holds, in which x, v1, v2 are now n-vectors not scalars.

Another equivalent geometrical definition of convexity is: f(x) is convex, if
the n+ 1-dimensional set (x, z) where x ∈ Ω and z ≥ f(x) of the points above
its graph y ≥ f(x) is convex.

Convexity in a point; Jensen inequality As in the scalar case, the function
f is convex in a point x if

f(x) ≤
n+1∑
i=1

mif(x+ vi) ∀mi, vi i = 1, . . . n+ 1, such that (1)

mi > 0, x+ vi ∈ Ω,

n∑
i=1

mi = 1,

n+1∑
i=1

mi vi = 0 (2)

Derivatives. Hessian Convex differentiable functions satisfy inequality

f(y) ≥ f(x) + (y − x)T∇f(x) ∀x, y ∈ Ω (3)
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Second derivatives of a twice differentiable functions is characterized by the
Hessian H(f) which is a symmetric n×n matrix of the second derivatives with
entries

Hij =
∂2f

∂xi∂xj
, i, j = 1, . . . n

If f(x) is convex, its Hessian is non-negatively defined,

zTHz ≥ 0, ∀z ∈ Rn, |z| 6= 0

If f is strictly convex, its Hessian is positively defined.

Gradient of a convex function is monotone From (3), one can deduct
that monotonicity of a derivative of a convex function, that is an analog of
monotonicity of the derivative of a convex function of a scalar argument. We
rewrite inequality (3) for the pair y, x instead of x, y:

f(x) ≥ f(y) + (x− y)T∇f(y) ∀x, y ∈ Ω

and subtract it from (3), obtaining

(y − x)T (∇f(y)−∇F (x)) ≥ 0

for all x, y ∈ Ω. The last inequality is called the monotonicity of a vector-valued
function. Monotonicity means that projection of the difference of gradients in
any two points to the vector of difference between these points is non-negative.
If f(x) is convex, ∇f(x) is monotone.

Comment is not clear

1.2 Convex envelope. Vector case

Convex envelope Cf(x), x ∈ Rn satisfies the equation

Cf(x) = min
ρ1,...ρn+1

n+1∑
i=1

mif(ρi), (4)

x =

n+1∑
i=1

miρi,

n+1∑
i=1

mi = 1, mi ≥ 0 (5)

that is similar to the scalar case.

Definition 1.1 The convex envelope CF is a solution to the following minimal
problem:

CF (A) = inf
v:v+x0∈C

1

l

∫
C

F (A+ v(x)) dx ∀ v :

∫
C

v(x) dx = 0. (6)

This definition determines the convex envelope as the minimum of all paral-
lel secant hyperplanes that intersect the graph of F ; it is based on Jensen’s
inequality (??).
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Figure 2: Supporting points

Figure 3: barycentric coordinates

Supporting points To compute the convex envelope CF one can use the
Carathéodory theorem (see [?, ?]). It states that the argument v(x) = [v1(x), . . . , vn(x)]
that minimizes the right-hand side of (6) takes no more than n + 1 different
values. This theorem refers to the obvious geometrical fact that the convex en-
velope consists of the supporting hyperplanes to the graph F (v1, . . . , vn). Each
of these hyperplanes is supported by no more than (n+ 1) arbitrary points.

The Carathéodory theorem allows us to replace the integral in the right-
hand side of the definition of CF by the sum of n + 1 terms; the definition (6)
becomes:

CF (x) = min
mi∈M

min
vi∈v

(
n+1∑
i=1

miF (x+ vi)

)
, (7)

where

M =

{
mi : mi ≥ 0,

n+1∑
i=1

mi = 1

}
(8)

and

v =

{
vi :

n+1∑
i=1

mivi = 0

}
. (9)

Parameters mi are called barycentric coordinates of the convex hull stretched
at the vertices x+ vi.

The convex envelope CF (x) of a function F (x) at a point x coincides with
either the function F (x) or the hyperplane that touches the graph of the function
F . The hyperplane remains below the graph of F except at the tangent points
where they coincide.

The position of the supporting hyperplane generally varies with the point
x. Fewer than n + 1 points can support a convex envelope of F ; in this case,
several of the parameters mi are zero.

On the other hand, the convex envelope is the greatest convex function that
does not exceed F (x) in any point x [?]:

CF (x) = maxφ(x) : φ(x) ≤ F (x) ∀x and φ(x) is convex. (10)

Example 1.1 Obviously, the convex envelope of a convex function coincides with
the function itself, so all mi but m1 are zero in (7) and m1 = 1; the parameter v1
is zero because of the restriction (9).

The convex envelope of a “two-well” function,

Φ(x) = min {F1(x), F2(x)} , (11)
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Figure 4: Convex envelope: Cone and paraboloid

where F1, F2 are convex functions of x, either coincides with one of the functions
F1, F2 or is supported by no more than two points for every x; supporting points
belong to different wells. In this case, formulas (7)–(9) for the convex envelope
are reduced to

CΦ(x) = min
m,v
{mF1(x− (1−m)v) + (1−m)F2(x+mv)} . (12)

Indeed, the convex envelope touches the graphs of the convex functions F1

and F2 in no more than one point. Call the coordinates of the touching points
x + v1 and x + v2, respectively. The restrictions (9) become m1v1 + m2v2 =
0, m1 +m2 = 1. It implies the representations v1 = −(1−m)v and v2 = mv.

Example 1.2 Consider the special case of the two-well function,

F (v1, v2) =

{
0 if v21 + v22 = 0,
1 + v21 + v22 if v21 + v22 6= 0.

(13)

The graph of function F (v1, v2) is axisymmetric in the plane v1, v2; therefore,
the convex envelope is axisymmetric as well: CF (v1, v2) = f(

√
v21 + v22). It is

therefore enough to construct the envelope of function F (v), where v =
√
v21 + v22

F (v) =

{
0 if v = 0,
1 + v2 if v2 6= 0.

(14)

The convex envelope CF (v) is supported by the point va = 0 and by a point
vb that (i) belongs to the parabola f(v) = 1 + v2b and (ii) is such that the tangent
line to the parabola at the point vb passes through the origin. The equation of the
tangent line in the plane v, y is y − f(vb) = f ′(b)(v − vb). Setting y = v = 0 due
to (ii), we find f(vb) = f ′(vb)vb or 1 + v2b = 2v2b and vb = 1. The values of F are:
F (v1) = 0, F (Vb) = 2, and the equation for the envelope is

CF (v) =

{
2v 0 ≤ v ≤ 1
1 + v2 1 ≤ v

. Coming back to original notations we find the supporting circumferences of
F (v1, v2):

A : (v1, v2) = (0, 0), B : (v1, v2) : v21 + v22 = 1

and the surface of the envelope is

CF (v1, v2) =

{
2
√
v21 + v22 if v21 + v22 ≤ 1,

1 + v21 + v22 if v21 + v22 > 1.
(15)

The envelope is a cone if it does not coincide with F , CF < F , and a paraboloid if
it coincides with F , CF = F .
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Figure 5: Three-well function

Hessian of Convex Envelope We mention here property of the convex en-
velope that we will use later. If the convex envelope Cf(x) does not coincide
with f(x) for some x = x0, then CF (x0) is convex, but not strongly convex. At
these points the Hessian H((f) is semipositive; its determinant is zero:

H(Cf(x)) ≥ 0, detH(Cf(x)) = 0 if Cf < f (16)

which say that H(Cf) is a nonnegative degenerate matrix. These relations can
be used to compute Cf(x).

For example, compute the Hessian H of the cone F (v1, v2) = 2
√
v21 + v22 ,

from (15). We have

H =
1

(v21 + v22)
3
2

(
v22 −v1v2
−v1v2 v21

)
and we see that det(H) = 0.

1.3 Convex envelope of a three-well function

The convex envelope is a multi-face surface. The next problem demonstrates
the variety of the components of its surface.

Describe convex envelope Cf of three-well function f(x1, x2)

f(x1, x2) = min{φ1, φ2, φ3} (17)

φ1 = x21 + x22 (18)

φ2 = x21 + (x2 − 1)2 (19)

φ3 = (x1 − 1)2 + x22 (20)

Convex functions φi are called wells.
The convex envelope is a multi-face surface that is stretched between the

wells. No more than three supporting points support each component of the
envelope; the convex wells contain no more than one supporting point each.

The convex envelope is a solution to the optimization problem

Cf(x) = min
m

min
ρ

3∑
i=1

miφi(ρi) (21)

x = m1ρ1 +m2ρ2 +m3ρ3, (22)

m1 +m2 +m3 = 1, mi ≥ 0, i = 1, 2, 3. (23)

Here, mi are barycentric coordinates of x in the triangle with vertices at ρi.
Convex envelope Cf consists of several components:
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Bottom component The bottom part Ω0 is correspond to the case when all
mi > 0; the minimization with respect to ρi gives: =

ρ1 = (0, 0), ρ2 = (1, 0), ρ3 = (0, 1)

The envelope is supported by three points ρi in three wells. Argument x belongs
to a convex hull Ω0, stretched on these points x ∈ Ω0,

Ω0 = {x1, x2 : (x1, x1, x2) =

3∑
i=1

µiρi,

3∑
i=1

µi = 1, µi ≥ 0}

We compute:

Ω0 = {x1, x2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}, (24)

The values of φi are, respectively:

φ1(ρ1) = 0, φ2(ρ2) = 0, φ3(ρ3) = 0

The convex envelope in Ω0 is

Cf(x1, x2) =

3∑
i=1

µiφi(ρi) = 0 if (x1, x2) ∈ Ω0, (25)

The coordinates of a point in the convex hull are

x1 = µ2, x2 = µ3, 0 ≤ µ2 + µ3 ≤ 1, µ2 ≥ 0, µ3 ≥ 0

Notice that supporting points do not vary with x ∈ Ω0, only the barycentric
coefficients µi (µ3 = 1− µ1 − µ2) vary.

Side components First side component of the boundary corresponds to the
case when m3 = 0. This component is supported by by two points at two two
convex wells φ1 and φ2. The domain Ω1 that support this case, is

Ω1 = {x1, x2 : (x1, x2) = µ1(0, x2) + µ2(1, x2), m1 + µ2 = 1, µi ≥ 0

it is a strip:
Ω1 = {x1, x2 : x1 ∈ [0, 1], x2 ∈ [−∞, 0], (26)

The supporting points are

ρ1 = (0, x2), ρ2 = (1, x2)

We compute
φ1(0, x2) = x22, φ1(1, x2) = x22,

The convex envelope in the region Ω2 is

Cf(x1, x2) = µ1φ1(0, x2) + µ2φ2(1, x2) = x22, (x1, x2) ∈ Ω1, (27)
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Figure 6: Contourplot of the convex envelope

(Here, the coordinate x1 is x1 = µ2 and x1 ∈ (0, 1). This part lies between two
convex wells φ1 and φ2 and consists of moving parallel intervals supported by
two points at these wells. This type of surface is called a ruled surface, that is a
surface that can be swept out by moving a line in space. A variation of position
x ∈ Ω2 along the direction x1 results in the variation of µ1 = 1−µ2 with a fixed
position of the supporting points, and a variation along the direction x2 results
in the variation of supporting points ρ1 and ρ2 with a fixed fraction m2.

The second side component of the envelope correspond to m2 = 0 and
m1,m3 > 0. This part is similar to the previous case, it is obtained from it
by interchanging indices. We have

Ω2 = {x1, x2 : x2 ∈ [0, 1], x1 ∈ [−∞, 0]} (28)

ρ1 = (x1, 0), ρ3 = (x1, 1)

Cf(x1, x2) = x21, (x1, x2) ∈ Ω2 (29)

The third component correspond to m1 = 0 and m2,m3 > 0. Similarly to
the previous case we compute,:

Ω3 = {x1, x2 : |x1 − x2| ∈ [0, 1], x1 + x2 ∈ [1,∞]} (30)

ρ2 = (x1, 0), ρ3 = (x1, 1)

Cf(x1, x2) = (x1 + x2)2, (x1, x2) ∈ Ω3 (31)

Regions of convexity The remaining three regions correspond to the case
when one of coordinates mi equals to one, and the other two are equal to zero.
In these cases, the convex envelope coincides with the function itself, f(x) is
convex in these regions.

We compute

Cf = φ1, in Ω4 = {(x1, x2) : x1 ≤ 0, x2 ≤ 0 (32)

Cf = φ2, in Ω5 = {(x1, x2) : x2 > 1, 1 ≥ x2 − x1 (33)

Cf = φ3, in Ω6 = {(x1, x2) : x1 > 1, 1 ≥ x1 − x2 (34)

In Figure 6 the contour plot of the obtained convex envelope is shown.

2 Relaxation of problems with vector minimizer

2.1 Relaxation procedure

The procedure is essentially the same. A bounded from below of Lagrangian
F (x, u, v) of superlinear with respect of z growth with a the non-convex with
respect of v region is replaced with its convex envelope Fv(x, u, v) . Every
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point of the convex envelope of a function of n-dimensional vector is a convex
combination by n+ 1 supporting points ρ1, ρn+1,

v =

n+1∑
i=1

miρi,

n+1∑
i=1

mi = 1, mi ≥ 0

The minimizing sequence is a fast oscillating vector function v(x) takes not more
that n+ 1 values in each infinitesimal interval. The relaxed Lagrangian is

RF (x, u, u′) = min
m1...mn+1

(
min

ρ1...ρn+1

n+1∑
i=1

miF (x, u, u′)

)
(35)

u′ =

n+1∑
i=1

miρi,
n+1∑
i=1

mi = 1, mi ≥ 0 (36)

Calculating the minima, we express the relaxed Lagrangian through convex
envelope with respect to v = u′

RF (x, u, u′) = CF (x, uh, u
′
h) (37)

Here uh is the homogenized (averaged over a small ε-interval) minimizer, u′h is
its homogenized derivative.

Instead of one minimizer u(x) in the original problem with nonconvex La-
grangian, the relaxed problem depends on several minimizers: the support-
ing points ρi(x) of the convex envelope and the barycentric coordinates mi(x).
These continuous functions describe parameters of infinitely often oscillating
minimizing sequence with the derivative that sequentially takes values ρ1, . . . ρn
in the infinitely small intervals [x, x+ ε].

Remark 2.1 Analyzing the homogenized solution, one cannot determine what
value takes u′ at a specific point x but only the relative length (measure) of the
intervals where a specific value is taken. Such fast oscillating sequences are called
solutions in Young measures.

2.2 Examples of nonconvex problems for vector minimizer

Three-well Lagrangian Consider the problem with the Lagrangian

CF (v1, v2) + Φ(x, u1, u2)

where CF is the convex envelope of three-well function described in example 37.
In the domains where the Lagrangian is convex and the convex envelope

CF (v1, v2) coincides with the wells in F (v1, v2), stationarity conditions are
represented by a system of two second-order Euler equations:

2u′′1 −
∂Φ

∂u1
= 0, 2u′′2 −

∂Φ

∂u2
= 0,
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Notice that linear with respect to derivative terms in the second and third wells
are null-Lagrangians and they do not affect Euler equations, because

d

dx

(
∂(u′ − 1)2

∂u′

)
= 2

d(u′ − 1)

dx
= 2u′′

In the complex hull Ω0, where

CF (v1, v2) = 0

stationarity is described by algebraic equations for u1 and u2:

∂Φ

∂u1
= 0,

∂Φ

∂u2
= 0, (38)

These minimizers are zigzag functions which derivatives taken pointwize values
ρ1 = (0, 0), ρ2 = (1, 0), and ρ3 = (0, 1). The weights (measures) mi are found
by differentiation of the conditions (38) and (36):

d

dx

∂Φ

∂u1
=

∂2Φ

∂x∂u2
+
∂2Φ

∂u21
u′1 +

∂2Φ

∂u1∂u2
u′2 (39)

d

dx

∂Φ

∂u2
=

∂2Φ

∂x∂u2
+

∂2Φ

∂u1∂u2
u′1 +

∂2Φ

∂u22
u′2 (40)

This two equations are linear relations for m1,m2,m3 because

u′ =

3∑
i=1

miρi;

together with the third equation m1 + m2 + m3 = 1, they allow for finding
barycentric coordinates mi.

In the remaining domains, stationarity conditions include one second-order
differential equation and one algebraic equation. For example, in the domain
Ω1, the relaxed Lagrangian is

F2 = (u′2)2 + Φ, (x, u1, u2), u′1 ∈ [0, 1]

the Euler equations are

∂Φ

∂u1
= 0 2u′′2 =

∂Φ

∂u2
= 0

Barycentric coordinates m1,m2, m1 + m2 = 1, are found by differentiation of
the first stationarity equation as in (40)

d

dx

∂Φ

∂u1
=

∂2Φ

∂x∂u1
+
∂2Φ

∂u21
u′1 = 0
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Express u′1 as function of m1: u′1 = m1ρ1 +m2ρ2 where Gr1 = 0, Gr2 = 1 and
m2 = 1−m1: u′1 = m2 and the stationarity conditions, we find

m2 = − ∂2Φ

∂x∂u1

(
∂2Φ

∂u21

)−1
The other two cases are treated similarly.

We can also check that determinant of the Hessian is zero everywhere, where
CF < F .

2.3 Conclusion and Problems

We have observed the following:

• A variational problem has the fine-scale oscillatory minimizer if its La-
grangian F (x, u, u′) is a nonconvex function of its third argument.

• Homogenization leads to the relaxed form of the problem that has a clas-
sical solution and preserves the cost of the original problem.

• The relaxed problem is obtained by replacing the Lagrangian of the ini-
tial problem by its convex envelope. It can be computed as the second
conjugate to F .

• The dependence of the Lagrangian on its third argument in the region of
nonconvexity does not affect the relaxed problem.

To relax a variational problem, we use two ideas. First, we replaced the
function with its convex envelope and got a stable extension of the problem.
Second, we proved that the value of the integral of the convex envelope CF (v)
of a given function is equal to the value of the integral of this function F (v) if
its argument v is a zigzag curve. We use the Carathéodory theorem, which tells
that the number of subregions .whe constancy of the argument is less than or
equal to n+ 1, where n is the dimension of the minimizer.

Regularization and relaxation The considered nonconvex problem is an-
other example of an ill-posed variational problem. For these problems, the
classical variational technique based on the Euler equation fails to work. Here,
The limiting curve is not a discontinuous curve as in the previous example, but
a limit of infinitely fast oscillating functions, similar to limω→∞ sin(ωx).

We may apply regularization to discourage the solution to oscillate. Doing
this, we pass to the problem

min
u

∫ 1

0

(ε2(u′′)2 +G(u, u′))dx

that corresponds to Euler equation:

ε2uIV − u′′ + u = 0 if |u′| ≥ 1
2

ε2uIV + u′′ + u = 0 if |u′| ≤ 1
2 .

(41)
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The Weierstrass condition this time requires the convexity of the dependence of
Lagrangian on u′′; this condition is satisfies.

The solution of Euler equations is oscillatory, with the period of oscillation
of the order of ε. It ε → 0, the solution still tends to an infinitely often os-
cillating distribution. When ε is positive but small, the solution has a finite
but large number of wiggles. The computation of such solutions is difficult and
some times unnecessary: It strongly depends on an artificial parameter ε, which
is difficult to justify physically. It is n=more natural to replace an ill-posed
problem with a relaxed one. The idea of relaxation is in a sense opposite to the
regularization. Instead of discouraging fast oscillations, we admit them as legit-
imate minimizers and describe such minimizers in terms of smooth functions:
the limits of oscillating variable and the average time that it spends on each
boundary.

12


