Infinitely often oscillating solutions: Vector case

March 24, 2019

Contents

1	Cor	nvexity: Vector function	2
	1.1	Convex function of vector argument	2
	1.2	Convex envelope. Vector case	3
	1.3	Convex envelope of a three-well function	6
2	\mathbf{Rel}	axation of problems with vector minimizer	8
2	Rel 2.1	axation of problems with vector minimizer Relaxation procedure	8 8
2	Rel 2.1 2.2	axation of problems with vector minimizer Relaxation procedure Examples of nonconvex problems for vector minimizer	8 8 9

Figure 1: Convex set, convex function on a convex set

1 Convexity: Vector function

1.1 Convex function of vector argument

Convex set, convex hull A domain Ω in \mathbb{R}^n is called convex if for any points x_1 and x_2 in Ω and for any m in the interval [0, 1], all points $x = (1-m)x_1+mx_2$ belong to Ω . In other words, any point of the line segment belong to Ω if its ends x_1 and x_2 are in Ω .

The convex hull or convex envelope $\mathcal{C}\Omega$ of a nonconvex set Ω is the smallest convex set that contains Ω . It can be also defined as the set of all convex combinations zof points $x \in \Omega$.

$$z(x) = \{x : x = \sum_{i} (m_i x_i), \quad \forall x_i \in \Omega \quad \sum_{i} m_i = 1, m_i \ge 0\}$$

Particularly, the convex envelope of a set of any n points $a_1, \ldots a_n$ in \mathbb{R}^n is a polygon

$$P(x) = \{x : x = \sum_{i=1}^{n} m_i a_i, \sum_i m_i = 1, m_i \ge 0\}$$

stretched at these points. Parameters m_i with the stated properties are called the barycentric coordinates of x in the polygone P.

Convex function Consider a real-valued continuous function f(x), where $x \in \mathbb{R}^n$ belongs to a convex set Ω . Function f is called convex if the inequality (??) holds, in which x, v_1, v_2 are now *n*-vectors not scalars.

Another equivalent geometrical definition of convexity is: f(x) is convex, if the n + 1-dimensional set (x, z) where $x \in \Omega$ and $z \ge f(x)$ of the points above its graph $y \ge f(x)$ is convex.

Convexity in a point; Jensen inequality As in the scalar case, the function f is convex in a point x if

$$f(x) \le \sum_{i=1}^{n+1} m_i f(x+v_i) \quad \forall m_i, \ v_i \ i = 1, \dots n+1, \text{ such that}$$
(1)

$$m_i > 0, \quad x + v_i \in \Omega, \quad \sum_{i=1}^n m_i = 1, \quad \sum_{i=1}^{n+1} m_i v_i = 0$$
 (2)

Derivatives. Hessian Convex differentiable functions satisfy inequality

$$f(y) \ge f(x) + (y - x)^T \nabla f(x) \quad \forall x, y \in \Omega$$
(3)

Second derivatives of a twice differentiable functions is characterized by the Hessian H(f) which is a symmetric $n \times n$ matrix of the second derivatives with entries

$$H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}, \quad i, j = 1, \dots n$$

If f(x) is convex, its Hessian is non-negatively defined,

$$z^T H z \ge 0, \quad \forall z \in \mathbb{R}^n, \quad |z| \ne 0$$

If f is strictly convex, its Hessian is positively defined.

Gradient of a convex function is monotone From (3), one can deduct that monotonicity of a derivative of a convex function, that is an analog of monotonicity of the derivative of a convex function of a scalar argument. We rewrite inequality (3) for the pair y, x instead of x, y:

$$f(x) \ge f(y) + (x - y)^T \nabla f(y) \quad \forall x, y \in \Omega$$

and subtract it from (3), obtaining

$$(y-x)^T (\nabla f(y) - \nabla F(x)) \ge 0$$

for all $x, y \in \Omega$. The last inequality is called the monotonicity of a vector-valued function. Monotonicity means that projection of the difference of gradients in any two points to the vector of difference between these points is non-negative. If f(x) is convex, $\nabla f(x)$ is monotone.

Comment is not clear

1.2 Convex envelope. Vector case

Convex envelope $Cf(x), x \in \mathbb{R}^n$ satisfies the equation

$$Cf(x) = \min_{\rho_1, \dots, \rho_{n+1}} \sum_{i=1}^{n+1} m_i f(\rho_i),$$
(4)

$$x = \sum_{i=1}^{n+1} m_i \rho_i, \quad \sum_{i=1}^{n+1} m_i = 1, \quad m_i \ge 0$$
(5)

that is similar to the scalar case.

Definition 1.1 The *convex envelope* CF is a solution to the following minimal problem:

$$CF(A) = \inf_{v:v+x_0 \in C} \frac{1}{l} \int_C F(A+v(x)) \, dx \quad \forall \ v : \int_C v(x) \, dx = 0.$$
(6)

This definition determines the convex envelope as the minimum of all parallel secant hyperplanes that intersect the graph of F; it is based on Jensen's inequality (??).

Figure 2: Supporting points

Figure 3: barycentric coordinates

Supporting points To compute the convex envelope CF one can use the Carathéodory theorem (see [?, ?]). It states that the argument $v(x) = [v_1(x), \ldots, v_n(x)]$ that minimizes the right-hand side of (6) takes no more than n + 1 different values. This theorem refers to the obvious geometrical fact that the convex envelope consists of the supporting hyperplanes to the graph $F(v_1, \ldots, v_n)$. Each of these hyperplanes is supported by no more than (n + 1) arbitrary points.

The Carathéodory theorem allows us to replace the integral in the righthand side of the definition of CF by the sum of n + 1 terms; the definition (6) becomes:

$$CF(x) = \min_{m_i \in M} \min_{v_i \in v} \left(\sum_{i=1}^{n+1} m_i F(x+v_i) \right), \tag{7}$$

where

$$M = \left\{ m_i : \quad m_i \ge 0, \quad \sum_{i=1}^{n+1} m_i = 1 \right\}$$
(8)

and

$$v = \left\{ v_i : \sum_{i=1}^{n+1} m_i v_i = 0 \right\}.$$
 (9)

Parameters m_i are called barycentric coordinates of the convex hull stretched at the vertices $x + v_i$.

The convex envelope CF(x) of a function F(x) at a point x coincides with either the function F(x) or the hyperplane that touches the graph of the function F. The hyperplane remains below the graph of F except at the tangent points where they coincide.

The position of the supporting hyperplane generally varies with the point x. Fewer than n + 1 points can support a convex envelope of F; in this case, several of the parameters m_i are zero.

On the other hand, the convex envelope is the greatest convex function that does not exceed F(x) in any point x [?]:

$$CF(x) = \max \phi(x) : \phi(x) \le F(x) \ \forall x \text{ and } \phi(x) \text{ is convex.}$$
 (10)

Example 1.1 Obviously, the convex envelope of a convex function coincides with the function itself, so all m_i but m_1 are zero in (7) and $m_1 = 1$; the parameter v_1 is zero because of the restriction (9).

The convex envelope of a "two-well" function,

$$\Phi(x) = \min\{F_1(x), F_2(x)\},$$
(11)

Figure 4: Convex envelope: Cone and paraboloid

where F_1 , F_2 are convex functions of x, either coincides with one of the functions F_1 , F_2 or is supported by no more than two points for every x; supporting points belong to different wells. In this case, formulas (7)–(9) for the convex envelope are reduced to

$$\mathcal{C}\Phi(x) = \min_{m,v} \left\{ mF_1(x - (1 - m)v) + (1 - m)F_2(x + mv) \right\}.$$
 (12)

Indeed, the convex envelope touches the graphs of the convex functions F_1 and F_2 in no more than one point. Call the coordinates of the touching points $x + v_1$ and $x + v_2$, respectively. The restrictions (9) become $m_1v_1 + m_2v_2 =$ 0, $m_1 + m_2 = 1$. It implies the representations $v_1 = -(1 - m)v$ and $v_2 = mv$.

Example 1.2 Consider the special case of the two-well function,

$$F(v_1, v_2) = \begin{cases} 0 & \text{if } v_1^2 + v_2^2 = 0, \\ 1 + v_1^2 + v_2^2 & \text{if } v_1^2 + v_2^2 \neq 0. \end{cases}$$
(13)

The graph of function $F(v_1, v_2)$ is axisymmetric in the plane v_1 , v_2 ; therefore, the convex envelope is axisymmetric as well: $CF(v_1, v_2) = f(\sqrt{v_1^2 + v_2^2})$. It is therefore enough to construct the envelope of function F(v), where $v = \sqrt{v_1^2 + v_2^2}$

$$F(v) = \begin{cases} 0 & \text{if } v = 0, \\ 1 + v^2 & \text{if } v^2 \neq 0. \end{cases}$$
(14)

The convex envelope CF(v) is supported by the point $v_a = 0$ and by a point v_b that (i) belongs to the parabola $f(v) = 1 + v_b^2$ and (ii) is such that the tangent line to the parabola at the point v_b passes through the origin. The equation of the tangent line in the plane v, y is $y - f(v_b) = f'(b)(v - v_b)$. Setting y = v = 0 due to (ii), we find $f(v_b) = f'(v_b)v_b$ or $1 + v_b^2 = 2v_b^2$ and $v_b = 1$. The values of F are: $F(v_1) = 0$, $F(V_b) = 2$, and the equation for the envelope is

$$\mathcal{C}F(v) = \begin{cases} 2v & 0 \le v \le 1\\ 1+v^2 & 1 \le v \end{cases}$$

. Coming back to original notations we find the supporting circumferences of $F(v_1, v_2)$:

$$A: (v_1, v_2) = (0, 0), \quad B: (v_1, v_2): v_1^2 + v_2^2 = 1$$

and the surface of the envelope is

$$\mathcal{C}F(v_1, v_2) = \begin{cases} 2\sqrt{v_1^2 + v_2^2} & \text{if } v_1^2 + v_2^2 \le 1, \\ 1 + v_1^2 + v_2^2 & \text{if } v_1^2 + v_2^2 > 1. \end{cases}$$
(15)

The envelope is a cone if it does not coincide with F, CF < F, and a paraboloid if it coincides with F, CF = F.

Figure 5: Three-well function

Hessian of Convex Envelope We mention here property of the convex envelope that we will use later. If the convex envelope Cf(x) does not coincide with f(x) for some $x = x_0$, then $CF(x_0)$ is convex, but not strongly convex. At these points the Hessian H((f) is semipositive; its determinant is zero:

$$H(\mathcal{C}f(x)) \ge 0, \quad \det H(\mathcal{C}f(x)) = 0 \quad \text{if } \mathcal{C}f < f$$

$$\tag{16}$$

which say that $H(\mathcal{C}f)$ is a nonnegative degenerate matrix. These relations can be used to compute $\mathcal{C}f(x)$.

For example, compute the Hessian H of the cone $F(v_1, v_2) = 2\sqrt{v_1^2 + v_2^2}$, from (15). We have

$$H = \frac{1}{(v_1^2 + v_2^2)^{\frac{3}{2}}} \begin{pmatrix} v_2^2 & -v_1 v_2 \\ -v_1 v_2 & v_1^2 \end{pmatrix}$$

and we see that $\det(H) = 0$.

1.3 Convex envelope of a three-well function

The convex envelope is a multi-face surface. The next problem demonstrates the variety of the components of its surface.

Describe convex envelope Cf of three-well function $f(x_1, x_2)$

$$f(x_1, x_2) = \min\{\phi_1, \phi_2, \phi_3\}$$
(17)

$$\phi_1 = x_1^2 + x_2^2 \tag{18}$$

$$\phi_2 = x_1^2 + (x_2 - 1)^2 \tag{19}$$

$$\phi_3 = (x_1 - 1)^2 + x_2^2 \tag{20}$$

Convex functions ϕ_i are called wells.

The convex envelope is a multi-face surface that is stretched between the wells. No more than three supporting points support each component of the envelope; the convex wells contain no more than one supporting point each.

The convex envelope is a solution to the optimization problem

$$Cf(x) = \min_{m} \min_{\rho} \sum_{i=1}^{3} m_i \phi_i(\rho_i)$$
(21)

$$x = m_1 \rho_1 + m_2 \rho_2 + m_3 \rho_3, \qquad (22)$$

$$m_1 + m_2 + m_3 = 1, \quad m_i \ge 0, \quad i = 1, 2, 3.$$
 (23)

Here, m_i are barycentric coordinates of x in the triangle with vertices at ρ_i .

Convex envelope $\mathcal{C}f$ consists of several components:

Bottom component The bottom part Ω_0 is correspond to the case when all $m_i > 0$; the minimization with respect to ρ_i gives: =

$$\rho_1 = (0,0), \quad \rho_2 = (1,0), \quad \rho_3 = (0,1)$$

The envelope is supported by three points ρ_i in three wells. Argument x belongs to a convex hull Ω_0 , stretched on these points $x \in \Omega_0$,

$$\Omega_0 = \{x_1, x_2 : (x_1, x_1, x_2) = \sum_{i=1}^3 \mu_i \rho_i, \quad \sum_{i=1}^3 \mu_i = 1, \quad \mu_i \ge 0\}$$

We compute:

$$\Omega_0 = \{ x_1, x_2 : x_1 \ge 0, x_2 \ge 0, x_1 + x_2 \le 1 \},$$
(24)

The values of ϕ_i are, respectively:

$$\phi_1(\rho_1) = 0, \quad \phi_2(\rho_2) = 0, \quad \phi_3(\rho_3) = 0$$

The convex envelope in Ω_0 is

$$Cf(x_1, x_2) = \sum_{i=1}^{3} \mu_i \phi_i(\rho_i) = 0 \quad \text{if} \quad (x_1, x_2) \in \Omega_0,$$
(25)

The coordinates of a point in the convex hull are

$$x_1 = \mu_2, \quad x_2 = \mu_3, \quad 0 \le \mu_2 + \mu_3 \le 1, \quad \mu_2 \ge 0, \quad \mu_3 \ge 0$$

Notice that supporting points do not vary with $x \in \Omega_0$, only the barycentric coefficients μ_i ($\mu_3 = 1 - \mu_1 - \mu_2$) vary.

Side components First side component of the boundary corresponds to the case when $m_3 = 0$. This component is supported by two points at two two convex wells ϕ_1 and ϕ_2 . The domain Ω_1 that support this case, is

$$\Omega_1 = \{x_1, x_2 : (x_1, x_2) = \mu_1(0, x_2) + \mu_2(1, x_2), \quad m_1 + \mu_2 = 1, \quad \mu_i \ge 0$$

it is a strip:

$$\Omega_1 = \{x_1, x_2 : x_1 \in [0, 1], \quad x_2 \in [-\infty, 0], \tag{26}$$

The supporting points are

$$\rho_1 = (0, x_2), \quad \rho_2 = (1, x_2)$$

We compute

$$\phi_1(0, x_2) = x_2^2, \quad \phi_1(1, x_2) = x_2^2,$$

The convex envelope in the region Ω_2 is

$$\mathcal{C}f(x_1, x_2) = \mu_1 \phi_1(0, x_2) + \mu_2 \phi_2(1, x_2) = x_2^2, \quad (x_1, x_2) \in \Omega_1,$$
(27)

Figure 6: Contourplot of the convex envelope

(Here, the coordinate x_1 is $x_1 = \mu_2$ and $x_1 \in (0, 1)$. This part lies between two convex wells ϕ_1 and ϕ_2 and consists of moving parallel intervals supported by two points at these wells. This type of surface is called a ruled surface, that is a surface that can be swept out by moving a line in space. A variation of position $x \in \Omega_2$ along the direction x_1 results in the variation of $\mu_1 = 1 - \mu_2$ with a fixed position of the supporting points, and a variation along the direction x_2 results in the variation of supporting points ρ_1 and ρ_2 with a fixed fraction m_2 .

The second side component of the envelope correspond to $m_2 = 0$ and $m_1, m_3 > 0$. This part is similar to the previous case, it is obtained from it by interchanging indices. We have

$$\Omega_2 = \{x_1, x_2 : x_2 \in [0, 1], \quad x_1 \in [-\infty, 0]\}$$

$$(28)$$

$$\rho_1 = (x_1, 0), \quad \rho_3 = (x_1, 1)$$

$$Cf(x_1, x_2) = x_1^2, \quad (x_1, x_2) \in \Omega_2$$
 (29)

The third component correspond to $m_1 = 0$ and $m_2, m_3 > 0$. Similarly to the previous case we compute,:

$$\Omega_3 = \{x_1, x_2 : |x_1 - x_2| \in [0, 1], \quad x_1 + x_2 \in [1, \infty]\}$$
(30)
$$\rho_2 = (x_1, 0), \quad \rho_3 = (x_1, 1)$$

$$Cf(x_1, x_2) = (x_1 + x_2)^2, \quad (x_1, x_2) \in \Omega_3$$
(31)

Regions of convexity The remaining three regions correspond to the case when one of coordinates m_i equals to one, and the other two are equal to zero. In these cases, the convex envelope coincides with the function itself, f(x) is convex in these regions.

We compute

$$Cf = \phi_1, \quad \text{in } \Omega_4 = \{(x_1, x_2) : \ x_1 \le 0, x_2 \le 0$$
 (32)

$$Cf = \phi_2, \quad \text{in } \Omega_5 = \{(x_1, x_2) : x_2 > 1, \ 1 \ge x_2 - x_1$$
 (33)

$$Cf = \phi_3, \quad \text{in } \Omega_6 = \{(x_1, x_2) : x_1 > 1, \ 1 \ge x_1 - x_2$$

$$(34)$$

In Figure 6 the contour plot of the obtained convex envelope is shown.

2 Relaxation of problems with vector minimizer

2.1 Relaxation procedure

The procedure is essentially the same. A bounded from below of Lagrangian F(x, u, v) of superlinear with respect of z growth with a the non-convex with respect of v region is replaced with its convex envelope $F_v(x, u, v)$. Every

point of the convex envelope of a function of *n*-dimensional vector is a convex combination by n + 1 supporting points ρ_1, ρ_{n+1} ,

$$v = \sum_{i=1}^{n+1} m_i \rho_i, \quad \sum_{i=1}^{n+1} m_i = 1, \quad m_i \ge 0$$

The minimizing sequence is a fast oscillating vector function v(x) takes not more that n + 1 values in each infinitesimal interval. The relaxed Lagrangian is

$$RF(x, u, u') = \min_{m_1...m_{n+1}} \left(\min_{\rho_1...\rho_{n+1}} \sum_{i=1}^{n+1} m_i F(x, u, u') \right)$$
(35)

$$u' = \sum_{i=1}^{n+1} m_i \rho_i, \quad \sum_{i=1}^{n+1} m_i = 1, \quad m_i \ge 0$$
 (36)

Calculating the minima, we express the relaxed Lagrangian through convex envelope with respect to $v=u^\prime$

$$RF(x, u, u') = \mathcal{C}F(x, u_h, u'_h) \tag{37}$$

Here u_h is the homogenized (averaged over a small ϵ -interval) minimizer, u'_h is its homogenized derivative.

Instead of one minimizer u(x) in the original problem with nonconvex Lagrangian, the relaxed problem depends on several minimizers: the supporting points $\rho_i(x)$ of the convex envelope and the barycentric coordinates $m_i(x)$. These continuous functions describe parameters of infinitely often oscillating minimizing sequence with the derivative that sequentially takes values $\rho_1, \ldots \rho_n$ in the infinitely small intervals $[x, x + \epsilon]$.

Remark 2.1 Analyzing the homogenized solution, one cannot determine what value takes u' at a specific point x but only the relative length (measure) of the intervals where a specific value is taken. Such fast oscillating sequences are called solutions in Young measures.

2.2 Examples of nonconvex problems for vector minimizer

Three-well Lagrangian Consider the problem with the Lagrangian

$$\mathcal{CF}(v_1, v_2) + \Phi(x, u_1, u_2)$$

where CF is the convex envelope of three-well function described in example 37.

In the domains where the Lagrangian is convex and the convex envelope $CF(v_1, v_2)$ coincides with the wells in $F(v_1, v_2)$, stationarity conditions are represented by a system of two second-order Euler equations:

$$2u_1'' - \frac{\partial \Phi}{\partial u_1} = 0, \quad 2u_2'' - \frac{\partial \Phi}{\partial u_2} = 0,$$

Notice that linear with respect to derivative terms in the second and third wells are null-Lagrangians and they do not affect Euler equations, because

$$\frac{d}{dx}\left(\frac{\partial(u'-1)^2}{\partial u'}\right) = 2\frac{d(u'-1)}{dx} = 2u''$$

In the complex hull Ω_0 , where

$$\mathcal{C}F(v_1, v_2) = 0$$

stationarity is described by algebraic equations for u_1 and u_2 :

$$\frac{\partial \Phi}{\partial u_1} = 0, \quad \frac{\partial \Phi}{\partial u_2} = 0, \tag{38}$$

These minimizers are zigzag functions which derivatives taken pointwize values $\rho_1 = (0,0), \rho_2 = (1,0), \text{ and } \rho_3 = (0,1)$. The weights (measures) m_i are found by differentiation of the conditions (38) and (36):

$$\frac{d}{dx}\frac{\partial\Phi}{\partial u_1} = \frac{\partial^2\Phi}{\partial x\partial u_2} + \frac{\partial^2\Phi}{\partial u_1^2}u_1' + \frac{\partial^2\Phi}{\partial u_1\partial u_2}u_2' \tag{39}$$

$$\frac{d}{dx}\frac{\partial\Phi}{\partial u_2} = \frac{\partial^2\Phi}{\partial x\partial u_2} + \frac{\partial^2\Phi}{\partial u_1\partial u_2}u_1' + \frac{\partial^2\Phi}{\partial u_2^2}u_2' \tag{40}$$

This two equations are linear relations for m_1, m_2, m_3 because

$$u' = \sum_{i=1}^{3} m_i \rho_i;$$

together with the third equation $m_1 + m_2 + m_3 = 1$, they allow for finding barycentric coordinates m_i .

In the remaining domains, stationarity conditions include one second-order differential equation and one algebraic equation. For example, in the domain Ω_1 , the relaxed Lagrangian is

$$F_2 = (u'_2)^2 + \Phi, (x, u_1, u_2), \quad u'_1 \in [0, 1]$$

the Euler equations are

$$\frac{\partial \Phi}{\partial u_1} = 0 \quad 2u_2'' = \frac{\partial \Phi}{\partial u_2} = 0$$

Barycentric coordinates $m_1, m_2, m_1 + m_2 = 1$, are found by differentiation of the first stationarity equation as in (40)

$$\frac{d}{dx}\frac{\partial\Phi}{\partial u_1} = \frac{\partial^2\Phi}{\partial x\partial u_1} + \frac{\partial^2\Phi}{\partial u_1^2}u_1' = 0$$

Express u'_1 as function of m_1 : $u'_1 = m_1\rho_1 + m_2\rho_2$ where $Gr_1 = 0, Gr_2 = 1$ and $m_2 = 1 - m_1$: $u'_1 = m_2$ and the stationarity conditions, we find

$$m_2 = -\frac{\partial^2 \Phi}{\partial x \partial u_1} \left(\frac{\partial^2 \Phi}{\partial u_1^2} \right)^-$$

The other two cases are treated similarly.

We can also check that determinant of the Hessian is zero everywhere, where $\mathcal{C}F < F$.

2.3 Conclusion and Problems

We have observed the following:

- A variational problem has the fine-scale oscillatory minimizer if its Lagrangian F(x, u, u') is a nonconvex function of its third argument.
- Homogenization leads to the relaxed form of the problem that has a classical solution and preserves the cost of the original problem.
- The relaxed problem is obtained by replacing the Lagrangian of the initial problem by its convex envelope. It can be computed as the second conjugate to F.
- The dependence of the Lagrangian on its third argument in the region of nonconvexity does not affect the relaxed problem.

To relax a variational problem, we use two ideas. First, we replaced the function with its convex envelope and got a stable extension of the problem. Second, we proved that the value of the integral of the convex envelope CF(v) of a given function is equal to the value of the integral of this function F(v) if its argument v is a zigzag curve. We use the Carathéodory theorem, which tells that the number of subregions .whe constancy of the argument is less than or equal to n + 1, where n is the dimension of the minimizer.

Regularization and relaxation The considered nonconvex problem is another example of an ill-posed variational problem. For these problems, the classical variational technique based on the Euler equation fails to work. Here, The limiting curve is not a discontinuous curve as in the previous example, but a limit of infinitely fast oscillating functions, similar to $\lim_{\omega\to\infty} \sin(\omega x)$.

We may apply regularization to discourage the solution to oscillate. Doing this, we pass to the problem

$$\min_{u} \int_{0}^{1} (\epsilon^{2}(u'')^{2} + G(u, u')) dx$$

that corresponds to Euler equation:

$$\begin{aligned} \epsilon^2 u^{IV} - u'' + u &= 0 \quad \text{if} \quad |u'| \ge \frac{1}{2} \\ \epsilon^2 u^{IV} + u'' + u &= 0 \quad \text{if} \quad |u'| \le \frac{1}{2}. \end{aligned} \tag{41}$$

The Weierstrass condition this time requires the convexity of the dependence of Lagrangian on u''; this condition is satisfies.

The solution of Euler equations is oscillatory, with the period of oscillation of the order of ϵ . It $\epsilon \to 0$, the solution still tends to an infinitely often oscillating distribution. When ϵ is positive but small, the solution has a finite but large number of wiggles. The computation of such solutions is difficult and some times unnecessary: It strongly depends on an artificial parameter ϵ , which is difficult to justify physically. It is n=more natural to replace an ill-posed problem with a *relaxed* one. The idea of relaxation is in a sense opposite to the regularization. Instead of discouraging fast oscillations, we admit them as legitimate minimizers and describe such minimizers in terms of smooth functions: the limits of oscillating variable and the average time that it spends on each boundary.