Infinitely often oscillating solutions: Vector case

March 24, 2019
Contents
1 Convexity: Vector function 2
1.1 Convex function of vector argument 2
1.2 Convex envelope. Vector case 3
1.3 Convex envelope of a three-well function 6
2 Relaxation of problems with vector minimizer 8
2.1 Relaxation procedure 8
2.2 Examples of nonconvex problems for vector minimizer 9
2.3 Conclusion and Problems 11

Figure 1: Convex set, convex function on a convex set

1 Convexity: Vector function

1.1 Convex function of vector argument

Convex set, convex hull A domain Ω in R^{n} is called convex if for any points x_{1} and x_{2} in Ω and for any m in the interval $[0,1]$, all points $x=(1-m) x_{1}+m x_{2}$ belong to Ω. In other words, any point of the line segment belong to Ω if its ends x_{1} and x_{2} are in Ω.

The convex hull or convex envelope $\mathcal{C} \Omega$ of a nonconvex set Ω is the smallest convex set that contains Ω. It can be also defined as the set of all convex combinations z of points $x \in \Omega$.

$$
z(x)=\left\{x: x=\sum_{i}\left(m_{i} x_{i}\right), \quad \forall x_{i} \in \Omega \quad \sum_{i} m_{i}=1, m_{i} \geq 0\right\}
$$

Particularly, the convex envelope of a set of any n points $a_{1}, \ldots a_{n}$ in R^{n} is a polygon

$$
P(x)=\left\{x: x=\sum_{i=1}^{n} m_{i} a_{i}, \quad \sum_{i} m_{i}=1, m_{i} \geq 0\right\}
$$

stretched at these points. Parameters m_{i} with the stated properties are called the barycentric coordinates of x in the polygone P.

Convex function Consider a real-valued continuous function $f(x)$, where $x \in R^{n}$ belongs to a convex set Ω. Function f is called convex if the inequality (??) holds, in which x, v_{1}, v_{2} are now n-vectors not scalars.

Another equivalent geometrical definition of convexity is: $f(x)$ is convex, if the $n+1$-dimensional set (x, z) where $x \in \Omega$ and $z \geq f(x)$ of the points above its graph $y \geq f(x)$ is convex.

Convexity in a point; Jensen inequality As in the scalar case, the function f is convex in a point x if

$$
\begin{array}{r}
f(x) \leq \sum_{i=1}^{n+1} m_{i} f\left(x+v_{i}\right) \quad \forall m_{i}, \quad v_{i} i=1, \ldots n+1, \quad \text { such that } \\
m_{i}>0, \quad x+v_{i} \in \Omega, \quad \sum_{i=1}^{n} m_{i}=1, \quad \sum_{i=1}^{n+1} m_{i} v_{i}=0 \tag{2}
\end{array}
$$

Derivatives. Hessian Convex differentiable functions satisfy inequality

$$
\begin{equation*}
f(y) \geq f(x)+(y-x)^{T} \nabla f(x) \quad \forall x, y \in \Omega \tag{3}
\end{equation*}
$$

Second derivatives of a twice differentiable functions is characterized by the Hessian $H(f)$ which is a symmetric $n \times n$ matrix of the second derivatives with entries

$$
H_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}, \quad i, j=1, \ldots n
$$

If $f(x)$ is convex, its Hessian is non-negatively defined,

$$
z^{T} H z \geq 0, \quad \forall z \in R^{n}, \quad|z| \neq 0
$$

If f is strictly convex, its Hessian is positively defined.

Gradient of a convex function is monotone From (3), one can deduct that monotonicity of a derivative of a convex function, that is an analog of monotonicity of the derivative of a convex function of a scalar argument. We rewrite inequality (3) for the pair y, x instead of x, y :

$$
f(x) \geq f(y)+(x-y)^{T} \nabla f(y) \quad \forall x, y \in \Omega
$$

and subtract it from (3), obtaining

$$
(y-x)^{T}(\nabla f(y)-\nabla F(x)) \geq 0
$$

for all $x, y \in \Omega$. The last inequality is called the monotonicity of a vector-valued function. Monotonicity means that projection of the difference of gradients in any two points to the vector of difference between these points is non-negative. If $f(x)$ is convex, $\nabla f(x)$ is monotone.

Comment is not clear

1.2 Convex envelope. Vector case

Convex envelope $\mathcal{C} f(x), x \in R^{n}$ satisfies the equation

$$
\begin{align*}
\mathcal{C} f(x)= & \min _{\rho_{1}, \ldots \rho_{n+1}} \sum_{i=1}^{n+1} m_{i} f\left(\rho_{i}\right), \tag{4}\\
x=\sum_{i=1}^{n+1} m_{i} \rho_{i}, \quad & \sum_{i=1}^{n+1} m_{i}=1, \quad m_{i} \geq 0 \tag{5}
\end{align*}
$$

that is similar to the scalar case.
Definition 1.1 The convex envelope $\mathcal{C} F$ is a solution to the following minimal problem:

$$
\begin{equation*}
\mathcal{C} F(A)=\inf _{v: v+x_{0} \in C} \frac{1}{l} \int_{C} F(A+v(x)) d x \quad \forall v: \int_{C} v(x) d x=0 \tag{6}
\end{equation*}
$$

This definition determines the convex envelope as the minimum of all parallel secant hyperplanes that intersect the graph of F; it is based on Jensen's inequality (??).

Figure 2: Supporting points

Figure 3: barycentric coordinates

Supporting points To compute the convex envelope $\mathcal{C} F$ one can use the Carathéodory theorem (see [?, ?]). It states that the argument $v(x)=\left[v_{1}(x), \ldots, v_{n}(x)\right]$ that minimizes the right-hand side of (6) takes no more than $n+1$ different values. This theorem refers to the obvious geometrical fact that the convex envelope consists of the supporting hyperplanes to the graph $F\left(v_{1}, \ldots, v_{n}\right)$. Each of these hyperplanes is supported by no more than $(n+1)$ arbitrary points.

The Carathéodory theorem allows us to replace the integral in the righthand side of the definition of $\mathcal{C} F$ by the sum of $n+1$ terms; the definition (6) becomes:

$$
\begin{equation*}
C F(x)=\min _{m_{i} \in M} \min _{v_{i} \in v}\left(\sum_{i=1}^{n+1} m_{i} F\left(x+v_{i}\right)\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\left\{m_{i}: \quad m_{i} \geq 0, \quad \sum_{i=1}^{n+1} m_{i}=1\right\} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
v=\left\{v_{i}: \quad \sum_{i=1}^{n+1} m_{i} v_{i}=0\right\} \tag{9}
\end{equation*}
$$

Parameters m_{i} are called barycentric coordinates of the convex hull stretched at the vertices $x+v_{i}$.

The convex envelope $\mathcal{C} F(x)$ of a function $F(x)$ at a point x coincides with either the function $F(x)$ or the hyperplane that touches the graph of the function F. The hyperplane remains below the graph of F except at the tangent points where they coincide.

The position of the supporting hyperplane generally varies with the point x. Fewer than $n+1$ points can support a convex envelope of F; in this case, several of the parameters m_{i} are zero.

On the other hand, the convex envelope is the greatest convex function that does not exceed $F(x)$ in any point $x[?]$:

$$
\begin{equation*}
\mathcal{C} F(x)=\max \phi(x): \phi(x) \leq F(x) \forall x \quad \text { and } \phi(x) \text { is convex. } \tag{10}
\end{equation*}
$$

Example 1.1 Obviously, the convex envelope of a convex function coincides with the function itself, so all m_{i} but m_{1} are zero in (7) and $m_{1}=1$; the parameter v_{1} is zero because of the restriction (9).

The convex envelope of a "two-well" function,

$$
\begin{equation*}
\Phi(x)=\min \left\{F_{1}(x), F_{2}(x)\right\} \tag{11}
\end{equation*}
$$

Figure 4: Convex envelope: Cone and paraboloid
where F_{1}, F_{2} are convex functions of x, either coincides with one of the functions F_{1}, F_{2} or is supported by no more than two points for every x; supporting points belong to different wells. In this case, formulas (7)-(9) for the convex envelope are reduced to

$$
\begin{equation*}
\mathcal{C} \Phi(x)=\min _{m, v}\left\{m F_{1}(x-(1-m) v)+(1-m) F_{2}(x+m v)\right\} \tag{12}
\end{equation*}
$$

Indeed, the convex envelope touches the graphs of the convex functions F_{1} and F_{2} in no more than one point. Call the coordinates of the touching points $x+v_{1}$ and $x+v_{2}$, respectively. The restrictions (9) become $m_{1} v_{1}+m_{2} v_{2}=$ $0, m_{1}+m_{2}=1$. It implies the representations $v_{1}=-(1-m) v$ and $v_{2}=m v$.

Example 1.2 Consider the special case of the two-well function,

$$
F\left(v_{1}, v_{2}\right)= \begin{cases}0 & \text { if } v_{1}^{2}+v_{2}^{2}=0 \tag{13}\\ 1+v_{1}^{2}+v_{2}^{2} & \text { if } v_{1}^{2}+v_{2}^{2} \neq 0\end{cases}
$$

The graph of function $F\left(v_{1}, v_{2}\right)$ is axisymmetric in the plane v_{1}, v_{2}; therefore, the convex envelope is axisymmetric as well: $\mathcal{C} F\left(v_{1}, v_{2}\right)=f\left(\sqrt{v_{1}^{2}+v_{2}^{2}}\right)$. It is therefore enough to construct the envelope of function $F(v)$, where $v=\sqrt{v_{1}^{2}+v_{2}^{2}}$

$$
F(v)= \begin{cases}0 & \text { if } \quad v=0 \tag{14}\\ 1+v^{2} & \text { if } \quad v^{2} \neq 0\end{cases}
$$

The convex envelope $\mathcal{C} F(v)$ is supported by the point $v_{a}=0$ and by a point v_{b} that (i) belongs to the parabola $f(v)=1+v_{b}^{2}$ and (ii) is such that the tangent line to the parabola at the point v_{b} passes through the origin. The equation of the tangent line in the plane v, y is $y-f\left(v_{b}\right)=f^{\prime}(b)\left(v-v_{b}\right)$. Setting $y=v=0$ due to (ii), we find $f\left(v_{b}\right)=f^{\prime}\left(v_{b}\right) v_{b}$ or $1+v_{b}^{2}=2 v_{b}^{2}$ and $v_{b}=1$. The values of F are: $F\left(v_{1}\right)=0, F\left(V_{b}\right)=2$, and the equation for the envelope is

$$
\mathcal{C} F(v)= \begin{cases}2 v & 0 \leq v \leq 1 \\ 1+v^{2} & 1 \leq v\end{cases}
$$

Coming back to original notations we find the supporting circumferences of $F\left(v_{1}, v_{2}\right)$:

$$
A:\left(v_{1}, v_{2}\right)=(0,0), \quad B:\left(v_{1}, v_{2}\right): v_{1}^{2}+v_{2}^{2}=1
$$

and the surface of the envelope is

$$
\mathcal{C} F\left(v_{1}, v_{2}\right)= \begin{cases}2 \sqrt{v_{1}^{2}+v_{2}^{2}} & \text { if } v_{1}^{2}+v_{2}^{2} \leq 1 \tag{15}\\ 1+v_{1}^{2}+v_{2}^{2} & \text { if } v_{1}^{2}+v_{2}^{2}>1\end{cases}
$$

The envelope is a cone if it does not coincide with $F, \mathcal{C} F<F$, and a paraboloid if it coincides with $F, \mathcal{C} F=F$.

Figure 5: Three-well function

Hessian of Convex Envelope We mention here property of the convex envelope that we will use later. If the convex envelope $\mathcal{C} f(x)$ does not coincide with $f(x)$ for some $x=x_{0}$, then $\mathcal{C} F\left(x_{0}\right)$ is convex, but not strongly convex. At these points the Hessian $H((f)$ is semipositive; its determinant is zero:

$$
\begin{equation*}
H(\mathcal{C} f(x)) \geq 0, \quad \operatorname{det} H(\mathcal{C} f(x))=0 \quad \text { if } \mathcal{C} f<f \tag{16}
\end{equation*}
$$

which say that $H(\mathcal{C} f)$ is a nonnegative degenerate matrix. These relations can be used to compute $\mathcal{C} f(x)$.

For example, compute the Hessian H of the cone $F\left(v_{1}, v_{2}\right)=2 \sqrt{v_{1}^{2}+v_{2}^{2}}$, from (15). We have

$$
H=\frac{1}{\left(v_{1}^{2}+v_{2}^{2}\right)^{\frac{3}{2}}}\left(\begin{array}{cc}
v_{2}^{2} & -v_{1} v_{2} \\
-v_{1} v_{2} & v_{1}^{2}
\end{array}\right)
$$

and we see that $\operatorname{det}(H)=0$.

1.3 Convex envelope of a three-well function

The convex envelope is a multi-face surface. The next problem demonstrates the variety of the components of its surface.

Describe convex envelope $\mathcal{C} f$ of three-well function $f\left(x_{1}, x_{2}\right)$

$$
\begin{align*}
f\left(x_{1}, x_{2}\right) & =\min \left\{\phi_{1}, \phi_{2}, \phi_{3}\right\} \tag{17}\\
\phi_{1} & =x_{1}^{2}+x_{2}^{2} \tag{18}\\
\phi_{2} & =x_{1}^{2}+\left(x_{2}-1\right)^{2} \tag{19}\\
\phi_{3} & =\left(x_{1}-1\right)^{2}+x_{2}^{2} \tag{20}
\end{align*}
$$

Convex functions ϕ_{i} are called wells.
The convex envelope is a multi-face surface that is stretched between the wells. No more than three supporting points support each component of the envelope; the convex wells contain no more than one supporting point each.

The convex envelope is a solution to the optimization problem

$$
\begin{array}{r}
\mathcal{C} f(x)=\min _{m} \min _{\rho} \sum_{i=1}^{3} m_{i} \phi_{i}\left(\rho_{i}\right) \\
x=m_{1} \rho_{1}+m_{2} \rho_{2}+m_{3} \rho_{3} \\
m_{1}+m_{2}+m_{3}=1, \quad m_{i} \geq 0, \quad i=1,2,3 \tag{23}
\end{array}
$$

Here, m_{i} are barycentric coordinates of x in the triangle with vertices at ρ_{i}.
Convex envelope $\mathcal{C} f$ consists of several components:

Bottom component The bottom part Ω_{0} is correspond to the case when all $m_{i}>0$; the minimization with respect to ρ_{i} gives: $=$

$$
\rho_{1}=(0,0), \quad \rho_{2}=(1,0), \quad \rho_{3}=(0,1)
$$

The envelope is supported by three points ρ_{i} in three wells. Argument x belongs to a convex hull Ω_{0}, stretched on these points $x \in \Omega_{0}$,

$$
\Omega_{0}=\left\{x_{1}, x_{2}:\left(x_{1}, x_{1}, x_{2}\right)=\sum_{i=1}^{3} \mu_{i} \rho_{i}, \quad \sum_{i=1}^{3} \mu_{i}=1, \quad \mu_{i} \geq 0\right\}
$$

We compute:

$$
\begin{equation*}
\Omega_{0}=\left\{x_{1}, x_{2}: x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2} \leq 1\right\} \tag{24}
\end{equation*}
$$

The values of ϕ_{i} are, respectively:

$$
\phi_{1}\left(\rho_{1}\right)=0, \quad \phi_{2}\left(\rho_{2}\right)=0, \quad \phi_{3}\left(\rho_{3}\right)=0
$$

The convex envelope in Ω_{0} is

$$
\begin{equation*}
\mathcal{C} f\left(x_{1}, x_{2}\right)=\sum_{i=1}^{3} \mu_{i} \phi_{i}\left(\rho_{i}\right)=0 \quad \text { if } \quad\left(x_{1}, x_{2}\right) \in \Omega_{0} \tag{25}
\end{equation*}
$$

The coordinates of a point in the convex hull are

$$
x_{1}=\mu_{2}, \quad x_{2}=\mu_{3}, \quad 0 \leq \mu_{2}+\mu_{3} \leq 1, \quad \mu_{2} \geq 0, \quad \mu_{3} \geq 0
$$

Notice that supporting points do not vary with $x \in \Omega_{0}$, only the barycentric coefficients $\mu_{i}\left(\mu_{3}=1-\mu_{1}-\mu_{2}\right)$ vary.

Side components First side component of the boundary corresponds to the case when $m_{3}=0$. This component is supported by by two points at two two convex wells ϕ_{1} and ϕ_{2}. The domain Ω_{1} that support this case, is

$$
\Omega_{1}=\left\{x_{1}, x_{2}:\left(x_{1}, x_{2}\right)=\mu_{1}\left(0, x_{2}\right)+\mu_{2}\left(1, x_{2}\right), \quad m_{1}+\mu_{2}=1, \quad \mu_{i} \geq 0\right.
$$

it is a strip:

$$
\begin{equation*}
\Omega_{1}=\left\{x_{1}, x_{2}: x_{1} \in[0,1], \quad x_{2} \in[-\infty, 0]\right. \tag{26}
\end{equation*}
$$

The supporting points are

$$
\rho_{1}=\left(0, x_{2}\right), \quad \rho_{2}=\left(1, x_{2}\right)
$$

We compute

$$
\phi_{1}\left(0, x_{2}\right)=x_{2}^{2}, \quad \phi_{1}\left(1, x_{2}\right)=x_{2}^{2}
$$

The convex envelope in the region Ω_{2} is

$$
\begin{equation*}
\mathcal{C} f\left(x_{1}, x_{2}\right)=\mu_{1} \phi_{1}\left(0, x_{2}\right)+\mu_{2} \phi_{2}\left(1, x_{2}\right)=x_{2}^{2}, \quad\left(x_{1}, x_{2}\right) \in \Omega_{1}, \tag{27}
\end{equation*}
$$

Figure 6: Contourplot of the convex envelope
(Here, the coordinate x_{1} is $x_{1}=\mu_{2}$ and $x_{1} \in(0,1)$. This part lies between two convex wells ϕ_{1} and ϕ_{2} and consists of moving parallel intervals supported by two points at these wells. This type of surface is called a ruled surface, that is a surface that can be swept out by moving a line in space. A variation of position $x \in \Omega_{2}$ along the direction x_{1} results in the variation of $\mu_{1}=1-\mu_{2}$ with a fixed position of the supporting points, and a variation along the direction x_{2} results in the variation of supporting points ρ_{1} and ρ_{2} with a fixed fraction m_{2}.

The second side component of the envelope correspond to $m_{2}=0$ and $m_{1}, m_{3}>0$. This part is similar to the previous case, it is obtained from it by interchanging indices. We have

$$
\begin{array}{r}
\Omega_{2}=\left\{x_{1}, x_{2}: x_{2} \in[0,1], \quad x_{1} \in[-\infty, 0]\right\} \\
\rho_{1}=\left(x_{1}, 0\right), \quad \rho_{3}=\left(x_{1}, 1\right) \\
\mathcal{C} f\left(x_{1}, x_{2}\right)=x_{1}^{2}, \quad\left(x_{1}, x_{2}\right) \in \Omega_{2} \tag{29}
\end{array}
$$

The third component correspond to $m_{1}=0$ and $m_{2}, m_{3}>0$. Similarly to the previous case we compute,:

$$
\begin{align*}
\Omega_{3} & =\left\{x_{1}, x_{2}:\left|x_{1}-x_{2}\right| \in[0,1], \quad x_{1}+x_{2} \in[1, \infty]\right\} \tag{30}\\
\rho_{2} & =\left(x_{1}, 0\right), \quad \rho_{3}=\left(x_{1}, 1\right) \\
\mathcal{C} f\left(x_{1}, x_{2}\right) & =\left(x_{1}+x_{2}\right)^{2}, \quad\left(x_{1}, x_{2}\right) \in \Omega_{3} \tag{31}
\end{align*}
$$

Regions of convexity The remaining three regions correspond to the case when one of coordinates m_{i} equals to one, and the other two are equal to zero. In these cases, the convex envelope coincides with the function itself, $f(x)$ is convex in these regions.

We compute

$$
\begin{array}{ll}
\mathcal{C} f=\phi_{1}, & \text { in } \Omega_{4}=\left\{\left(x_{1}, x_{2}\right): x_{1} \leq 0, x_{2} \leq 0\right. \\
\mathcal{C} f=\phi_{2}, & \text { in } \Omega_{5}=\left\{\left(x_{1}, x_{2}\right): x_{2}>1,1 \geq x_{2}-x_{1}\right. \\
\mathcal{C} f=\phi_{3}, & \text { in } \Omega_{6}=\left\{\left(x_{1}, x_{2}\right): x_{1}>1,1 \geq x_{1}-x_{2}\right. \tag{34}
\end{array}
$$

In Figure 6 the contour plot of the obtained convex envelope is shown.

2 Relaxation of problems with vector minimizer

2.1 Relaxation procedure

The procedure is essentially the same. A bounded from below of Lagrangian $F(x, u, v)$ of superlinear with respect of z growth with a the non-convex with respect of v region is replaced with its convex envelope $F_{v}(x, u, v)$. Every
point of the convex envelope of a function of n-dimensional vector is a convex combination by $n+1$ supporting points ρ_{1}, ρ_{n+1},

$$
v=\sum_{i=1}^{n+1} m_{i} \rho_{i}, \quad \sum_{i=1}^{n+1} m_{i}=1, \quad m_{i} \geq 0
$$

The minimizing sequence is a fast oscillating vector function $v(x)$ takes not more that $n+1$ values in each infinitesimal interval. The relaxed Lagrangian is

$$
\begin{array}{r}
R F\left(x, u, u^{\prime}\right)=\min _{m_{1} \ldots m_{n+1}}\left(\min _{\rho_{1} \ldots \rho_{n+1}} \sum_{i=1}^{n+1} m_{i} F\left(x, u, u^{\prime}\right)\right) \\
u^{\prime}=\sum_{i=1}^{n+1} m_{i} \rho_{i}, \quad \sum_{i=1}^{n+1} m_{i}=1, \quad m_{i} \geq 0 \tag{36}
\end{array}
$$

Calculating the minima, we express the relaxed Lagrangian through convex envelope with respect to $v=u^{\prime}$

$$
\begin{equation*}
R F\left(x, u, u^{\prime}\right)=\mathcal{C} F\left(x, u_{h}, u_{h}^{\prime}\right) \tag{37}
\end{equation*}
$$

Here u_{h} is the homogenized (averaged over a small ϵ-interval) minimizer, u_{h}^{\prime} is its homogenized derivative.

Instead of one minimizer $u(x)$ in the original problem with nonconvex Lagrangian, the relaxed problem depends on several minimizers: the supporting points $\rho_{i}(x)$ of the convex envelope and the barycentric coordinates $m_{i}(x)$. These continuous functions describe parameters of infinitely often oscillating minimizing sequence with the derivative that sequentially takes values $\rho_{1}, \ldots \rho_{n}$ in the infinitely small intervals $[x, x+\epsilon]$.

Remark 2.1 Analyzing the homogenized solution, one cannot determine what value takes u^{\prime} at a specific point x but only the relative length (measure) of the intervals where a specific value is taken. Such fast oscillating sequences are called solutions in Young measures.

2.2 Examples of nonconvex problems for vector minimizer

Three-well Lagrangian Consider the problem with the Lagrangian

$$
\mathcal{C} F\left(v_{1}, v_{2}\right)+\Phi\left(x, u_{1}, u_{2}\right)
$$

where $\mathcal{C} F$ is the convex envelope of three-well function described in example 37.
In the domains where the Lagrangian is convex and the convex envelope $\mathcal{C} F\left(v_{1}, v_{2}\right)$ coincides with the wells in $F\left(v_{1}, v_{2}\right)$, stationarity conditions are represented by a system of two second-order Euler equations:

$$
2 u_{1}^{\prime \prime}-\frac{\partial \Phi}{\partial u_{1}}=0, \quad 2 u_{2}^{\prime \prime}-\frac{\partial \Phi}{\partial u_{2}}=0
$$

Notice that linear with respect to derivative terms in the second and third wells are null-Lagrangians and they do not affect Euler equations, because

$$
\frac{d}{d x}\left(\frac{\partial\left(u^{\prime}-1\right)^{2}}{\partial u^{\prime}}\right)=2 \frac{d\left(u^{\prime}-1\right)}{d x}=2 u^{\prime \prime}
$$

In the complex hull Ω_{0}, where

$$
\mathcal{C} F\left(v_{1}, v_{2}\right)=0
$$

stationarity is described by algebraic equations for u_{1} and u_{2} :

$$
\begin{equation*}
\frac{\partial \Phi}{\partial u_{1}}=0, \quad \frac{\partial \Phi}{\partial u_{2}}=0 \tag{38}
\end{equation*}
$$

These minimizers are zigzag functions which derivatives taken pointwize values $\rho_{1}=(0,0), \rho_{2}=(1,0)$, and $\rho_{3}=(0,1)$. The weights (measures) m_{i} are found by differentiation of the conditions (38) and (36):

$$
\begin{align*}
\frac{d}{d x} \frac{\partial \Phi}{\partial u_{1}} & =\frac{\partial^{2} \Phi}{\partial x \partial u_{2}}+\frac{\partial^{2} \Phi}{\partial u_{1}^{2}} u_{1}^{\prime}+\frac{\partial^{2} \Phi}{\partial u_{1} \partial u_{2}} u_{2}^{\prime} \tag{39}\\
\frac{d}{d x} \frac{\partial \Phi}{\partial u_{2}} & =\frac{\partial^{2} \Phi}{\partial x \partial u_{2}}+\frac{\partial^{2} \Phi}{\partial u_{1} \partial u_{2}} u_{1}^{\prime}+\frac{\partial^{2} \Phi}{\partial u_{2}^{2}} u_{2}^{\prime} \tag{40}
\end{align*}
$$

This two equations are linear relations for m_{1}, m_{2}, m_{3} because

$$
u^{\prime}=\sum_{i=1}^{3} m_{i} \rho_{i}
$$

together with the third equation $m_{1}+m_{2}+m_{3}=1$, they allow for finding barycentric coordinates m_{i}.

In the remaining domains, stationarity conditions include one second-order differential equation and one algebraic equation. For example, in the domain Ω_{1}, the relaxed Lagrangian is

$$
F_{2}=\left(u_{2}^{\prime}\right)^{2}+\Phi,\left(x, u_{1}, u_{2}\right), \quad u_{1}^{\prime} \in[0,1]
$$

the Euler equations are

$$
\frac{\partial \Phi}{\partial u_{1}}=0 \quad 2 u_{2}^{\prime \prime}=\frac{\partial \Phi}{\partial u_{2}}=0
$$

Barycentric coordinates $m_{1}, m_{2}, m_{1}+m_{2}=1$, are found by differentiation of the first stationarity equation as in (40)

$$
\frac{d}{d x} \frac{\partial \Phi}{\partial u_{1}}=\frac{\partial^{2} \Phi}{\partial x \partial u_{1}}+\frac{\partial^{2} \Phi}{\partial u_{1}^{2}} u_{1}^{\prime}=0
$$

Express u_{1}^{\prime} as function of $m_{1}: u_{1}^{\prime}=m_{1} \rho_{1}+m_{2} \rho_{2}$ where $G r_{1}=0, G r_{2}=1$ and $m_{2}=1-m_{1}: u_{1}^{\prime}=m_{2}$ and the stationarity conditions, we find

$$
m_{2}=-\frac{\partial^{2} \Phi}{\partial x \partial u_{1}}\left(\frac{\partial^{2} \Phi}{\partial u_{1}^{2}}\right)^{-1}
$$

The other two cases are treated similarly.
We can also check that determinant of the Hessian is zero everywhere, where $\mathcal{C} F<F$.

2.3 Conclusion and Problems

We have observed the following:

- A variational problem has the fine-scale oscillatory minimizer if its Lagrangian $F\left(x, u, u^{\prime}\right)$ is a nonconvex function of its third argument.
- Homogenization leads to the relaxed form of the problem that has a classical solution and preserves the cost of the original problem.
- The relaxed problem is obtained by replacing the Lagrangian of the initial problem by its convex envelope. It can be computed as the second conjugate to F.
- The dependence of the Lagrangian on its third argument in the region of nonconvexity does not affect the relaxed problem.

To relax a variational problem, we use two ideas. First, we replaced the function with its convex envelope and got a stable extension of the problem. Second, we proved that the value of the integral of the convex envelope $\mathcal{C} F(\boldsymbol{v})$ of a given function is equal to the value of the integral of this function $F(\boldsymbol{v})$ if its argument \boldsymbol{v} is a zigzag curve. We use the Carathéodory theorem, which tells that the number of subregions .whe constancy of the argument is less than or equal to $n+1$, where n is the dimension of the minimizer.

Regularization and relaxation The considered nonconvex problem is another example of an ill-posed variational problem. For these problems, the classical variational technique based on the Euler equation fails to work. Here, The limiting curve is not a discontinuous curve as in the previous example, but a limit of infinitely fast oscillating functions, similar to $\lim _{\omega \rightarrow \infty} \sin (\omega x)$.

We may apply regularization to discourage the solution to oscillate. Doing this, we pass to the problem

$$
\min _{u} \int_{0}^{1}\left(\epsilon^{2}\left(u^{\prime \prime}\right)^{2}+G\left(u, u^{\prime}\right)\right) d x
$$

that corresponds to Euler equation:

$$
\begin{array}{lll}
\epsilon^{2} u^{I V}-u^{\prime \prime}+u=0 & \text { if } & \left|u^{\prime}\right| \geq \frac{1}{2} \tag{41}\\
\epsilon^{2} u^{I V}+u^{\prime \prime}+u=0 & \text { if } & \left|u^{\prime}\right| \leq \frac{1}{2} .
\end{array}
$$

The Weierstrass condition this time requires the convexity of the dependence of Lagrangian on $u^{\prime \prime}$; this condition is satisfies.

The solution of Euler equations is oscillatory, with the period of oscillation of the order of ϵ. It $\epsilon \rightarrow 0$, the solution still tends to an infinitely often oscillating distribution. When ϵ is positive but small, the solution has a finite but large number of wiggles. The computation of such solutions is difficult and some times unnecessary: It strongly depends on an artificial parameter ϵ, which is difficult to justify physically. It is $\mathrm{n}=$ more natural to replace an ill-posed problem with a relaxed one. The idea of relaxation is in a sense opposite to the regularization. Instead of discouraging fast oscillations, we admit them as legitimate minimizers and describe such minimizers in terms of smooth functions: the limits of oscillating variable and the average time that it spends on each boundary.

