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Figure 1: Convexity

1 Convexity: Scalar function

1.1 Convex function of a scalar argument

Convex function A real-valued continuous function f(x) of a scalar argu-
ment x ∈ [a, b] is convex on an interval if for any two points x1 and x2 in [a, b]
and any m, 0 ≤ m ≤ 1, the inequality holds

f(mx1 + (1−m)x2] ≤ mf(x1) + (1−m)f(x2), ∀m ∈ [0, 1] (1)

which states that the graph of f(x) lies below the secant line between x1 and
x2.

Convexity in a point Another useful form of that inequality defines convex-
ity in a point x ∈ R. If we rename the arguments in (1) as:

x = mx1 + (1−m)x2, v1 = x1 − x, v2 = x2 − x

inequality (1) will define the convexity of f(x), x ∈ R, in the point x:

f(x) ≤ m1f(x+ v1) +m2f(x+ v2), ∀m1,m2, v1, v2, such that

m1 ≥ 0, m2 ≥ 0, m1 +m2 = 1, m1v1 +m2v2 = 0, (2)

Here v1 and v2 are any perturbations of the argument x with zero mean value,
see (2).

Example 1.1 Function f(x) =
(
x2 − 1

)2
is convex in all points outside the in-

terval x 6∈ [−1, 1] and is not convex inside this interval.

Jensen’s inequality, integral form The definition of convexity (2) in the
point x is extended to the Jensen inequality for a function f(x), x ∈ R

f(A) ≤
n∑
i=1

mif(A+ vi), ∀mi, vi, i = 1, . . . n, such that (3)

mi ≥ 0,

n∑
i=1

mi = 1,

n∑
i=1

mivi = 0 (4)

We define convexity of an integrable function f(A) where A ∈ [a, b] at the
point x = A. Instead of the sequence v1, . . . , vn we consider a perturbation as
function v(x). Then Jensen inequality is naturally extended to the statement:
An integrable function f(x) is convex, if the inequality holds

f(A) ≤ 1

b− a

∫ b

a

f(A+ v(x))dx ∀v(x) such that

∫ b

a

v(x)dx = 0 (5)

Here, function v(x) has zero mean value. The relation (5) says that any pertur-
bation v(x) with zero mean value does not decrease the value of the integral.
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Perturbation of a strictly convex function Function f(x) is strictly con-
vex, if the equality

f(A) =
1

b− a

∫ b

a

f(A+ v(x))dx (6)

implies that v(x) = 0. In other words, any nonzero perturbation with zero mean
value increases the value of the integral.

Example 1.2 Function f(x) = x2 is strictly convex because

1

b− a

∫ b

a

(A+ v(x))2dx

= A2 +
2A

b− a

∫ b

a

v(x) dx +
1

b− a

∫ b

a

v2(x)dx > A2 if

∫ b

a

v2(x)dx 6= 0

Notice, that the second term in the right-hand side in the above sum is zero because
the mean value of v is zero and the third term is positive if v(x) 6= 0.

Example 1.3 Affine function f(x) = c x + d is convex but not strictly convex
because

1

b− a

∫ b

a

(c(A+ v(x)) + d) dx

= cA+ d+
c

b− a

∫ b

a

v(x) dx = cA+ d = f(A)

Example 1.4 Function f(x) = |x| is convex everywhere but it is not strictly
convex if x 6= 0. At the point x = 0, it is strictly convex.

1.2 Application to variational problems

If a Lagrangian F (x, u, u′) is a convex function with respect to derivative u′, the
optimal trajectory u(x) does not exibit high-frequency oscillations. Let J(u) be
an integral

J(u) =

∫ b

a

F (x, u, u′)dx

where F (., ., .) and u(x) be continuous functions. Let ψ(x) be a 1- periodic
function ψ(x) with zero mean:∫ T

0

ψ(x) dx = 0, ψ(x) = ψ(x+ 1), x ∈ R, |ψ(x)| ≤ 1

then function εψ
(
x
ε

)
oscillates with the frequency 1

ε and have magnitude of the
order of ε.
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Let us compute the high-frequency variation

uε(x) = u(x) + εψ
(x
ε

)
of the solution. The variation of the solution is of the order of ε, and the
perturbation of the derivative is of the order of one,

|uε(x)− u(x)| = O(ε) |u′ε(x)− u′(x)| = ψ′
(x
ε

)
The integral J at the varied function, rounded up to the terms of O(ε),

becomes the function of varied derivative u′:

J(uε) =

∫ b

a

F
(
x, u, u′ + ψ′

(x
ε

))
dx+O(ε)

Since ψ(x) is periodic, the integral∫ x+nε

x

ψ′
(x
ε

)
= 0, n = 1, . . . , n, . . .

and ∫ b

a

ψ′
(x
ε

)
= O(ε).

Jensen inequality (5) shows that if F (., ., u′) is convex as a function of u′, any
such variation ψ does not decrease the cost of the problem

J(u+ ψ) ≥ J(u) if ψ 6= 0

If F (., ., u′) is strictly convex, any perturbation ψ increases the cost

J(u+ ψ) > J(u) if ψ 6= 0

Variational problems with convex Lagrangians are stable to high-frequency vari-
ations.

If Lagrangian is linear with respect to u′ in an interval u′ ∈ [a, b] and the var-
ied trajectory also belongs this interval, u′ε ∈ [a, b], the Lagrangian is invariant
to the variation.

1.3 Convex envelope

Assume that a differentiable function f(x) grows superlinearly and is bounded
from below

lim
|x|→∞

f(x)

|x|
=∞, ∃c : f(x) ≥ c ∀x ∈ R

Assume also that f(x) is nonconvex and Jensen inequality (5) is not valid.
There exist perturbations that make the integral in the right-hand side of (5)
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Figure 2: Convex envelope

smaller than f(A). A natural question arises: Find a perturbation v(x) with
zero mean that delivers minimum of this integral

Cf(A) = min
v(x)

1

b− a

∫ b

a

f(A+ v(x))dx subject to :

∫ b

a

v(x)dx = 0 (7)

This minimum Cf(A) is called the convex envelope of f(A).
It is geometrically clear that optimal perturbation v(x) is piece-wise con-

stant and takes no more than two values. Convex envelope Cf(x) of f(x) either
coincides with f(x) or is a linear function on an interval of non-convexity; it
is supported by two boundary points v1, v2 of this interval that have the same
derivative. Because the component of the convex envelope being a linear func-
tion is supported by two points, optimal v(x) takes no more than two values.
The convex envelope is defined as

Cf(x) = min
v1,v2,t

(m1 f(x+ v1) +m2f(x+ v2)) , (8)

m1 ≥ 0, m2 ≥ 0, m1 +m2 = 1, m1v1 +m2v2 = 0 (9)

In the points x where f(x) is convex, v1 = v2 = 0 and the convex envelope
Cf(x) coincides with the function itself, Cf(x) = f(x).

Properties of convex envelopes
• The derivative d

dxCf(x) of Cf(x) monotonically increases; it coincides with
f ′(x) in the intervals where f(x) is convex and is constant in the intervals of
non-convexity of f(x).

• The second derivative d2

dx2 Cf(x) is nonnegative; it is equal to zero in the
interval of non-convexity.
• One can show that Cf(x) is the maximal convex function that is smaller

than or equal to f(x) in each point x.

1.4 Examples

Example 1.5 Function

f(x) =
(
x2 − 1

)2
, x ∈ R

is not convex in the interval (−1, 1), and is convex outside of this interval. Convex
envelope of function f(x) is

Cf(x) =

{
f(x) |x| ≥ 1

0 |x| < 1

the supporting points are x1,2 = ±1. In these points, the function and its derivative
coincide with the convex envelope and its derivative, respectively, Cf(x)|x=±1 =

5



f(x)|x=±1 and Cf ′(x)|x=±1 = f ′(x)|x=±1. The derivatives of f(x) and Cf(x) are
shown at Figure 34

Example 1.6 Consider the nonconvex function F (v) called a two-well function

F (v) = min{(v − 1)2, (v + 1)2}.

F is the minimum of two convex functions (wells).
It is easy to see that the convex envelope CF is

CF (v) =

 (v + 1)2 if v ≤ −1,
0 if v ∈ (−1, 1),
(v − 1)2 if v ≥ 1.

The next example deals with more general case:

Example 1.7 Consider a two-well function

F (v) = min{W1(v),W2(v)}, W1 = av2, W2 = b v2 + 1, (10)

where parameters are arranged as 0 < a < b.
Compute convex envelope CF (v). It coincides with either the graph of the

original function or with an affine function l(v) = Av+B that touches the original
graph in two points. This affine function can be found as the common tangent l(v)
to both convex branches (wells) of F (v).

Recall that equation of the tangent line to a convex curve g(v) is

l(v)− g(vs) = g′(vs)(v − vs),

where vs is the supporting point where the tangent touches the graph of g(v).
Let v1 and v2 be the supporting points or the points where CF (v) touches F (v).

Compute the values of the common tangent l(v) in the supporting points:

l′(v1) =
dW1

dv

∣∣∣∣
v=v1

= 2a v1, l′(v2) =
dW2

dv

∣∣∣∣
v=v2

= 2b v2.

where the supporting points v1 and v2 belong to the corresponding wells. The
equation l′(v1) = l′(v2) gives one relation between v1 and v2

av1 = bv2 (11)

From (10), we write tangent lines to each well:{
l(v) = a v21 + 2a v1(v − v1), v1 ∈W1

l(v) = (b v22 + 1) + 2b v2(v − v2), v2 ∈W2
(12)

Setting v = 0, we obtain the the second relation:

a v21 = b v22 − 1 (13)
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and solve (11), (13) for the coordinates of the supporting points v1 and v2:

v1 =

√
b

a(a− b)
, v2 =

√
a

b(a− b)
, (14)

Using (12) and (14) we compute linear component of the envelope and the convex
envelope itself:

CF (v) =


av2 if |v| < v1,

2v
√

ab
a−b −

b
a−b if v ∈ [v1, v2],

1 + bv2 if |v| < v2

(15)

CF linearly depends on v in the interval of non-convexity of F and coincides with
F outside of this interval.

2 Relaxation of Nonconvex Problems with scalar
minimizer

If Lagrangian F (x, u, u′) that is nonconvex with respect to the third argument
u′ at some part of the stationary trajectory u(x), the Weierstrass test fails, and
the stationary trajectory cannot be optimal. Here we investigate variational
problems with such Lagrangians.

Consider the Lagrangian as a function of three real arguments F (x, u, z) that
is

(a) a nonconvex function of its third argument;
(b) is bounded from below (say, by zero),

F (x, u, z) ≥ 0 ∀x, u, z; (16)

(c) grows superlinearly:

lim
|z|→∞

F (x, u, z)

|z|
=∞.

Then the infimum I0

I0 = inf
u
J(u), J(u) =

∫ b

a

F (x, u, u′)dx

is nonnegative, I0 ≥ 0 and the minimizer has a bounded derivative.
We can construct a minimizing sequence {us} such that I(us) → I0. The

minimizing sequence {us} consists of continuous functions with bounded deriva-
tives; see [?].

The differentiable minimizer (if it exists) is a solution to the Euler equation.
Besides, it satisfies an additional independent inequality, the Weierstrass test,
see Chapter . The inequality states that the Lagrangian at F (., ., z) as a function
of the third argument z = u′ is convex everywhere at the optimal trajectory
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Figure 3: Graph of nonconvex G(v)

u(x). However, Euler equation does not leave freedom to choose the derivative of
the solution. If F (., ., z) is not convex Weierstrass condition cannot be satisfied.

The derivative u′ of a minimizer cannot belong to intervals of non-convexity
of F (we call them ”forbidden intervals”).Recall that the Weierstrass test is
based on adding a local perturbation to a stationary minimizer. The perturba-
tion is an infinitesimal zig-zag of the trajectory. If such perturbations decrease
the cost of the problem, the minimizer fails the Weierstrass test. The test also
hints of the type of minimizers for the problems with non-convex Lagrangians.
We will demonstrate that a minimizing sequence tends to a “generalized func-
tion” that consists of infinitesimal zigzags. The limiting generalized function
u(x) has a dense set of points of discontinuity of the derivative. This exotic
limit can be effectively described by passing to the averages by the so-called ho-
mogenization procedure; we end up at the relaxed formulation of the problem.
Here we give a brief description of this procedure mainly by working on several
examples.

2.1 A non-convex problem

Consider a simple variational problem that yields to the generalized solution

I0 = inf
u
J(u), J(u) =

∫ 1

0

F (u, u′)dx, u(0) = u(1) = 0 (17)

with Lagrangian F (u, u′) = u2 +G(u′) where

G(v) =

 (v − 1)2, if v ≥ 1
2

1
2 − v

2 if − 1
2 ≤ v ≤

1
2

(v + 1)2 if v ≤ − 1
2

. (18)

The graph of the function G(v) is presented in Figure 3. The Lagrangian F =
u2 +G(u′) penalizes the trajectory u(x) for having the magnitude |u′(x)| of the
derivative different from one and also penalizes the deviation of the trajectory
u(x) from zero. These contradictory requirements cannot be resolved in the
class of classical trajectories. Indeed, a differentiable minimizer satisfies the
Euler equation

u′′ − u = 0 if |u′| ≥ 1
2

u′′ + u = 0 if |u′| ≤ 1
2 .

(19)

The Lagrangian F (u, u′) is nonconvex in the interval u′ ∈ (−1, 1) (see ??).
The Weierstrass test that requires convexity of G(v) supplements the Euler
equation (19) with the inequality

u′ 6∈ (−1, 1) at the optimal trajectory. (20)

Euler equation does not show how to choose the trajectory that satisfies (20)
avoiding the forbidden interval.
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Remark 2.1 Notice that the second regime in (19) is never optimal because it
is realized inside of the forbidden interval u′ ∈ (−1, 1). Moreover, the form of
Lagrangian in the whole interval of non-convexity can be arbitrarily changed as long
as it remains non-convex there; such transformation does not affect the minimizer.

Minimizing sequence We construct a minimizing sequence for problem (17)
without a reference to Euler equation. The infimum of (17) is nonnegative,
infu I(u) ≥ 0. Therefore, any sequence us such that

lim
s→∞

I(us) = 0 (21)

is a minimizing sequence.
(i) Consider a set Ũ of functions ũs(x) that belong to the boundary of the

forbidden interval (20) of nonconvexity of G(u′); the derivative ũ′(x) of these
function is equal to ±1:

Ũ = {ũ′(x) : ũ′(x) = ±1, ∀x}

The functions ũs(x) make the second term (18) in the Lagrangian vanish,

G(ũ′) = min{(ũ′ − 1)2, (ũ′ + 1)2} = 0, ∀ũ′ ∈ Ũ

and the problem becomes

I(ũs, (ũs)′) =

∫ 1

0

(ũs)2dx. (22)

(ii) Next, construct the minimizing sequence: The first term of it is a triangle

ũ(1)(x) =

{
x, x ∈ [0, 12 ]
1− x, x ∈ [ 12 , 1]

.

We compute the cost of the problem J and the range r of u(x)

J(ũ(1)) = 2

∫ 1
2

0

x2dx =
2

3

1

23
=

1

12
,

and

ũ(1)(x) ∈ r1, r1 =

[
0,

1

2

]
The second term ũ(2)(x) consists of two sequential triangles in twice smaller

scale

ũ(2)(x) =

{
ũ(1)(x2 ), x ∈ [0, 12 ]
ũ(1)(x2 −

1
2 ), x ∈ [ 12 , 1]

We compute

J(ũ(2)) = 4

∫ 1
4

0

x2dx =
1

3 42
=

1

4
J(ũ(1)), ũ(2)(x) ∈ r1, r2 =

[
0,

1

4

]
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Figure 4: f02.3

Continuing this procedure, we construct ũ(n)(x) as the sequence of piecewise
linear functions that forms a chain of n triangles along the x-axis. We compute

J(ũ(n)) =
1

3(2n)2
, ũ(n)(x) ∈ rn, rn =

[
0,

1

2n

]
∀x (23)

The term ũs oscillates near zero if the derivative (ũs)′ changes its sign on
small intervals of equal length. Cost J(ũs) depends on the number of switching
points and tends to zero when the number of these points increases, see (23).
The minimizing sequence consists of the saw-tooth functions ũs; the heights of
the teeth tend to zero, and their number tends to infinity as s→∞.

f2.30.4
Note that minimizing sequence {ũs} does not converge to any classical func-

tion but rather to a distribution. This minimizer ũs(x) satisfies the contradic-
tory requirements. Tamely, the derivative must keep the absolute value equal
to one, but the function itself must be arbitrarily close to zero:

|(ũs)′| = 1 ∀x ∈ [0, 1], max
x∈[0,1]

|ũs| → 0 as s→∞. (24)

The limit has zero L2 norm and unit L2 norm of the derivative

lim
s→∞

∫ 1

0

(ũs)dx = 0,

∫ 1

0

(ũ′
s
)dx = 1,

but the norm in C1[0, 1].

lim
s→∞

∫ 1

0

(ũs)2dx = 0, lim
s→∞

∫ 1

0

(ũ′
s
)2dx = 1, lim

s→∞

∫ 1

0

ũ′
s
dx = 0

Notice that ũ′
s

in this solution takes one of two values u′(x) = ±1; these values
are the supporting points of the convex envelope CG(u′) of G(u′), or the points
where the envelope touches G(u′):

CG(u′) = G(u′), 0 =
d

du′
CG(u′) =

d

du′
G(u′)

2.2 Relaxed problem

The same type of oscillating solution occurs in a more general problem with
non-convex Lagrangian. Consider Lagrangian F (x, u, u′) where u(x) is a scalar
function. Assume that it is bounded from below, is of superlinear growth
with respect to u′, and that it is non-convex function of u′ in a finite interval
[ρ1(u, x), ρ2(u, x)]. The Weierstrass test is not satisfied for u′ in the forbidden
interval, therefore

u′ 6∈ [ρ1, ρ2]
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When u′ reaches an endpoint of this interval, it must instantly jump to
the other end of it. At the jump point, the Lagrangian satisfies Weierstrass-
Erdmann condition

∂F

∂u′

∣∣∣∣
u′=ρ1

=
∂L

∂u′

∣∣∣∣
u′=ρ2

(25)

After u′ jumps from ρ1 to ρ2, it may jump back, and again. When the jumps
occur infinitely fast, the minimizer becomes a generalized curve.

Relaxation We describe a generalized zig-zag type solution to a variational
problem. Consider a small interval x = [x0, x0 + ε] and a function uε(x). with
the derivative u′ε(x) that takes two values

u′ε(x) =

{
ρ1, x ∈ [x0, x0 +mε)
ρ2, x ∈ [x0 +mε, x0 + ε)

. (26)

Here, m ∈ [0, 1] is a length (measure) of the fraction of the interval where
u′ε(x) = ρ1. The average (homogenized) value vh(x0) of the derivative of u(x)
at the interval [x0, x0 + ε] is

u′h(x0) =
1

ε

∫ x0+ε

x0

u′ε(x)dx = mρ1 + (1−m)ρ2, u′ε(x) ∈ [ρ1, ρ2]; (27)

it depends of ρ1, ρ2 and the fraction m ∈ [0, 1].
The function uε(x) is a zig-zag curve. The value uε(x) in the point x0 + ε is

uε(x0 + ε) = uε(x0) +

∫ x0+ε

x0

u′ε(x)dx = εvh(x0) = o(ε)

which gives (rounding to the terms of the order of ε)

uε(x0 + ε)− uε(x0)

ε
= vh(x).

To obtain a homogenized description of the solution, we approximate the zig-
zag function uε(x) with the smooth function uh(x) with the constant derivative
vh(x), u′h(x) = v(x). Function uh(x) coincides with uε(x) in the points x0 and
x0 + ε and is linear in between:

uh(x) = uε(x0) + (x− x0)vh ∀x ∈ [x0, x0 + ε];

uh(x) replaces the triangular zig-zag with the linear function that connects the
points of its base. The difference |uh(x)− uε(x0)| is of the order ε.

Repeating this smoothing procedure for a curve u(x) with ε-periodic zig-zags,
we approximate it with a smooth piece-wise linear function uh(x) that tends to
a differentiable limit when ε → 0. The L2-norm of the difference between the
minimizer and its approximation tends to zero when ε→ 0.∫ b

a

(uε(x)− uh(x))
2
dx = O(ε)→ 0, if ε→ 0
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The point-wise derivative of uε(x) (26) takes the values ρ1 and ρ2; the cost
J of the variational problem with the Lagrangian F (x, u, u′) in an interval [x =
x0, x0 + ε] is

J(x0, ε) =

∫ x0+ε

x0

F̂ dx = ε

[∫ x0+mε

x0

F (x, u, ρ1) +

∫ x0+ε

x0+mε

F (x, u(x), ρ2) +O(ε)

]
When ε → 0, the cost tends to the convex combination of F (x, u, ρ1) and
F (x, u(x), ρ2):

J(x0, ε) = ε [mF (x, u, ρ1) + (1−m)F (x, u(x), ρ2) +O(ε)]

Optimizing J(x0, ε) with respect of ρ1, ρ2, and m, we find the best value Iε
of the cost at the zigzag minimizers:

Iε ≥ min
m∈[0,1]

min
ρ1,ρ2∈M

εRF (x, u, ρ1, ρ2,m) where

RF (x, u, ρ1, ρ2,m) = [mF (x, u, ρ1) + (1−m)F (x, u, ρ2)]

M = {mρ1 + (1−m)ρ2 = u′}

e observe, that the relaxed cost RF is the convex envelope CvF of F (x, u, v)
with respect to its third argument v = u′.

RF = CvF (28)

In the region of convexity, m = 1, the supporting points coincides ρ1 = ρ2 = u′,
and RF = F .

This procedure defines the relaxed problem for the smoothen minimizer u =
limε→0 uh.

IR = min
u

∫ b

a

CF (x, u, u′)dx (29)

CF (x, u, u′) = min
m∈[0,1]

min
ρ1,ρ2∈M

RF (x, u, ρ1, ρ2,m) (30)

RF (x, u, ρ1, ρ2,m) = [mF (x, u, ρ1) + (1−m)F (x, u, ρ2)] (31)

M = {mρ1 + (1−m)ρ2 = u′} (32)

The obtained relaxed formulation has the following features

1. The convex envelope of the Lagrangian is not larger than the Lagrangian,
therefore the solution u of the relaxed problem corresponds to a lower
bound of the cost of the initial problem, I ≥ IR

2. The cost of the relaxed problem is realized on a special sequence, (zig-zag
minimizers), therefore it is not smaller that the infimum of the problem
cost over all minimizing sequences, IR ≥ I.

Properties 1 and 2 mean that IR = I, the cost of the relaxed problem is
equal to the cost of the original problem.
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3. The Lagrangian of the relaxed problem is the convex envelope of F and is
obviously convex. Therefore, the Weierstrass condition is satisfied, and the
solution is stable against fine-scale perturbations, unlike the Lagrangian
of the original problem.

Such transformation is called the minimal extension of the ill-posed prob-
lem.

Remark 2.2 The derivative of a minimizer never takes values in the region of
nonconvexity of F (, , u′). Therefore, a solution to a nonconvex problem stays the
same if its Lagrangian F (x, u, z) is replaced by any Lagrangian NF (x, u, z) that (i)
coincides with F in the region of convexity and (ii) it nonconvex in in the region of
non-convexity. The behavior of the Lagrangian in the nonconvex region is simply of
no importance. The convex envelope CF is the lower bound of such Lagrangians,
it is on the boundary of convexity (is convex but not strongly convex) in the region
of non-convexity of F .

Properties of the Relaxed Problem

1. The supporting points of F where F touches touching the convex envelope
CF , have the common value of the derivative. Therefore, Weierstrass-
Erdmann conditions (25) are safisfied

2. Minimizing sig-zag sequence is parametrized: it depends on three param-
eters ρ1, ρ2, and m. They define the derivative

u′h(x) = m(x)ρ1(x) + (1−m(x))ρ2(x) (33)

of the relaxed minimizer, see (27). Thus, the number of minimizers in
the relaxed problem increases. Instead of one minimizer u(x) in the origi-
nal problem, the minimizer is controlled by three ”slow-varied” functions
ρ1(x), ρ2(x) and m(x)

3. In the forbidden region, Euler equation degenerates. If the convex envelope
does not coincide with G, it is linear with respect to u′

CF = au′ + b(x, u)

This representation implies that the Euler equation degenerates into an
algebraic equation ∂

∂ub(x, u) = 0.

Optimal fraction m does not enters this representation. It can be found
by diffferentiation of the Euler equation along the optimal trajectory:

d

dx

∂

∂u
b(x, u) =

∂2b(x, u)

∂x∂u
+
∂2b(x, u)

∂u2
u′ = 0

Together with the representation of u′ (33) it defines optimal m(x)

m =
1

ρ1 − ρ2

[(
∂2b(x, u)

∂x∂u

)(
∂2b(x, u)

∂u2

)−1
− ρ2

]
(34)

in the region of non-convexity.
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Figure 5: f02.4

2.3 Examples: Solutions to Nonconvex Problems

A Two-Well Lagrangian We turn to a more advanced example of the re-
laxation of a nonconvex variational problem. This example highlights more
properties of relaxation and introduces piecewise quadratic Lagrangians.

Example 2.1 Consider the minimization problem

min
u(x)

∫ q

0

F (x, u, u′), u(0) = 0, u′(q) = 0 (35)

with a Lagrangian
F = (u− γx2)2 +G(u′), (36)

where
G(v) = min{a v2, b v2 + 1}, 0 < a < b, γ > 0.

The first term (u − γx2)2 of the Lagrangian forces the minimizer u and its
derivative u′ to increase with x, until u′ at some point reaches the interval of
nonconvexity of G(v), to pass this interval, and increase further. The term G is
a nonconvex function of v = u′. The derivative u′ stays outside of the forbidden
interval of nonconvexity of the function G. The convex envelope CG(v) of G(v) is
(see Example 34)

CG(v) =


a v2 if |v| ≤ v1,
2v
√

ab
a−b −

b
a−b if v1 ≤ |v| ≤ v2,

b(v)2 + 1 if |v| ≥ v2.

where

v1 =

√
b

a(a− b)
, v2 =

√
a

b(a− b)
,

f2.4 0.4
The relaxed problem has the form

min
u

∫
CF (x, u, u′)dx, (37)

where

CFL(x, u, u′) =


(u− γx2)2 + a(u′)2 if |u′| ≤ v1,
(u− γx2)2 + 2u′

√
ab
a−b −

b
a−b if v1 ≤ |u′| ≤ v2,

(u− γx2)2 + b(u′)2 + 1 if |u′| ≥ v2.
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Recall that the variables u, u′ in the relaxed problem are the averages of the
original variables; they coincide with those variables everywhere when CF = F .
The Euler equation of the relaxed problem is au′′ − (u− γx2) = 0 if |u′| ≤ v1,

(u− γx2) = 0 if v1 ≤ |u′| ≤ v2,
bu′′ − (u− γx2) = 0 if |u′| ≥ v2.

(38)

where v1 and v2 are defined in (12). The boundary conditions are shown in (35).
Notice that the Euler equation degenerates into an algebraic equation in the

interval where convex envelope of F does not coincide with F .
Integrating the Euler equations, we sequentially meet all three regimes when

both the minimizer and its derivative monotonically increase with x (see ??). If the
length z of the interval of integration is sufficiently large, one sees all three regimes.
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Minimizing sequence Let us describe minimizing sequences that form the solu-
tion to the relaxed problem. Recall that the actual optimal solution is a generalized
curve in the region of nonconvexity; this curve consists of infinitely often alternating
parts with the derivatives v1 and v2 and the relative fractions m(x) and 1−m(x),
respectively:

u′(x) = m(x)v1 + (1−m(x))v2, u′ ∈ [v1, v2], (39)

The Euler equation degenerates in the second region into an algebraic one 〈u〉 =
γx2 because of the linear dependence of the Lagrangian on 〈u〉′ in this region. The
first term of the Euler equation,

d

dx

∂F

∂ 〈u〉′
≡ 0 if v1 ≤ | 〈u〉′ | ≤ v2, (40)

vanishes.

Obtaining optimal fraction m The variable m(x) of the generalized solution
is found by differentiation of the optimal solution:

(u(x)− γx2)′ = 0 or u′(x) = 2γx. (41)

Using definition (39) of the average derivative, we find

u′(x) = m(x)v1 + [1−m(x)]v2 = 2γx.

(recall that the boundaries v1 and v2 of the forbidden interval are constant in the
interval of nonconvexity). Solving the equality for m, we obtain

m =


0 if |u′| = v1,

2α
v1−v2x−

v2
v1−v2 if v1 ≤ |u′| ≤ v2,

1 if |u′| = v2.
(42)

Variable m(x) linearly increases within the second region (see Figure ??). Note
that the pointwise derivative u′ of the minimizing generalized curve belongs to one
of the boundaries v1 or v2 at each point x of the forbidden interval of nonconvexity
of F ; the average derivative u′(x)varies only due to varying of the fraction m(x)

Remark 2.3 Notice that in the region of non-convexity, the supporting points v1
and v2 are constant, and the fraction (measure) m varies with x. In the regions
of convexity, the fraction m degenerate into zero of one, but the supporting point
becomes derivative of the classical minimizer u; it varies with x.
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