HW 6

April 12, 2019

1. Write stationary condition (Euler-Lagrange equation and boundary terms) for the problem

$$
\left.I=\min _{u} \frac{1}{2} \int_{\Omega}(\nabla u)^{2}+2 v^{T} \nabla u\right) d x+\oint_{\partial \Omega}\left(a u(x)+b u(s)^{2}\right) d s
$$

where Ω is a bounded domain in R_{2} and $v=v(x)$ is a given vector field and a and b are constants.
2. Derive the Euler-Lagrange equation for the Lagrangian

$$
F=F(x, u, \nabla \times u),
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right)$ is a point in R_{3} and $u=\left(u_{1}, u_{2}, u_{3}\right)$ is a vector minimizer. Use Stokes theorem for integration by parts. Work on the example

$$
F=(\nabla \times u)^{T}(\nabla \times u)-c^{2} u^{2},
$$

3. By computing Euler-Lagrange equation, show that $\operatorname{det}(\nabla u(x))$ is a Null-Lagrangian, if $x=\left(x_{1}, x_{2}, x_{3}\right)$ is a point in R_{3} and $u=\left(u_{1}, u_{2}, u_{3}\right)$.
4. Write the optimality condition for the minimizer u and the boundary $\partial \Omega$ in the 2 D problem

$$
I=\min _{u} \min _{\Omega} J \quad \text { subject to } \quad \int_{\Omega} d x=A,\left.\quad u\right|_{\partial \Omega}=0
$$

where

$$
J=\int_{\Omega}\left(\frac{1}{2}(\nabla u)^{2}+q u\right) d x
$$

and $q(x)$ is a given function.

