HW 5

1. Analyze the problem

$$
I=\inf _{u(x)} \int_{0}^{2} F\left(x, u, u^{\prime}\right) d x, \quad x(0)=0, x(2)=2
$$

with nonconvex Lagrangian

$$
F\left(x, u, u^{\prime}\right)=(u-x)^{2}+G\left(u^{\prime}\right), \quad G(z)=\min \left\{z^{2},(z-2)^{2}+1\right\}
$$

Find the region of non-convexity, relaxed Lagrangian (convex envelope), oscillating solution.
2. Formulate control problem for optimal fuel consumption of the car that moves from $x=A$ to $x=B$ along the hilly road. The goal is to drive from A to B in a given time T, minimizing the total fuel consumption. Assume that the forces acting on the car are:

- gravity component $g(x)$ (due to uneven terrain), the known function, - viscosity $V(\dot{x})=-\gamma \dot{x}$, where \dot{x} is the speed and γ is a constant, - inertia $m \ddot{x}$, where m is the mass
- motor force $f, f(u)=\beta \sqrt{(} u)$ where u is the rate of fuel consumption, $0 \leq u \leq C$ and C is a positive constant
Formulate the control problem, write the optimality conditions. Analyze the obtained ODEs.

