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Mὴ ει̂ναι βασιλικὴν α̇τραπòν ὲπὶ γεωµετρὶαν [Eὺκλειδην]
There is no royal road to geometry [Euclid]

1 Variation of the domains: Setting

Here, we derive the necessary conditions of optimality for the domain Ω where
the Lagrangian is defined. The one-dimensional analog of this problem is the
variation of the interval that leads to the transversality conditions, see Section
(??). First, we derive optimality condition for the isoperimetric and related
problem, where the Lagrangian depends solemnly on the domain itself (on vol-
ume, inertia moment, perimeter, etc.). Then, we consider a general problem for
Lagrangian dependent on a minimizer inside the domain.

First we discuss the two-dimensional problem. Consider a region O ⊃ R2

(O can coincide with R2) and a set of admissible domains Ω with the twice
differentiable boundaryγ that belongs to the interior of O. Consider also a
differentiable minimizer u(x), x ∈ O, and a twice differentiable Lagrangian
F (x, u,∇u). Consider the variational problem (Mayer-Bolza problem).

J(Ω) = min
u(x)

{∫
Ω

F (x, u,∇u)dx+

∫
γ

f(x, u)ds

}
, x ∈ Ω (1)

that contains the bulk and the boundary integrals. The objective functional
J(Ω) depends on the domain Ω.

The domain optimization problem asks for a domain Ω that minimizes J(Ω)
We come to a variational problem for the variable domain

I = min
Ω⊂O

J(Ω). (2)

Here, we study stationarity condition for optimal Ω. In order to define varia-
tion of the domain, assume that functions F (x, u,∇u) and f(x, u) are defined
everywhere in a larger region O.

Variation of the boundary We describe the boundary variation δγ and
related variation δΩ. Consider an admissible domain Ω ∪ δΩ that differs from
Ω by an infinitely thin domain δΩ with a twice differentiable boundary γ ∪ Γ,
as on Figure 1.

Figure 1: Variation of the domain

Denote the new part of the boundary of this domain by Γ(s). In other words,
we consider the added/subtracted domain δΩ as an infinitesimally thin strip of
the width δη and the boundary γ ∪ Γ. As usual, we compute the variation of
the objective

δI = J(Ω ∪ δΩ)− J(Ω)

2



Figure 2: Infinitesimal variation of the boundary of the domain

and analyze the stationarity condition δI = 0 which provides an additional
boundary condition at the unknown optimal boundary. This way, we formulate
the free boundary problem: a boundary value problem in an unknown domain
but with an additional condition for this domain.

Remark 1.1 The considered variation does not change the topology of the do-
main: No new components of the boundary were added.

We start with establishing the coordinate system in proximity of ∂Ω, par-
ticularly, the correspondence between points of the stationary boundary γ and
the varied close-by boundary Γ. Define normal n = n(s) to each point γ; the
normal of a twice-differentiable curve is a continuous function of s. Introduce
the following coordinates in an infinitesimal neighborhood of γ: a distance s
along the curve and the (infinitesimal) distance η along the normal n(s). Par-
ticularly, each point of γ is represented by (s, 0). The admissible close-by curve
Γ is represented as Γ : {s, δη(s)} where δη is an infinitesimal distance along
the normal. Notice that δη(s) may have any sign, the variation can go inside or
outside of Ω.

A point in an infinitesimal strip δΩ can be identified by two coordinates: The
distance s along the boundary line γ and the distance zδη from this line com-
puted along the normal, where z ∈ [0, 1]. Particularly, points at γ correspond
to z = 0 and points at Γ – to z = 1.

We consider ”thin and small” variations assuming that

δη = 0 if s 6∈ (s0, s0 + ε), δη � ε (3)

If the curvature k of γ is not zero, the length of the arch varies with the
normal. The infinitesimal length dS of the part of the curve along Γ is related
to the infinitesimal length ds along γ as

dS = ds(1 + kδη) + o(δη) (4)

This formula is known in differential geometry as ???? , see [] (see for example
??) Figure 3 illustrates it:
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Figure 3: The variation of the differential of a curve due to its curvature

Remark 1.2 Here, we assume that Ω belongs to an open set O. If this set is
closed, the consideration must be supplemented by the inequalities (see Section
??). The Lagrange multipliers conventionally account additional constraints on Ω
such as the prescription of its volume or perimeter.

Remark 1.3 The variation of singular points of the domain where the normal is
not defined must be considered separately, see the examples below.

2 Geometric Lagrangian

2.1 Stationarity conditions

First we show how the bulk and boundary integrals in (1) vary due to the
variation of the boundary in the case when the integrands are independent of
u and are continuous bounded functions of x only, F = F (x) and f = f(x). In
other words, consider the variational problem

I = min
Ω⊂O

J(Ω), J(Ω) =

∫
Ω

F (x)dx+

∫
γ

f(s)ds, x ∈ Ω. (5)

that depends only on the shape of the region Ω.

Increment of the functional due to variation of the integral over Ω
The integral of a continuous function F (x) over an infinitely thin domain is
estimated through the boundary integral

JδΩ =

∫
δΩ

F (x)dx =

∫
γ

F (s)δη(s)ds+ o‖δη(s)‖. (6)

To obtain this formula, we compute the integral JδΩ as the repeated integral

JδΩ =

∫
γ

δη

(∫ 1

0

F (s, zδη)dz

)
ds (7)

integrating first along the normal n and then over the arch γ. The inner integral
is estimated using the continuity of F and the smallness of δη, as∫ 1

0

F (s, zδη)dz = δη F (s, 0) + o(δη)

and the formula (6) is obtained by computing the first-order term. Here, we
denote F (s, 0) as F (s).
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Variation of the boundary integral The value of the differentiable function
f(x) at the point S ∈ Γ is expressed as

f(S) = f(s) + δη
∂f

∂x
n+ o(|δη|) (8)

where ∂f
∂xn = nT∇f is the normal derivative of f .

The variation of an integral of a function f(x) can be computed using (4)
and (8) and rounding to |δη|∫

Γ

f(S)dS −
∫
γ

f(s)ds =

∫
γ

[(
f(s) + δη

∂f

∂x
n

)
(1 + kδη)− f(s))

]
ds

=

∫
γ

(
kf(s) +

∂f(s)

∂n

)
δη ds+ o(δη). (9)

Stationarity conditions Adding together the two increments (6) and (9),
we find that the increment δI in (5) is equal to

δI =

∫
γ

(
F (s) + kf(s) +

∂f(s)

∂n

)
δη ds.

As usual, we use the arbitrariness of δη to obtain the stationary condition

F (s) +

(
k +

∂

∂n

)
f(s) = 0 ∀s ∈ γ (10)

for this simplest case (5) where the Lagrangian is a fixed function of x.

Example 2.1 (Isoperimetric problem) Consider the isoperimetric problem:
Maximize the area of Ω keeping its perimeter equal to one:

max
Ω

∫
Ω

dx subject to

∫
γ

ds = 1 (11)

or

max
Ω

{∫
Ω

dx+ Λ

∫
γ

ds

}
where Λ is the Lagrange multiplier by the isoperimetric constraint. Here we put

F = 1, f = Λ

The necessary condition (10) gives 1 + kΛ = 0

k = − 1

Λ
= constant (12)

at the optimal boundary. The unknown boundary is a circle (or a part of a circle).
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Remark 2.1 (Comparison with symmetrization technique) The isoperi-
metric problem can be solved by the symmetrization method, see Sectionsymm.
Contrary to the symmetrization method, the variational technique applies to a
broader range of problems. Here, for instance, the necessary conditions are ap-
plicable for the case if a part of the boundary of Ω is fixed. The unfixed boundary
components are the arcs of constant curvature, joined by the fixed boundary com-
ponents. The curvature of the unfixed components is constant everywhere and can
be found from the isoperimetric condition.

On the other hand, the obtained condition does not prove that the shape with
constant curvature deliver the global minimum of the isoperimetric problem be-
cause only close-by trajectories were compared, while the symmetrization method
guarantees the global minimum but cannot withstand the additional constraints.

Example 2.2 (A domain with an extremal moment and fixed perimeter)
Consider the problem of the symmetric domain with the maximal moment of inertia
M

M =

∫
Ω

x2dx (13)

that passes through two given points (−a, 0) and (a, 0) and has a fixed perimeter.
We set F = x2, f = λ, where λ is the Lagrange multiplier. The optimality condition
is

λk = x2.

In a Cartesian coordinates, the boundary of the domain consists of a pair of curves

±y(x), the curvature is given by the known expression k = y′′

1+y′2

3
2

, and the opti-
mality condition leads to the equation

y′′ =
1

λ
x2(1 + y′2)

3
2

Separating the variables and using symmetry (y′(0) = 0), we obtain

y′(x) =
x3λ√

9− x6λ2

Next , we find y(x) and calculate λ using condition (13). The graph of the optimal
curve is shown in Figure ??.

Notice that the curve is smooth everywhere except the points (−a, 0) and (a, 0)
where its values are prescribed.

2.2 Geometric applications

2.3 Cluster of domains with minimal boundary length

Boundary components Assume that two finite domains Ω1 and Ω2 of given
areas A1 and A2, respectively, have a common component γ12 of the boundary.
Consider the problem of the shapes of these domains that minimizes the total
length of the boundary.
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Figure 4: Optimal angle between normals in the singular point
Left: The angle between any two normals is less than 180◦

Right: The angle between any two normals equals 120◦

The domain Ω = Ω1∪. . .ΩN has outer and inner boundaries. The optimality
conditions for variation of the outer boundary is similar to the condition (12)
in the isoperimetric problem:

δηi : ki + Λi = 0, i = 1, 2.

The conditions indicate that the outer bound is composed of two circular arcs
with radii R1 = 1/k1 and R2 = 1/k2, respectively.

Let us call γ12 an inner component of the boundary that separates Ω1 and
Ω2. The variation of γ12 of the boundary increases the volume of one of the
neighbor and decreases the volume of the second one by the same amount. The
resulting condition is:

δη12 : k12 + Λ1 − Λ2 = 0

This condition implies that the dividing lines are also circular, with the radius
(a reciprocal to the curvature) Rij equal to

1

R12
=

1

R1
− 1

R2
(14)

In particular:
– The boundary between two domains of equal areas is straight.
– Smaller domain remains convex when it is joined with the larger one, and

the larger is of crescent shape.
- If one of the domains is infinitely large, the smaller domain is a symmetric

lens.

Singular points To complete the consideration, we determine the angle at the
point s0 where three components of the boundary meet. This problem requires
special consideration because the boundary curve is not smooth, the normal at
the point s0 is not defined, so the standard variations are not possible.
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First, it is easy to show that the components stay continuously differentiable
until they meet. Assume that a boundary component has an angular point s0

and the normal is discontinuous there, denote the angle φ. Consider two points
infinitely close points s1 and s2 at the boundary at different sides of s0 such that
|s1−s0| = |s2−s0| = ε and a triangle s0s1s2. Assume that the varied boundary
replaces curve s2s0s1 with the straight line s1s2 of the length |s1s2| = 2ε cosφ.
The variation δl of boundary lengths is negative δI = 2ε(cosφ − 1) (which is
evident from triangle inequality) and is of the order ε, the variation of the area
δA = ε2(cosφ−1) is of the order of ε2 and therefore is neglected in the linear part
of increment. We conclude that there cannot be kinks at an optimal boundary.

Consider now a meeting point s0 of intersection of three boundary compo-
nents. Again, choose three points s1, s2 and s3 at the corresponding branches
of the boundaries in ε-neighborhood of s0, so that si 6= s0. s0 is optimal, if

L(s0) =

3∑
i=1

|si − s0|

is minimal. Differentiation with respect to s0 and using the equality d
dx |x| =

x
|x| ,

we obtain equation for an optimal s0,

dL(s0)

ds0
=

3∑
i=1

τi = 0, τi =
si − s0

|si − s0|
.

where τi are unit vectors codirected with si − s0. The stationarity stays that
the sum of these three unit vectors is zero, therefore these vectors are directed
at 120◦ to each other.

Again, the increment of the variation of lengths is of the order of ε, and the
increment of areas is of the order of ε2 and is neglected in the linear term. We
conclude that

Theorem 2.1 Optimal boundary components meet at the angle 120◦ to each
other.

Definition of parameters We found that the boundaries of two-domain con-
figuration consist of three arches of circles which radii are connected by the
condition (14); that intersect in two symmetric points, the angle between the
arches equal to 120◦. To draw the configuration, it is enough to find radii R1,
R2 and R12, and angles θ1, θ2 of the arches. To find these five parameters we
have two equations that express the conditions of intersections

R1 sin θ1 = R2 sin θ2 = R12 sin θ12

equation (14), and two equations that fix the areas of the domains

A1 = R1(π − θ1) +
1

2
R2

1 sin θ1 cos θ1 +R12θ12 −
1

2
R2

12 sin θ12 cos θ12
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and

A2 = R2(π − θ2) +
1

2
R2

2 sin θ2 cos θ2 −R12θ12 +
1

2
R2

12 sin θ12 cos θ12

and the condition
θ1 − θ12 = θ2 − θ12 = 2π/3

too many conditions!
Summing up, the formulate the theorem:

Theorem 2.2 The optimal boundary consists of three circular arches that meet
at two symmetric points at 120◦; the curvatures of the arches are related as k12 =
k1 − k2.

For instance, if the areas are very distinct, A1 � A2, the smaller area is a
lens made of the circles of the close-by radii circle and the larger area is a circle
without a lens-shaped area.

Multiple domains A natural generalization of the previous problem is the
problem of N separated domains Ωi, i = 1, . . . , N of given areas Ai with the
minimal length of separating boundary. The domain Ω = Ω1 ∪ . . .ΩN has outer
and inner boundaries. The optimality conditions for variation of the outer
boundary are similar to the condition (??) in the isoperimetric problem:

δηi : ki + Λi = 0

Let us find the conditions of optimality of an inner component of the boundary.
Suppose that two domains Ωi and Ωj are neighbors. The variation of their
common boundary ∂ij results in the condition

δηij : kij + Λi − Λj = 0

which implies that the dividing lines are also circular, with the radius (a recip-
rocal to the curvature) Rij equal to

1

Rij
=

1

Ri
− 1

Rj

If the number of domains with different areas is larger of or equal to four,
the question arises what domains should be placed inside the configuration and
do not have an outer boundary. More generally, the question is which domains
should be neighbors. This problem requires combinatoric methods since it is
needed to compare several not close-by configurations. We do not discuss the
problem in this text but encourage the reader to try to solve it.

Example 2.3 An infinite system of domains of equal areas forms a honeycomb
structure. Bees know variational calculus! Indeed, all the inner boundaries are
straight due to symmetry, and all angles, where the boundaries meet, are equal to
120◦.
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Optimal shapes in a bounded domain When a shape touches the bound-
ary of the domain, it meets this boundary at a right angle. Indeed, the angle
which corresponds to minimal length of γ to the boundary is a right angle. The
rest of the consideration is as before.

Natural cracks in Badlands Photo! Observe the cracks meeting either at
120o or at 90o Discuss the history of the development of the cracks.

2.4 Three-dimensional problems: Minimal surface and shape
of bubbles

Three-dimensional problem The consideration of the three-dimensional
case is similar, but the formula for the variation of the boundary arch is re-
placed by the formula for the variation of the boundary surface element:

dS = ds(1 + k1δη)(1 + k2δη) = ds(1 + (k1 + k2)δη) = o(δη) (15)

where k1 and k2 are the main curvatures on the boundary surface. The calcula-
tion of the stationary condition is performed as before. The necessary condition:

F (s) +

(
k1 + k2 +

∂

∂n

)
f = 0 on δΩ (16)

differs from the two-dimensional case by replacing the curvature k of the bound-
ary line with the mean curvature k1 + k2 of the boundary surface.

The simplest problem is the minimal surface problem: Find a surface of the
minimal area that is attached to a given contour. Here,

F = 0 f = 1

Remark 2.2 The surface may be not closed, but this is of no importance since
we consider the only local variation of the “boundary” surface.

The stationarity condition
k1 + k2 = 0

shows that the minimal surface has zero mean curvature.

Bubble The bubble problem is the three-dimensional analog of the isoperi-
metric problem: Find a domain of maximal volume enclosed in the surface of
the fixed area. Here

F = 1 f = Λ

and the optimality condition
k1 + k2 = Λ

stays that the mean curvature is constant. A sphere is an obvious solution.
Beside it, there are many other shapes: a circular cylinder, for example. One
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may experiment with an air-balloon to find these shapes. The problem is formu-
lated as a partial differential equation that expressed the constancy of the mean
curvature of the surface with the boundary conditions that correspond to the
requirements that the surface passes through a given contour. For references,
see [].

Cluster of bubbles A problem of a minimal total boundary area of a cluster
of several spacial domains with given volumes is considered similarly to the
two-dimensional case. Physically, this is the problem of a cluster of bubbles.

The cases of two, three, and four equal bubbles can be handed out analyti-
cally, using the obvious symmetries. In the general case, the outer and interior
surfaces of the cluster satisfy the following conditions:

Theorem 2.3 (Bubble theorem) The following statements describe the clus-
ter of the bubbles:

(1) The outer boundary of the cluster consists of the surface with piece-wise
constant mean curvature.

(2) Any two volumes (bubbles) are divided by a surface of constant mean cur-
vature.

(3) Any three bubbles are divided by curves formed by an intersection of three
mean curvature surfaces with normals that meet at the angles 2π/3 independently
of the volumes of bubbles.

(4) Any four bubbles meet at the points where four mean curvature surfaces
meet. The normals to these surfaces at the meeting point meet at the angles 2π/3 as
the planes meet in the center of a symmetric tetragon that passes through the sides
of this tetragon. The angles between the meeting planes are fixed independently of
the volumes of bubbles.

Find a reference

Hints for the proof
(1) Apply the necessary conditions on a free boundary
(2) Apply the necessary conditions on a dividing boundary
(3) Consider an infinitesimally thin cylinder abound the line of intersection.
(4) Consider an infinitesimal sphere or tetragon around the point of intersection.

3 General form of Lagrangian

3.1 Formulas for the increment

Here we consider the general form of the functional (2) assuming that the in-
tegrants depend on a minimizer u(x), x ∈ Ω and the domain Ω is varied. We
derive an additional boundary condition at the optimal domain which serves for
finding this domain.
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The variation of the functional in (2) is computed as the difference

δJn = δJ1 + δJ2

δJ1 =

∫
Ω∪δΩ

F (x, u+ δu,∇(u+ δu))dx−
∫

Ω

F (x, u,∇u)dx

δJ2 =

∫
Γ

f(x, u+ δu)dS −
∫
γ

f(x, u)ds (17)

between the cost of the Lagrangians of an admissible solution in an admissible
domain and of the extremal solution in the optimal domain.

3.2 Variation of the bulk integral

First, we work out the increment δJ1 of bulk integrals. We rewrite it as

δJ1 =

∫
Ω∪δΩ

Fuδu dx+

∫
δΩ

F (x, u,∇u)dx

+

∫
Γ

n · ∂F
∂∇u

δu(Γ) dS + o(‖δu‖, ‖δη‖) (18)

where

Fu = −∇ · ∂F
∂∇u

+
∂F

∂u

To derive this formula, we add and subtract the integral over δΩ of F (x, u,∇u)
and compute the fist variation δJ1 with respect to δu in Ω ∪ δΩ.

The variation δu at Γ = γ + δη that is a sum of the variation of minimizer
δu(γ) at stationary boundary γ and shift ∂F

∂u δη of the minimizer due to variation
of the boundary,

δu(Γ) = δu(γ) +
∂u

∂n
δη

In other words, variation δu(γ) is expressed as the linear combination of two
free variations δu(Γ) and δη:

δu(γ) = δu(Γ)− ∂u

∂n
δη

Integral over ∂Ω in the right-hand side of (18) is estimated as∫
Ω∪δΩ

F (x, u,∇u)dx =

∫
γ

F (x, u,∇u)δηdx+ o(‖δη‖)

It remains to substitute these expressions into (18) and group the terms:

δJ1 =

∫
Ω

Suδu dx+

∫
γ

Auδu ds+

∫
γ

Aηδη ds (19)

Su =
∂F

∂u
−∇ · ∂F

∂∇u
, Au = n · ∂F

∂∇u
Aη = F −

(
n · ∂F

∂∇u

)
∂u

∂n
(20)

The first two terms in (19) are standard conditions of stationarity of u; the
last term expressed the stationarity of Ω.
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Example 3.1 Let F by

F =
1

2

[(
∂u

∂x1

)2

+

(
∂u

∂x2

)2
]

+ q u

We compute

Su = ∇2u− q, n =

(
cos θ
sin θ

)
, Au =

∂u

∂x1
cos θ +

∂u

∂x2
sin θ,

(
n · ∂F

∂∇u

)
∂u

∂n
=

(
∂u

∂x1
cos θ +

∂u

∂x2
sin θ

)2

=

(
∂u

∂n

)2

Using invariant of ∇2 to rotation,

∇2 =

(
∂u

∂x1

)2

+

(
∂u

∂x2

)2

=

(
∂u

∂n

)2

+

(
∂u

∂t

)2

we obtain

Aη =
1

2

(
∂u

∂n

)2

+
1

2

(
∂u

∂t

)2

−
(
∂u

∂n

)2

=
1

2

(
∂u

∂n

)2

− 1

2

(
∂u

∂t

)2

or, in x1, x2 coordinates,

t =

(
sin θ

− cos θ

)
, Aη =

1

2

[(
∂u

∂x1

)2

−
(
∂u

∂x1

)2
]

cos 2θ +
∂u

∂x1

∂u

∂x1
sin 2θ

Increment δJ1 is analogous to the transversality condition in the one-dimensional
problem, see Chapter ??? (??). The first term SF is the accumulated value of
the Lagrangian over the added domain δΩ and the second term −nT ∂F

∂∇uδη is
a shift of natural boundary conditions from the admissible boundary to the
stationary boundary; this term is an analog of the term −u′ ∂F∂u′ δx in the one-
dimensional transversality condition.

If the boundary Lagrangian f is zero, the additional (transversality) bound-
ary condition Aη = 0 holds at the unknown boundary γ and serves to find this
boundary.

Example 3.2 (Vibrating membrane of minimal frequency) Consider the
problem of the vibrating membrane of a fixed area with minimal first frequency,

min
Ω

min
u

∫
Ω

F (u,∇u)dx, if

∫
Ω

dx = A.

The extended Lagrangian FΛ = is FΛ = 1
2∇

2u − 1
2c

2u2 + Λ where Λ is Lagrange
multiplier by the condition fixing the area, u is the deflection, and ω is the frequency.
Assume that the membrane is fixed on the boundary γ,

u(γ) = 0. (21)
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The stationarity condition with respect to u is expressed through the Euler equation

∇ · ∂FΛ

∂∇u
− ∂FΛ

∂u
= ∇2u+ c2u = 0,

The stationarity of the shape of the domain (24) is computed as follows: In
this problem, f = 0, and ∂u

∂s = 0 on γ. It is convenient to compute RF in local
coordinates – the tangent t and the normal n to the boundary. F is invariant to
the orientation of the coordinate axis. In n, t coordinates, F has a form

F =
1

2

[(
∂u

∂t

)2

+

(
∂u

∂n

)2

− c2u2

]
+ Λ

(
∂F

∂∇u
· n
)
∂u

∂n
=

(
∂u

∂n

)2

On the boundary γ, u = 0 and therefore ∂u
∂t = 0. We have

RF = F (s) = −1

2

(
∂u

∂n

)2

+ Λ = 0 or
∂u

∂n
=
√

2Λ = constant on γ (22)

This condition is used to find the unknown boundary γ. One easily guesses that the
circular membrane has an optimal shape.

3.3 First variation of the boundary integral

To compute the curve integral J2, we expand f(X,u(X))|X∈Γ as follows:

f(X,u(X))|X∈Γ = f(x)|x∈γ + (∇f)Tn δη +
∂f

∂u
δu+ o(‖η‖)

where n is the normal, and

(∇f(x, u))Tn =

(
∂f

∂x

)T
n+

∂f

∂u

∂u

∂n

Example 3.3 Let f(x, u) and n be

f(x, u) =
1

2
(x2

1 + x2
2)u2, n =

(
cos θ
sin θ

)
We compute(

∂f

∂x

)T
n =

∂f

∂x1
cos θ +

∂f

∂x2
sin θ = (x1 cos θ + x2 sin θ)u2

and

∂u

∂n
=

∂u

∂x1
cos θ +

∂u

∂x2
sin θ,

∂f

∂u

∂u

∂n
= u(x2

1 + x2
2)

(
∂u

∂x1
cos θ +

∂u

∂x2
sin θ

)
and combine the terms

(∇f(x, u))Tn = (x1 cos θ + x2 sin θ)u2 + (x1 cos θ + x2 sin θ)u2
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We take into account the variation of the boundary arch (4) (dS = ds(1 +
kδη)) and obtain

δJ2 =

∫
γ

[
f(x, u) +

∂f

∂u
δu+ (∇f(x, u))Tnδη

]
(1 + kδη)ds−

∫
γ

f(x, u)ds

Rounding to δη, we have

δJ2 =

∫
Γ

([
k f + (∇f(x, u))Tn

]
δη +

∂f

∂u
δu

)
ds

The first term in parenthesis accounts for increase of the length of varied curve
Γ, the next term shows the shift of the f(s) due to variation δη of normal to γ,
and the last term is the variation due to variation of u.

Example 3.4 Assume that the problem asks for the shortest path between two
points. We set F = 0, f = 1. The optimal boundary corresponds to the condition
δJ2 = 0 for all δη, which leads to k = 0. The optimal path is a straight line, as
expected.

Stationary conditions Adding δJ1 and δJ2, we finally obtain the stationar-
ity conditions:

The variations with respect to u returns the familiar expressions: Fu is the
left-hand-side of the Euler equation

δu(x) : Fu = ∇ · ∂F
∂∇u

− ∂F

∂u
= 0 in Ω,

natural boundary condition,

δu(s) : Φuδu(s) = 0, Φu =
∂F

∂∇u
n− ∂f

∂u
= 0 on γ, (23)

and the stationarity of the domain:

RF δη = 0, RF = F −
(
∂F

∂∇u
· n
)
∂u

∂n
+ (∇f)Tn+ k f. (24)

If the main boundary condition u = u0 is prescribed at a boundary compo-
nent ∂1Ω, then boundary integral independent of u, f = f(x), and (∇f)Tn =
∂f
∂n ; the conditions on the optimal boundary become

u = u0, F −
(
∂F

∂∇u
· n
)
∂u

∂n
+
∂f

∂n
= 0 x ∈ γ. (25)

Together, they determine the unknown boundary and provide a boundary con-
dition of u.

If no boundary condition is prescribed (free boundary, or variational bound-
ary conditions), then Φu = 0 due to (23), and the last condition is simplified
to

RF = F +
∂f

∂x
n+ k f = 0, x ∈ γ. (26)

They determine an unknown boundary and variational boundary conditions.
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Remark 3.1 The conditions Φu = 0 and Ru = 0 in the last condition depend on
∇u which we represent in local coordinates as ∇u = ∂u

∂nn + ∂u
∂s t. Generally, this

leads to two differential equations

Φu = Ψ1

(
∂u(s)

∂s
, u(s),

∂u(s)

∂n

)
= 0

and

Ru = Ψ2

(
∂u(s)

∂s
, u(s),

∂u(s)

∂n

)
= 0

along the boundary. In these equations, u(s) and ∂u(s)
∂n are independent functions.

Remark 3.2 (Three-dimensional problem) In the three-dimensional case,
the formula for the variation stays the same except the curvature k is replaces
by the mean curvature k1 + k2. The optimality condition (26) becomes :

δη
(
F (x, u,∇u) + (∇f)Tn+ (k1 + k2)f

)
= 0

Here, we use formula (??) for the variation of boundary element.

Conditions on free boundary In many physical applications, F = F (u,∇u)
stays for the bulk energy, and f = f(u) stays for the surface energy. We also
assume that both forms of energy does not explicitly depend on the position x,

F = F (u,∇u), f = f(u)

In this problem, the natural boundary conditions are imposed on the unknown
component of the boundary.

Due to the listed conditions, the optimality condition on the unknown mov-
ing boundary simplifies and becomes:

F (u,∇u)− (k1 + k2)f(u) = 0 (27)

We see that the mean curvature of the optimal boundary surface is the propor-
tionality coefficient between the bulk and surface energies.

In particular, the constant value of f corresponds to the prescription of the
surface area a three-dimensional body. In this case, the bulk energy density on
the boundary is proportional to its mean curvature.

3.4 Optimal interior boundary

Similar consideration is applicable to the problem of optimal position of a vari-
able boundary γ dividing two adjacent volumes Ω1 and Ω2. The problem is to
minimize the the functional

I(Ω1,Ω2),=

∫
Ω1

F1(u,∇u)dx+

∫
Ω2

F2(u,∇u)dx+

∫
γ

f(u)dx (28)
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The necessary optimality condition (Weierstrass-Erdmann condition) on the
boundary γ is

nT
∂

∂∇u
[F (u,∇u)]+− +

∂f(u)

∂u
= 0 on γ

This is the condition on any boundary between two adjacent subdaomains vol-
umes, obtained by the variation of u.

The optimal position of the boundary that minimizes (Ω1,Ω2) with respect
interior boundary γ

I0 = min
γ
I(Ω1,Ω2),

satisfies, in addition, the transversality condition:

[F (u,∇u)]+− + k f(u) = 0 on γ (29)

Here, [F ]+− = F2 − F1 denotes the jump: The difference in the values of the
function F at both sides of γ. Notice that the solution u and its tangential
derivative ∂u

∂t are continuous at the boundary, but the normal derivative ∂u
∂n is,

generally, discontinuous.

Example 3.5 (Optimal boundary between two conducting domains) Consider
the domain occupied by two linearly conducting materials with vonductivities κ1 and
κ2. The conductivity is described by the variational problem (28) where

W1 =
1

2
κ1(∇u)2, W2 =

1

2
κ2(∇u)2,

u is the potential (say, temperature).
The Weierstrass-Erdmann condition

κ1
∂u

∂n

∣∣∣∣
x∈Ω1

= κ2
∂u

∂n

∣∣∣∣
x∈Ω2

expresses the continuity of the normal current j = κ∇u. It is satisfied at any
interior boundary. The optimal boundary that minimizes the total energy I satisfies
the transversatily condition(29). Here f = 0, and the condition is W1 −W2 = 0,
or

κ1(∇u)2 − 1

2
κ2(∇u)2 = 0

Using Weierstrass-Erdmann condition and continuity of the tangent derivative ∂u
∂t

∣∣+
− =

0, we obtain the condition

(κ1 − κ2)
∂u

∂t

∣∣∣∣
x∈γ

= 0

which states that ∂u
∂t = 0 on γ and therefore gradient is co-directed with the normal

n to the dividing line, ∇u = αn. The optimal boundary between the subdomains
is co-directed with the gradient of the minimizer u.
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3.5 Optimal Shape of Conducting Domains

Next problems ask for the shape of the domain of extremal resistivity. Consider
a domain Ω with the boundary γ = γ0 ∪ γ1 ∪ γi divided into three compo-
nents. Assume that the domain is filled with an isotropic material with unit
conductivity. Assume that the potentials u = 0 and u = 1 are applied to the
two components γ0 and γ1 of the boundary, respectively. The supplementary
component γi of the boundary is insolated,

u = 0 on γ0, u = 1 on γ1,
∂u

∂n
= 0 on γi, (30)

The resistivity is defined as the total conducting energy of the domain. Indeed,
the total normal current j = ∂u

∂n through the γ1 component of the domain is
equal to the total energy of it:∫

γ1

∂u

∂n
ds =

∫
γ

u
∂u

∂n
ds = min

u

1

2

∫
Ω

(∇u)2 dx

The first equality follows from the boundary conditions (30) and the second –
from Green’s formula combined with the stationary condition ∇2u = 0 in Ω.

Let us formulate an optimization problem: Maximize the total current through
the γ1 or, equivalently, minimize the overall conductivity of the domain by vary-
ing its boundary. Additional geometrical restriction can be assigned.

Assume also that the area s of the plain domain Ω is fixed. Consider the
conductivity problem in a domain of the fixed volume and a partly known
boundary

min
γi

(
min

u as in (30)

1

2

∫
Ω

(∇w)2dx+ λ

∫
Ω

dx

)
where λ is the Lagrange multiplier. The potential u on the known components
is prescribed and natural boundary conditions are satisfied on γi.

The augmented Lagrangian is

F =
1

2
(∇u)2 + λ, f = 0

and λ is the Lagrange multiplier. The Euler-Lagrange equation and natural
boundary condition are

∇2u = 0 in Ω,
∂u

∂n
= 0 on γi

One more condition is needed to define the shape of unknown boundary
component γ. This condition on the unknown boundary is

nT
∂F

∂∇u
− F =

(
∂u

∂n

)2

−
(
∂u

∂t

)2

− λ = 0 (31)

where t is the tangent to the boundary.
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Example 3.6 (Conditions on optimal insulated boundary component)
Assume that the shape of boundary components γ0 and γ1 is known, but the in-
sulated component γi is movable. Combining the optimality condition (31) with
the stationary condition ∂u

∂n = 0 on γi we obtain the condition for the unknown
boundary:

wt =
√
−λ = constant on γ

This condition tells that the optimal isolated boundary is also the current line: the
current density along it is constant.

For example, a rectangular domain is optimal if the potentials on two opposite
sides of it are constants.

Example 3.7 (Optimal boundary component with the given potential)
Suppose now that the boundary component γ0 where the main boundary condition
w = C is imposed should be found from the optimality requirements. Again, we
use the condition (31) combining it with the prescribed boundary conditions in the
form

∂u

∂t
= 0 on γ0, and γ1

The optimality of this component is expressed as

wn =
√
λ,

This condition implies the constancy of the normal current on the optimal boundary
where the potential is constant.

Example 3.8 (Optimal boundary of the domain with given perimeter)
Consider the previous conductivity problem in a domain with the boundary of the
fixed perimeter but arbitrary volume; this time

F = (∇w)2, f = Λ

where Λ is the Lagrange multiplier. The condition on the unknown boundary is

F + Λk = 0 or w2
n + w2

t + Λk = 0

Combining it with the stationary condition

wn = 0 on γ

with respect to w, we obtain the condition

w2
t = Λk.

which says that the square of the flux density along the boundary is proportional to
its curvature.
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Example 3.9 (Optimal shape of the membrane with minimal eigenfrequency)
Consider the problem of the shape of a membrane of minimal eigenfrequency and
given volume. Here

F = (∇w)2 + c2w2 + Λ, f = 0

Here Λ is the Lagrange multiplier accounting for the volume constraint, w is the
deflection of the membrane which is zero on its boundary,

w = 0 on γ.

The tangent derivative among the boundary ∂w
∂t is zero as well. The optimality

condition becomes
∂w

∂n
= constant,

it shows that the normal derivative of the deflection is constant along the boundary.
One easily guesses that the optimal shape is the circle.
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