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1 Lagrangians with Div and Curl

1.1 Div and Curl operators

Dealing with variational problems in physics, we meet the Lagrangians (en-
ergies) that depend on a vector potential and their linear differential forms.
The common minimizers include curl and divergence: they are met in Maxwell
equations, equations of hydrodynamics, transport equations, and other appli-
cations. The equations of solid mechanics deal with tensor arguments such as
strain (deformation) or stress; these variables are also special combinations of
the derivatives of corresponding potentials. For example, the strain is the sg -
metric part of the displacement gradient Vu and depends on the sum ‘g%’; + 2

oxy "
In such problems, Lagrangian depends not on all partial derivatives V7 of tﬁe
corresponding vector potentials, but only on a special combination of them.
The electromagnetic energy depends on the curl of the magnetic potential. The
energy of a gas depends on the pressure which is a divergence of the speed.
These forms of the energy lead to special forms of the Euler-Lagrange equations
which we derive here considering the Lagrangians of the type L(u, V- u, V X u),
where u is a vector minimizer. In Chapter 77, we generalize the technique to La-
grangians that depends on an arbitrary linear combination of partial derivatives
of the vector potential.

Some formal identities Before deriving the equations, we explain the struc-
ture of the Curl and Divergence operators. Both of them are linear combinations
of partial derivatives of a vector field. Consider a vector field v = [vy,va, v3]T
in R? where v; are differentiable function of . The 3 x 3 matrix Vv is a list of

all partial derivatives
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The trace of this matrix is called the divergence of v
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The antisymmetric part
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is defined by three nonzero entrances

8’03 81}2 8’01 (91)3 8’1)2 (91}1

€= +——— _—— —

== Cy = C3 = .
8$2 (()"£E37 81‘1 8%1’ 81’1 8952

These entrances form the vector V x v = (¢1, o, ¢3). The matrix is called the
adjoint to V x v (CHECK IT) matrix.



‘We mention the identities

VxVxu=Vu-V-Vu (1)
VxVu=0 (2)
V- (Vxu)=0 (3)

for the second-order differential operations, that is easy to check by straightfor-
ward calculation.

Helmholtz’s decomposition theorem The Helmholtz’s theorem states that
any vector field v satisfyiing the conditions

[V-v| =0, |[Vxv—=0, if|z]— o

can be presented as a sum of a solenoidal part V x ® and irrotational part V¢
as
v=Vx®+Vo (4)

where ¢ is a scalar and ® - vector potential, that can be found as
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Notice that the irrotational part depends on the divergence V - v and the
solenoidal - on the curl V x v of v.

Divergence and curl operators often enter Lagrangians in variational prob-
lems related to various physical applications. In the next two sections, we derive
Euler-Lagrange equations for such Lagrangians.

1.2 Lagrangian dependent of Divergence

Consider the Lagrangian F'(z,u, V-u) where F(z,y, z) is the twice-differentiable
function of two d-dimensional vectors  and y and a scalar z, and the differen-
tiable boundary Lagrangian f(s,u). Consider the variational problem

minJ, J= / F(z,u,z)dz + Fy(s,u)ds, z=V-u
u Q a0

where u is a vector minimizer, and Fy(u) is a boundary Lagrangian.

To compute the stationarity of J, we rewrite the Lagrangian as a function
of u and Vu, using the representation z = V - v = TrVu. We represent the
Lagrangian as F(z,u, z) = F(x,u, Tr Vu) and apply the general formula (?7?).
We compute, using (?7)

OF _aj 0z _aj
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Notice that the right-hand side contains a scalar factor %—5 and identity matrix
I. The Euler-Lagrange equation becomes a vector-valued equation

oF oF
-V (a> E

because

V- (a(z)I) = Va(x)

The natural boundary conditions are computed using the equality

oF oF
T (9F )\ _oF
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General formula (??) for natural boundary conditions becomes

OF  OFy
%nJr%—O on 89

Notice that the first term is a vector codirected with the normal to the boundary,
while the second is an arbitrary directed vector. Projecting this equality to the
normal n and tangent(s) ¢ to 02, we obtain the system of boundary conditions

oF _ r9F
0z ou
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If Fy = 0, the boundary conditions become %—fn = 0. Although this is a
vector condition, it is is fulfilled when a single condition

0z
is satisfied. In this case, the stationarity conditions lead to an under-determined
boundary value problem and the solution — the minimizer u(x) is not unique.
The stationarity implies that if Lagrangian is independent of wu;, %—f is inde-
pendent of x;, as it is evident from (?7?). If Lagrangian is independent of vector
u, the first integral exists, and the Euler equations are

OF
— = constant, 2=V -u

0z

If the boundary part of Lagrangian is zero, Fy = 0, the minimizer

Problem 1.1 Derive Euler equations formally using the formula (??) for matrix
differentiation and recalling that V-« = Tr (Vu).

Example 1.1 (Quadratic Lagrangian) Consider the problem

1 1
min uf/ (V-u)? +a*u?) do+ = / (Bu? + 2vyu)ds
2 Ja 2 Joa
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where u is a two-dimensional vector minimizer, and 2 C R?. Lagrangian has the
form

1
L:§(V-u)2—|—%u2 Fa:§u2+’yu

The Euler equation is computed to be
~V(V-u)+a*u=0

or, in coordinates,

2 2
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The natural boundary conditions (??) have the form

V-ou+pu-n)+~v =20
Blu-t)+7 =0

Notice that tangent components u - n of the optimal boundary values of u are
independent of the bulk part of Lagrangian F' and are completely defined by the
boundary part F5. The normal component u -n of the minimizer links the bulk and
boundary parts.

Example 1.2 (Nonunique minimizer) Consider again the problem from the
previous example, and assume that

or ' = %(V -u)?, Fy = 0. Let us analyze the necessary conditions.

The Euler equation becomes V(V - u) = 0. It allows for the first integral
V -u = c¢ = constant(z) in Q. The boundary condition (V - u)n = 0 becomes
cmn =0, it is satisfied when ¢ = 0. Thus, a stationary solution satisfies condition

V-u=0 1in Q.

The minimizer u is clearly nonunique. To analyze the nonuniqueness, we use
Helmholtz representation
u=Vop+VxA

The stationarity condition are satisfied if ¢ = 0 and u is an arbitrary solenoidal
vector u =V x A.



1.3 Lagrangian dependent of Curl

Consider the Lagrangian F'(z,u, Vxu) where F(z,y, z) is the twice-differentiable
function of three d-dimensional vectors x, y, and z and the differentiable bound-
ary Lagrangian f(s,u). Consider a variational problem for a vector minimizer
U,

min J J=/F(a:,u,V><u)da:+/ Fy(s,u)ds.
“ Q o0

We derive Euler equation is a standard manner, computing the linearized incre-
ment of I as

I(u—i—éu)—[(u)z/ﬂ(%ﬁéu—i—a(vaiw-Vx (5u)) dx

0Fy(s,u)
+ /89 9 ds + o(]|oul]).

Integrating by parts of the last term under bulk integral in the right-hand side
using Stokes’ theorem (?77),

oF oF

oF
/QMVX((Su)dx——/Qan(qu)éudx—F 8men(5u)d8,

we arrive at the vector Euler-Lagrange equation in the form:

oF oF )
—VXW—F%—O in . (5)

The variational boundary condition are

oF o 0Fy 0
———xn+—=0.
AV x u) ou
If Fy = 0, the stationarity conditions correspond to underdetermined boundary
value problem. Indeed, it consists of three second-order differential equations
(5) in © and the boundary conditions (?7?) that determines two scalar conditions

OF | OF
v xw =L BT

-n — is arbitrary,
where t1,ts are two orthogonal tangents to the boundary surface.

First integral Assume that Lagrangian is independent of u, F' = F(V X u).
By Helmbholtz theorem (4) the curlfree term % is a gradient of a potential

s
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Example 1.3 (Maxwell Equations) Lagrangian for the Maxwell equation in
vacuum is expressed through the scalar electric potential Z; and the vector magnetic
potential Z = [Z1, Zs, Z3]. It has the form (see []).

Q{(VZOC(;;?)Q(V'Z%Z;)Q(VXZ)Z)} (©)

Using the derived formulas, we obtain the stationarity conditions with respect
to Z and Zj as

B 0Z 07\
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and

0Z B o7,
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respectively.
After the simplification, and the use of (?7) they take the canonic form of the
Maxwell equations:
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