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1 Lagrangians with Div and Curl

1.1 Div and Curl operators

Dealing with variational problems in physics, we meet the Lagrangians (en-
ergies) that depend on a vector potential and their linear differential forms.
The common minimizers include curl and divergence: they are met in Maxwell
equations, equations of hydrodynamics, transport equations, and other appli-
cations. The equations of solid mechanics deal with tensor arguments such as
strain (deformation) or stress; these variables are also special combinations of
the derivatives of corresponding potentials. For example, the strain is the sym-
metric part of the displacement gradient ∇u and depends on the sum ∂uk

∂xj
+

∂uj

∂xk
.

In such problems, Lagrangian depends not on all partial derivatives ∇η of the
corresponding vector potentials, but only on a special combination of them.
The electromagnetic energy depends on the curl of the magnetic potential. The
energy of a gas depends on the pressure which is a divergence of the speed.
These forms of the energy lead to special forms of the Euler-Lagrange equations
which we derive here considering the Lagrangians of the type L(u,∇·u,∇×u),
where u is a vector minimizer. In Chapter ??, we generalize the technique to La-
grangians that depends on an arbitrary linear combination of partial derivatives
of the vector potential.

Some formal identities Before deriving the equations, we explain the struc-
ture of the Curl and Divergence operators. Both of them are linear combinations
of partial derivatives of a vector field. Consider a vector field v = [v1, v2, v3]T

in R3 where vi are differentiable function of x. The 3× 3 matrix ∇v is a list of
all partial derivatives

∇v =

 ∂v1
∂x1

∂v2

∂x1

∂v3

∂x1
∂v1
∂x2

∂v2

∂x2

∂v3

∂x2
∂v1
∂x3

∂v2

∂x3

∂v3

∂x3


The trace of this matrix is called the divergence of v

∇ · v = Tr∇v =
∂v1

∂x1
+
∂v2

∂x1
+
∂v3

∂x1

The antisymmetric part

∇Av =
1

2
(∇v − (∇v)T ) =

 0 c3 −c2
−c3 0 c1
c3 −c1 0


is defined by three nonzero entrances

c1 =
∂v3

∂x2
− ∂v2

∂x3
, c2 =

∂v1

∂x1
− ∂v3

∂x1
, c3 =

∂v2

∂x1
− ∂v1

∂x2
.

These entrances form the vector ∇ × v = (c1, c2, c3). The matrix is called the
adjoint to ∇× v (CHECK IT) matrix.
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We mention the identities

∇×∇× u = ∇2u−∇ · ∇u (1)

∇×∇u = 0 (2)

∇ · (∇× u) = 0 (3)

for the second-order differential operations, that is easy to check by straightfor-
ward calculation.

Helmholtz’s decomposition theorem The Helmholtz’s theorem states that
any vector field v satisfyiing the conditions

|∇ · v| → 0, |∇ × v| → 0, if |x| → ∞

can be presented as a sum of a solenoidal part ∇×Φ and irrotational part ∇φ
as

v = ∇× Φ +∇φ (4)

where φ is a scalar and Φ - vector potential, that can be found as

φ =
1

4π

∫
R3

∇ · v
|x− y|

dy

Φ =
1

4π

∫
R3

∇× v
|x− y|

dy

Notice that the irrotational part depends on the divergence ∇ · v and the
solenoidal - on the curl ∇× v of v.

Divergence and curl operators often enter Lagrangians in variational prob-
lems related to various physical applications. In the next two sections, we derive
Euler-Lagrange equations for such Lagrangians.

1.2 Lagrangian dependent of Divergence

Consider the Lagrangian F (x, u,∇·u) where F (x, y, z) is the twice-differentiable
function of two d-dimensional vectors x and y and a scalar z, and the differen-
tiable boundary Lagrangian f(s, u). Consider the variational problem

min
u
J, J =

∫
Ω

F (x, u, z)dx+

∫
∂Ω

F∂(s, u)ds, z = ∇ · u

where u is a vector minimizer, and F∂(u) is a boundary Lagrangian.
To compute the stationarity of J , we rewrite the Lagrangian as a function

of u and ∇u, using the representation z = ∇ · u = Tr∇u. We represent the
Lagrangian as F (x, u, z) = F (x, u, Tr∇u) and apply the general formula (??).
We compute, using (??)

∂F

∂∇u
=
∂F

∂z

∂z

∂∇u
=
∂F

∂z
I
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Notice that the right-hand side contains a scalar factor ∂F
∂z and identity matrix

I. The Euler-Lagrange equation becomes a vector-valued equation

−∇
(
∂F

∂z

)
+
∂F

∂u
= 0

because
∇ · (a(x)I) = ∇a(x)

The natural boundary conditions are computed using the equality

nT
(
∂F

∂z
I

)
=
∂F

∂z
n

General formula (??) for natural boundary conditions becomes

∂F

∂z
n+

∂F∂

∂u
= 0 on ∂Ω.

Notice that the first term is a vector codirected with the normal to the boundary,
while the second is an arbitrary directed vector. Projecting this equality to the
normal n and tangent(s) t to ∂Ω, we obtain the system of boundary conditions

∂F

∂z
= nT

∂F∂

∂u

0 = tT
∂F∂

∂u

If F∂ = 0, the boundary conditions become ∂F
∂z n = 0. Although this is a

vector condition, it is is fulfilled when a single condition

∂F

∂z
= 0

is satisfied. In this case, the stationarity conditions lead to an under-determined
boundary value problem and the solution – the minimizer u(x) is not unique.

The stationarity implies that if Lagrangian is independent of ui,
∂F
∂z is inde-

pendent of xi, as it is evident from (??). If Lagrangian is independent of vector
u, the first integral exists, and the Euler equations are

∂F

∂z
= constant, z = ∇ · u

If the boundary part of Lagrangian is zero, F∂ = 0, the minimizer

Problem 1.1 Derive Euler equations formally using the formula (??) for matrix
differentiation and recalling that ∇ · u = Tr (∇u).

Example 1.1 (Quadratic Lagrangian) Consider the problem

minu
1

2

∫
Ω

(
(∇ · u)2 + α2u2

)
dx+

1

2

∫
∂Ω

(βu2 + 2γu)ds
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where u is a two-dimensional vector minimizer, and Ω ⊂ R2. Lagrangian has the
form

L =
1

2
(∇ · u)2 +

α

2
u2 F∂ =

β

2
u2 + γu

The Euler equation is computed to be

−∇(∇ · u) + α2u = 0

or, in coordinates, (
α2 +

∂2

∂x2
1

)
u1 +

∂2

∂x1∂x2
u2 = 0,(

α2 +
∂2

∂x2
2

)
u2 +

∂2

∂x1∂x2
u1 = 0

The natural boundary conditions (??) have the form

∇ · u+ β(u · n) + γ = 0

β(u · t) + γ = 0

Notice that tangent components u · n of the optimal boundary values of u are
independent of the bulk part of Lagrangian F and are completely defined by the
boundary part F∂ . The normal component u ·n of the minimizer links the bulk and
boundary parts.

Example 1.2 (Nonunique minimizer) Consider again the problem from the
previous example, and assume that

α = β = γ = 0

or F = 1
2 (∇ · u)2, F∂ = 0. Let us analyze the necessary conditions.

The Euler equation becomes ∇(∇ · u) = 0. It allows for the first integral
∇ · u = c = constant(x) in Ω. The boundary condition (∇ · u)n = 0 becomes
cn = 0, it is satisfied when c = 0. Thus, a stationary solution satisfies condition

∇ · u = 0 in Ω.

The minimizer u is clearly nonunique. To analyze the nonuniqueness, we use
Helmholtz representation

u = ∇φ+∇×A

The stationarity condition are satisfied if φ = 0 and u is an arbitrary solenoidal
vector u = ∇×A.

5



1.3 Lagrangian dependent of Curl

Consider the Lagrangian F (x, u,∇×u) where F (x, y, z) is the twice-differentiable
function of three d-dimensional vectors x, y, and z and the differentiable bound-
ary Lagrangian f(s, u). Consider a variational problem for a vector minimizer
u,

min
u
J J =

∫
Ω

F (x, u,∇× u)dx+

∫
∂Ω

F∂(s, u)ds.

We derive Euler equation is a standard manner, computing the linearized incre-
ment of I as

I(u+ δu)− I(u) =

∫
Ω

(
∂F

∂u
δu+

∂F

∂(∇× u)
· ∇ × (δu)

)
dx

+

∫
∂Ω

∂F∂(s, u)

∂u
ds+ o(‖δu‖).

Integrating by parts of the last term under bulk integral in the right-hand side
using Stokes’ theorem (??),∫

Ω

∂F

∂(∇× u)
·∇×(δu)dx = −

∫
Ω

∇× ∂F

∂(∇× u)
·δudx+

∫
∂Ω

∂F

∂(∇× u)
×n(δu)ds,

we arrive at the vector Euler-Lagrange equation in the form:

−∇× ∂F

∂(∇× u)
+
∂F

∂u
= 0 in Ω. (5)

The variational boundary condition are

∂F

∂(∇× u)
× n+

∂F∂

∂u
= 0.

If F∂ = 0, the stationarity conditions correspond to underdetermined boundary
value problem. Indeed, it consists of three second-order differential equations
(5) in Ω and the boundary conditions (??) that determines two scalar conditions

∂F

∂(∇× u)
· ti = 0, i = 1, 2

∂F

∂(∇× u)
· n− is arbitrary,

where t1, t2 are two orthogonal tangents to the boundary surface.

First integral Assume that Lagrangian is independent of u, F = F (∇× u).
By Helmholtz theorem (4) the curlfree term ∂F

∂(∇×u) is a gradient of a potential

φ,
∂F

∂(∇× u)
= ∇φ
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Example 1.3 (Maxwell Equations) Lagrangian for the Maxwell equation in
vacuum is expressed through the scalar electric potential Z0 and the vector magnetic
potential Z = [Z1, Z2, Z3]. It has the form (see []).

1

8π

{(
∇Z0 −

∂Z

∂t

)2

−
(
∇ ·Z − ∂Z0

∂t

)2

− (∇×Z)2

}
(6)

Using the derived formulas, we obtain the stationarity conditions with respect
to Z and Z0 as

δZ : − ∂

∂t

(
∇Z0 −

∂Z

∂t

)
−∇×∇×Z −∇

(
∇ ·Z − ∂Z0

∂t

)
= 0

and

δZ0 : ∇ ·
(
∇Z0 −

∂Z

∂t

)
+
∂

∂t

(
∇ ·Z − ∂Z0

∂t

)
= 0

respectively.
After the simplification, and the use of (??) they take the canonic form of the

Maxwell equations:

− ∂2

∂t2
Z +∇2Z = 0, − ∂2

∂t2
Z0 +∇2Z0 = 0 (7)
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