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1 Origin

We know the exact date when Calculus of Variations was born. It started with
the challenge posed by Johann Bernoulli in Acta Eruditorum in June 1696. He
introduced the problem as follows:

I, Johann Bernoulli, address the most brilliant mathematicians in
the world. Nothing is more attractive to intelligent people than an
honest, challenging problem, whose possible solutions will bestow
fame and remain as a lasting monument. Following the example
set by Pascal, Fermat, and others, I hope to gain the gratitude of
the whole scientific community by placing before the finest mathe-
maticians of our time a problem which will test their methods and
the strength of their intellect. If someone communicates to me the
solution of the proposed problem, I shall publicly declare him worthy
of praise.

The posed problem was called brachistochrone (from Greek brakhistos, superla-
tive of brakhus short + chronos time) and was formulated in the following way:

Given two points A and B in a vertical plane, what is the curve
traced out by a point acted on only by gravity, which starts at A
and reaches B in the shortest time.

Within a year five mathematicians responded: Jacob Bernoulli (brother of
Johann and the primary target of the challenge), Gottfried Wilhelm Leibniz,
Isaac Newton, and Guillaume de L’Hôpital (indeed, they were the most brilliant
mathematicians in the world!). Together with Johann Bernoulli himself, they
created methods for funding this ”best curve.” The sought curve out to be a
cycloid, the solution discussed below, in Section ??. The methods were slightly
different, but all of them used specifics of the suggested problem. For further
details of this remarkable story, see, for example, the paper.1

Seventy years later, in 1766, Leonhard Euler developed the regular method
to find optimal curves. More precisely, he found a necessary condition for op-
timality of curves, analogous to the condition of vanishing of derivative of a
function in an extremal point. He proved that optimal curve satisfies a differ-
ential equation called now Euler or Euler-Lagrange equation (the contribution
of Lagrange we discuss later).

Since, however, the rules 〈for isoperimetric curves or, in modern terms,
extremal problems〉 were not sufficiently general, the famous Euler under-
took the task of reducing all such investigations to a general method which
he gave in the original work in which the profound science of the calcu-
lus shines through. Even so, while the method is ingenious and rich, one
must admit that it is not as simple as one might hope in a work of pure
analysis.

1The Brachistochrone Problem: Mathematics for a Broad Audience via a Large Context
Problem, by Jeff Babb and James Currie, TMME, vol5, nos.2&3, p.169
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In ”Essay on a new method of determining the maxima and minima of
indefinite integral formulas”, by Lagrange, 1760

2 Stationarity: First variation

The technique was developed by Euler, who also introduced the name “Calculus
of variations” in 1766. The method is based on an analysis of infinitesimal
variations of a minimizing curve.

2.1 Euler equation

The main scheme of the variational method is as follows: Assume that the op-
timal curve u(x) exist among smooth (twice-differentiable curves), u ∈ C2[a, b].
Compare the optimal curve with close-by trajectories u(x)+δu(x), where δu(x)
is small in some sense. Using the smallness of δu, simplify the comparison, de-
riving necessary conditions for the optimal trajectory u(x). Variational methods
give only necessary conditions of optimality because it is assumed that the com-
pared trajectories are close to each other; nevertheless, they apply to a great
variety of extremal problems.

Consider the problem called canonic or the simplest problem of the calculus
of variations

min
u
I(u), I(u) =

∫ 1

0

F (x, u, u′)dx, u(0) = a0, u(1) = a1. (1)

where F is called Lagrangian. It is assumed to be is twice differentiable function
of its three arguments. The method is as follow:

We assume that function u0 = u0(x) is a minimizer and replace u0 with a
test function u0 + δu, The test function u0 + δu satisfies the same boundary
conditions as u0. If indeed u0 is a minimizer, the increment of the cost δI(u0) =
I(u0 + δu)− I(u0) is nonnegative:

δI(u0) =

∫ 1

0

(F (x, u0 + δu, (u0 + δu)′)− F (x, u0, u
′
0))dx ≥ 0. (2)

If δu is not specified, the equation (2) is usually not informative, because
u0(x) + δu(x) is an arbitrary curve. If, however, we assume that the norm‖δu‖
of the variation δu is infinitesimal, we define a local minimizer. Calculus of
variations suggests a set of tests that differ by types of variations δu and corre-
sponding form of (2).

Euler–Lagrange Equations The simplest condition of optimality (the Euler–
Lagrange equation) is derived assuming that the variation δu is infinitesimally
small and localized:

δu =

 ρ(x) if x ∈ [x0, x0 + ε],
0 if x is outside of [x0, x0 + ε].
ρ(x0 ± ε) = 0

(3)
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Here ρ(x) is a continuous function that vanishes at points x0 and x0 + ε and is
constrained as follows:

|ρ(x)| < ε, |ρ′(x)| < ε ∀x ∈ (0, 1). (4)

The integrant F at the perturbed trajectory can be expended into Taylor
series,

F (x, u0 + δu, (u0 + δu)′) = F (x, u0, δu
′
0) +

∂F

∂u

∣∣∣∣
x,u0,δu′0

δu +
∂F

∂u′

∣∣∣∣
x,u0,δu′0

δu′ + o(δu, δu′)

where o(δu, δu′) denotes terms that are much smaller than δu and δu′ when
ε→ 0. Substituting this expression into (2) we obtain

δI(u0) =

∫ 1

0

(
∂F

∂u
(δu) +

∂F

∂u′
(δu)′

)
dx+ o(ε) ≥ 0. (5)

The variations δu and (δu)′ are related, and (δu)′ can be excluded. Integration
by parts of the underlined term in (5) gives∫ 1

0

∂F

∂u′
(δu)′dx =

∫ 1

0

(
− d

dx

∂F

∂u′

)
δu dx+

∂F

∂u′
δu

∣∣∣∣x=1

x=0

(6)

and we obtain

0 ≤ δI(u0) =

∫ 1

0

SF (u0)δu dx+
∂F

∂u′

∣∣∣∣
x=1

δu(1)− ∂F

∂u′

∣∣∣∣
x=0

δu(0) + o(ε), (7)

where we S denotes the expression

SF (u) = − d

dx

∂F

∂u′
+
∂F

∂u
. (8)

The nonintegral term in the right-hand side of (7) is zero, because the bound-
ary values of u are prescribed u(0) = a0 and u(1) = a1; therefore their variations
δu|x=0 and δu|x=1 equal zero,

δu(0) = 0, δu(1) = 0.

Due to the arbitrariness of the sign of δu in the integral in the right-hand side
of (7), we conclude that SF (u0) = 0:

Theorem 2.1 (Stationarity) Any differentiable and bounded minimizer u0 of
the variational problem (1) is a solution to the boundary value problem

SF (u) =
d

dx

∂F

∂u′
− ∂F

∂u
= 0 ∀x ∈ (0, 1); u(0) = u0, u(1) = u1, (9)

called the Euler–Lagrange equation.
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The Euler–Lagrange equation is also called the stationary condition since it
expresses stationarity of the minimizing curveu0(x). In the next, we will omit
symbol 0 for the optimal curve if this is not ambiguous.

Remark 2.1 The stationarity test alone does guarantee that u(x) is a true mini-
mizer or that a solution to (9) exists. It says that if the minimizer is differentiable,
(9) holds. In the same time, the function u that maximizes I(u) satisfies the same
Euler–Lagrange equation if it is differentiable. The tests that distinguish minimal
trajectory from other stationary trajectories are discussed in Section ??.

In this derivation, we assume that the extremal u(t) is a twice differentiable
function of x; it can be rewritten in another form. Applying the chain rule

d

dx
Z(x, u, u′) =

∂Z

∂x
+
∂Z

∂u
u′ +

∂Z

∂u′
u′′

to Z = ∂F
∂u′ we write the left-hand side of equation (9) as

SF (u) =
∂2F

∂u′2
u′′ +

∂2F

∂u′∂u
u′ +

∂2F

∂x∂u′
− ∂F

∂u
(10)

Example 2.1 Compute the Euler equation for the problem of the extremal curve
that join point (0, 0) and (1, a) and minimizes the sum of its quadratic deviation
and the quadratic deviation of its derivative:

I = min
u(x)

∫ 1

0

(
1

2
(u′)2 +

1

2
u2
)
dx u(0) = 0, u(1) = a

We compute ∂F
∂u′ = u′, ∂F

∂u = u and the Euler equation becomes

u′′ − u = 0 in (0, 1), u(0) = 1, u(1) = a.

The solution is u0(x) = Aex + Be−x, the constants A and B are found from
boundary conditions, A = −B, A e+B e−1 = a. The solution is

u(x) =
a sinh(x)

sinh(1)
.

2.2 First integrals: Three special cases

In several cases, the Euler equation (9) can be integrated at least once. These are
the cases when Lagrangian F (x, u, u′) does not depend on one of the arguments.
Below, we investigate them.

Lagrangian is independent of u′ Assume that F = F (x, u), and the mini-
mization problem is

J(u) =

∫ 1

0

F (x, u)dx (11)
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In this case, the variation does not involve integration by parts and the conti-
nuity of the minimizer is not required. Euler equation (9) becomes an algebraic
equation for u

∂F

∂u
= 0 (12)

Curve u(x) is determined in each point independently of neighboring points.
The boundary conditions in (9) are satisfied by a discontinuous function that
may jump to the prescribed values u(0) and u(1) in the end points; these con-
ditions do not affect the objective functional.

Example 2.2 Consider the problem

min
u(x)

J(u), J(u) =

∫ 1

0

(u− sinx)2dx, u(0) = 1; u(1) = 0.

The minimal value J(u0) = 0 corresponds to the discontinuous minimizer

u(x) =

 sinx if 0 ≤ x ≤ 1
1 if x = 0
0 if x = 1

Remark 2.2 Formally, the discontinuous minimizer contradicts the assumption
posed when the Euler equation were derived. To be consistent, we need to repeat the
derivation of the necessary condition for the problem (11) without any assumption
on the continuity of the minimizer.

Lagrangian is independent of u If Lagrangian is independent on u, F =
F (x, u′), Euler equation (9) can be integrated once:

∂F

∂u′
= constant (13)

The first order differential equation (13) for u is the first integral of the problem;
it defines a quantity that stays constant everywhere along the optimal trajectory.
To find the optimal trajectory, it remains to integrate the first order equation
(13) and determine the constants of integration from the boundary conditions.

Example 2.3 Consider the problem

min
u(x)

J(u), J(u) =

∫ 1

0

(u′ − cosx)2dx, u(0) = 1; u(1) = 0.

The first integral is
∂F

∂u′
= u′(x)− cosx = C

Solving for u, we find the minimizer,

u(x) = sinx+ Cx+ C1.
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The constants C and C1 are found from and the boundary conditions u(0) =
1; u(1) = 0 as

C1 = 1, C = −1− sin 1,

minimizer u0 and the cost of the problem become, respectively

u0(x) = sinx− (sin 1 + 1)x+ 1 J(u0) = (sin 1 + 1)2.

Notice that the Lagrangian in the example (2.2) is the square of the dif-
ference between the minimizer u and the function sinx, and the Lagrangian
in the example (2.3) is the square of the difference of their derivatives. In the
problem (2.2), the minimizer coincides with sinx and jumps to the prescribed
boundary values. The minimizer u in the example (2.3) does not coincide with
sinx at any interval. The difference between these two examples is that in the
last problem the derivative of the minimizer must exist everywhere. The dis-
continuous minimizer would leave the derivative undefined. An approximation
of discontinuous solution would make the derivative to grow in the proximity of
the point of discontinuity, this growth would increase the objective functional,
and therefore such function is not optimal. We deal with such problems below
in Chapter ??.

Lagrangian is independent of x If F = F (u, u′), equation (9) has the first
integral:

Ĥ(u, u′) = constant, Ĥ(u, u′) = u′
∂F

∂u′
− F (14)

Remark 2.3 The function Ĥ plays an important role in the calculus of variation.
When it is expressed through u and the impulse p ∂F∂u′ instead of u, u′, it is called
Hamiltonian. We deal with properties of hamiltonians later in Chapter .

Indeed, compute the x-derivative of Ĥ(u, u′)

d

dx
Ĥ(u, u′) =[

u′′
∂F

∂u′
+ u′

(
∂2F

∂u′∂u
u′ +

∂2F

∂u′2
u′′
)]
− ∂F

∂u
u′ − ∂F

∂u′
u′′ = 0

where the expression in square brackets is the derivative of the first term of
Ĥ(u, u′). Cancelling the equal terms, we bring this equation to the form

u′
(
∂2F

∂u′2
u′′ +

∂2F

∂u′∂u
u′ − ∂F

∂u

)
= 0 (15)

which is equal to zero by virtue of Euler equation (10): The expression in
parenthesis coincide with the left-hand-side term SF (u) of the Euler equation
in the form (10), simplified for the considered case (F is independent of x,
F = F (u, u′)).
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Example 2.4 Consider the Lagrangian

F =
1

2

[
(u′)2 − ω2u2

]
The Euler equation is

u′′ + ω2u = 0

The first integral is

W = (u′)2 + ω2u2 = C2 = constant

Let us immediately check the constancy of the first integral. The solution u of the
Euler equation is

u = A cos(ωx) +B sin(ωx)

where A and B are constants. Substituting the solution into the expression for the
first integral, we compute

W = (u′)2 + ω2u2 = [−Aω sin(ωx) +Bω cos(ωx)]
2

+ω2 [A cos(ωx) +B sin(ωx)]
2

= ω2(A2 +B2)

We have shown that W is constant at the optimal trajectory. In mechanical applica-
tion, W is the whole energy of the oscillator. Instead of solving the Euler equation,
we may solve the first-order equation W = C and obtain the same solution.

2.3 Legendre Test

Stationary conditions point to a possibly optimal trajectory, but they can cor-
respond to minimum, local minimum, maximum, local maximum, or a saddle
point of the functional. Now we establish a test that distinguishes local min-
imum from local maximum or saddle. In addition to being a solution to the
Euler equation, the true minimizer satisfies necessary conditions in the form of
inequalities.

The conclusion of optimality of the tested stationary curve u(x) is based on
a comparison of the problem costs I(u) and I(u + δu) computed at u and any
close-by admissible curve u + δu. The closeness of an admissible curve to the
optimal one simplifies the calculation and results in conditions that are easy to
check.

Consider again the canonical problem of the calculus of variations (1) and
assume that the first variation δI is zero that is function u(x) that satisfies the
Euler equation and boundary conditions,

SF (u) = 0, u(0) = a, u(1) = b, (16)

Expanding F into Taylor series and keeping the quadratic terms, we obtain

δI = I(u+ δu)− I(u) =

∫ b

a

(F (x, u+ δu, u′ + δu′)− F (x, u, u′))dx

=

∫ b

a

(
SF (u)δu+Aδu2 + 2Bδu δu′ + C(δu′)2

)
dx+

∂F

∂u′

∣∣∣∣x=b
x=a

, (17)
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where

A =
∂2F

∂u2
, B =

∂2F

∂u∂u′
, C =

∂2F

∂(u′)2

and all derivatives are computed at the point x0 at the optimal trajectory u(x).
The linear term SF (u)δu in (17) is zero because the Euler equation is satisfied.

The increment δ2I depends on the type of the variation δu used. The Leg-
endre condition corresponds to the following variation:

δu(x, x0) =

{
ε2φ

(
x−x0

ε

)
if |x− x0| < ε

0 if |x− x0| ≥ ε
(18)

where φ(x) is a function with the following properties:

φ(−1) = φ(1) = 0, max
x∈[−1,1]

|φ(x)| ≤ 1, max
x∈[−1,1]

|φ′(x)| ≤ 1 (19)

The magnitude of this Legendre-type variation tends to zero as ε2 when ε→ 0,
and the magnitude of its derivative

δu′(x, x0) =

{
ε φ′

(
x−x0

ε

)
if |x− x0| < ε

0 if |x− x0| ≥ ε

tends to zero as ε2. The variation is local: it is zero outside of the interval of
the length 2ε. We use these features of the variation in the calculation of the
increment of the cost.

Let us estimate the quadratic terms. We have∫ b

a

A(x)(δu)2dx =

∫ x0+ε

x0−ε
A(x)(δu)2dx

≤ ε4
∫ x0+ε

x0−ε
A(x)dx = 2A(x0) ε5 + o(ε5)

Indeed, the variation δu is zero outside of the interval [x−ε, x+ε], has magnitude
of the order of ε2 in this interval, and A(x) is assumed to be continuous at the
trajectory. Similarly, we estimate∫ b

a

B(x)δu δu′ dx ≤ ε3
∫ x0+ε

x0−ε
B(x)dx = 2B(x0) ε4 + o(ε4)∫ b

a

C(x)(δu′)2dx ≤ ε2
∫ x0+ε

x0−ε
C(x)dx = 2C(x0) ε3 + o(ε3)

The magnitude of δu′ is of the order of ε, therefore |δu′| � |δu| as ε → 0;
we conclude that the last term in the integrand in the right-hand side of (17)
dominates. The inequality δI > 0 implies inequality

∂2F

∂(u′)2
> 0 (20)
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which is called Legendre condition or Legendre test.
Note, that the opposite problem of maximization of integral in (1) corre-

sponds to the same Euler equation and to opposite sign of inequality in the
Legendre test.

Example 2.5 Consider the problem in example 2.1. The Lagrangian

F =
1

2
(u′)2 +

1

2
u2

satisfies the Legendre text, because ∂2F
∂(u′)2 = 1.

Notice, that the problem of the maximum of the problem with this Lagrangian
does not have a differentiable solution. We can show that the cost of this problem
is infinite. It corresponds to the limit of sequences of functions, for example, the
functions that grow indefinitely at the first half of the interval, and then decrease
to meet boundary data.

2.4 Variational problem as a limit of a finite-dimensional
optimization problem

Recall the problem of minimization of a differentiable function f(x) of one vari-
able x. The coordinate x0 where f(x) reaches the minimum satisfies a necessary
condition which states that the derivative f ′(x) vanishes

If x0 = argminf(x), then f ′(x0) = 0

Similarly, necessary condition for the minimum of a differentiable function f(x)

of n variables x = [x1, . . . xn] states that all partial derivatives derivatives ∂f(x)
∂xi

are zero

If x0 = argminf(x), then
∂f(x)

∂xi

∣∣∣∣
x=x0

= 0, i = 1, . . . n

Let us find similar necessary conditions of optimality for the canonical vari-
ational problem (1) considering it as a limit of discrete finite-dimensional prob-
lems. Similar approach is used for numerical solution of differential equations.

Discretization Consider a finite-dimensional piece-wise linear approximation
of u(x). Divide the interval [a, b] into N subintervals by the points

z0 = a, z1 = a+ ∆, ...zk = a+ k∆, zN = b, k = 1, . . . N, ∆ =
b− a
N

.

Assume that the minimizer u is approximated by a piece-wise linear function
ūN (x) ∈ UN and denote u(zi) = ui :

ū(x) ∈ UN , if ū(x) = ui + v(x− zi) ∀x ∈ [zi, zi+1]
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that satisfies boundary conditions, u0 = a, nN = b. The derivative v(x) = û′(x)
is a piece-wise constant function

v(x) = Diff (ûi) if x ∈ [zi, zi+1]

where the function Diff is defined at a sequence [u1, u2, ..un] as:

Diff (ui) =
1

∆
(ui − ui−1);

When ∆→ 0, Diff-operator tends to the derivative, Diff (ui)→ u′(xi).
The integral in the variational problem (1) can be rewritten as

I =

N∑
i=1

∫ zi+1

zi

f(x, u(x), u′(x))dx

Functions u(x) and u′(x), in the interval [zi, zi+1] are approximated by ui and
vi, respectively, and f(x, u(x), v(x)) is approximated by a constant Fi(ui, vi) =
f(xi, ui, vi). The sum is approximated by the integral sum (Darboux sum)

I = IN =
1

∆

N∑
i=1

Fi(ui, vi) +O

(
1

∆

)
that is completely defined by an N -dimensional vector {ui}.

Solution of the discretized problem We find minui IN (u1, . . . , uN ). The
derivative of IN with respect to ui is zero,

d IN
d ui

= 0. i = 1. . . . , N, If [u1, ...uN ]

Only two terms, Fi and Fi+1, in the above sum depend on ui:

dFi
dui

=
∂Fi
∂ui

+
∂Fi
∂vi

1

∆
,

dFi+1

dui
= −∂Fi+1

∂vi+1

1

∆
.

dFk
dui

= 0 k 6= i, k 6= i+ 1

Therefore,

∆
∂IN
∂ui

=
∂Fi
∂uu

+
1

∆

(
∂Fi
∂vi
− ∂Fi+1

∂vi+1

)
= 0

or, using the definition of Diff -operator,

∂IN
∂ui

=
∂Fi
∂ui
−Diff

∂Fi+1

∂vi+1
= 0.
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Homogenization Finally, we pass to the limit N →∞, Diff → d
dx , assuming

that the sequences

{ūi}N and =

{
∂Fi
∂vi

}
N

of piece-wise linear functions {ūi(x)}N and piece-wise constant functions
{
∂Fi

∂vi

}
N

converge to differentiable limits

ūN (x)→ u(x)

{
∂Fi
∂vi

}
N

→ ∂f(x, u, u′)

∂u′
if N →∞ (21)

Passing to the limit, we simply replace the index (.)i with a continuous variable
x, vector of values {uk} of the piece-wise constant function with the continuous
function u(x), difference operator Diff with the derivative d

dx , assuming that all
limits exist. Then we obtain

lim
N→∞

N∑
i=1

Fi(ui,Diffui)→
∫ b

a

F (x, u, u′).

and

lim
N→∞

{
∂Fi
∂ui
−Diff

(
∂Fi+1

∂Diff (ui+1)

)}
N

→ ∂F

∂u
− d

d x

∂F

∂u′

Remark 2.4 The assumptions (21) are not technical. The properties of minimiz-
ing sequences are not known a priori. Later we discuss conditions on F (x, u, u′)
that guarantee the differentiability of the limits in (21).

We follow the formal scheme of necessary conditions, thereby tacitly assum-
ing that all derivatives of the Lagrangian exist, the increment of the functional is
correctly represented by the first term of its power expansion and the limit of the
sequence of finite-dimensional problems exist and does not depend on the partition
{x1, . . . xN} if only |xk − xk−1| → 0 for all k. We also indirectly assume that the
Euler equation has at least one solution consistent with boundary conditions.

If all the made assumptions are correct, we obtain a curve that might be a
minimizer because the stationary test cannot disprove it. In other terms, we find that
is no other close-by classical curve correspond to a smaller value of the functional.
This statement about the optimality seems to be rather weak, but this is what the
calculus of variation can give. On the other hand, the variational conditions are
universal and, being appropriately used and supplemented by other conditions, lead
to a very detailed description of the extremal as we show later in the course.

Remark 2.5 Remark on convergence In the above procedure, we assume that the
limits of the components of the vector {uk} represent values of a smooth function in
the close-by points x1, . . . , xN . On the other hand, uk are solutions of optimization
problems with the coefficients that slowly vary with the number k. We need to
answer the question of whether the solution of a minimization problem tends to is
a differentiable function of x; that is whether the limit

lim
k→∞

uk − uk−1
xk − xk−1
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exists and this is not always the case. We address this question later in Chapter ??

3 Stationarity of boundary terms

3.1 Variation of boundary conditions

Variational conditions and natural conditions So far, we assumed that
the boundary conditions in the canonical problem (1) are prescribed. These
conditions may be not specified. In this case, they are found by minimization
of the functional along wish the minimizer u(x). Also, the objective functional
may contain terms defined on the boundary.

Consider the problem where conditions at one of the ends x = b are not fixed
and the cost depends on the boundary value u(b).

min
u(x):u(a)=ua

I(u), I(u) =

∫ b

a

F (x, u, u′)dx+ f(u(b)) (22)

The Euler equation for the problem remain the same SF (u) = 0 but this time it
must be supplemented by a variational boundary condition that is derived from
the requirement of the stationarity of the minimizer with respect to variation
of the boundary value δu(b)

δu
∂F

∂u′
+ δu

∂f

∂u

The first term comes from the integration by part in the derivation of Euler
equation, see (7), and the second is the variation of the boundary term in the
objective functional (22) The stationarity condition with respect to the variation
of δu(b)

∂F

∂u′

∣∣∣∣
x=b

+
∂f

∂u

∣∣∣∣
x=b

= 0 (23)

expresses the boundary condition for the extremal u(x) at the endpoint x = b.
Similar condition can be derived for the point x = a if the value in this point is
not prescribed.

Example 3.1 Minimize the functional

I(u) = min
u

∫ 1

0

1

2
(u′)2dx+Au(1), u(0) = 0

Here, we want to minimize the endpoint value and we do not want the trajectory to
be steep. The Euler equation u′′ = 0 must be integrated with boundary conditions
u(0) = 0 and (see (23)) u′(1) + A = 0 The extremal is a straight line, u = −Ax.
The cost of the problem is I = − 1

2A
2.

13



If no out-of-integral terms are presented, the condition becomes

∂F

∂u′

∣∣∣∣
x=b

= 0 (24)

and it is called the natural boundary condition.

Example 3.2 The natural boundary condition for the problem with the Lagrangian
L = (u′)2 + φ(x, u) is u′|x=b = 0.

3.2 Broken extremal and the Weierstrass-Erdman condi-
tion

The classical derivation of the Euler equation requires the existence of all second
partials of F , and the solution u of the second-order differential equation is
required to be twice-differentiable.

In some problems, the Lagrangian is only piece-wise twice differentiable;
in this case, the extremal consists of several curves – solutions of the Euler
equation that are computed at the intervals of smoothness of the Lagrangian.
The question is: How to join these pieces together?

We always assume that the extremal u is continuous everywhere and dif-
ferentiable everywhere except maybe final number of points so that the first
derivative u′ exists at almost all point of the trajectory. But the derivative u′

itself does not need to be continuous to solve the Euler equation: Only the dif-
ferentiability of ∂F

∂u′ is needed to ensure the existence of the term d
dx

∂F
∂u′ in the

Euler equation.
Take again the stationarity condition (??) and integrate it from a to x:∫ x

a

SF (u)dz =

∫ x

x0

(
d

dx

∂F

∂u′
− ∂F

∂u

)
dz = 0

or
∂F

∂u′
=

∫ x

x0

∂F

∂u
dz (25)

We obtain the stationarity condition in the integral form.
If ∂F

∂u is bounded at the optimal trajectory, the right-hand side is a differen-
tiable function of x, and so is the left-hand side. This requirement on differen-
tiability of an optimal trajectory results to the Weierstrass-Erdman condition
on broken extremal.

At any point of the optimal trajectory, the Weierstrass-Erdman con-
dition must be satisfied:[

∂F

∂u′

]+
−

= 0 along the optimal trajectory u(x) (26)

Here [z]
+
− = z+ − z− denotes the jump of a variable z.
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Another way to derive the Weierstrass-Erdman conditions is dividing the
interval of integration into two subintervals and computing the stationarity of
the left and the right part of the trajectory. Doing this, we integrate by parts
as in (6) and obtain the boundary terms at the point of breakage[

∂F

∂u′

]
+

δu+ −
[
∂F

∂u′

]
−
δu− = 0

The trajectory is continuous at the point of breakage, therefore δu+ = δu− and
the condition (26) follows.

Example 3.3 (Broken extremal) Consider the Lagrangian

F =
1

2
a(x)(u′)2 +

1

2
u2, a(x) =

{
a1 if x ∈ [0, x∗)
a2 if x ∈ [x∗, 1)

where x∗ is a point in (0, 1).
The Euler equation

d

dx
[a1u

′]− bu = 0 if x ∈ [0, x∗)

d

dx
[a2u

′]− bu = 0 if x ∈ [x∗, 1),

holds everywhere in (0, 1) except the point x∗,
At x = x∗, the Weierstrass-Erdman condition ∂F

∂u′ = 0 holds, or

a1u
′(x∗ − 0) = a2u

′(x∗ + 0).

The derivative u′ is discontinuous at x∗; its jump is determined by the jump in the
coefficients:

u′(x∗ + 0) =

(
a1
a2

)
u′(x∗ − 0)

This condition, together with the Euler equation and boundary conditions deter-
mines the optimal trajectory.

3.3 Non-fixed interval. Transversality condition

Free boundary Consider now the case when the interval (a, b) is not fixed,
and the endpoint must be chosen to minimize the functional. We compute the
difference between two functionals

δI =

∫ b+δx

a

F (x, u+ δu, u′ + δu′)dx−
∫ b

a

F (x, u, u′)dx

The linear terms of the difference are

δI = Axδx+Auδu (27)
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where Ax is the increment due to variation of the interval when u keeps its
stationary value, and Au is the increment due to variation δxu = du

dxδx of u
when the interval keeps its stationary value.

Let us compute these quantities. The increment’s part Au is computed in a
standard way, considering variation δu(b) of the trajectory that is independent of
the variation of the interval. We obtain Euler equation SF (u) = 0 supplemented
by the boundary term

Auδu =
∂F

∂u′
δu|x=b,

This increment is zero either because u(b) is fixed and δu(b) = 0, or because the
natural boundary condition ∂F

∂u′ = 0 holds.

The increment Ax consists of two terms. First term A
(1)
x is the integral over

the added length δx

A(1)
x =

∫ b+δx

b

F (x, u, u′)dx = F (x, u, u′)|x=bδx

the second term A
(2)
x is the variation of the condition ∂F

∂u′ δu(b) due to shifting
the point b to point b+ δx

δbu = −u(b+ δx) + u(b) = −u′|x=bδx.

Thus the second term is

A(2)
x = − ∂F

∂u′
u′
∣∣∣∣
x=b

δx

where δbu is the variation of u due to variation of the point b. It is equal

Computing Ax = A
(1)
x +A

(2)
x , we obtain

Ax =

(
F (x, u, u′)− ∂F

∂u′
u′
)∣∣∣∣

x=b

δx.

The expression in parentheses is the same as the first integral (??); we denote
it by Ĥ(u, u′).

Because of the arbitrariness of δx, we end up with two conditions

Ax =

(
F (x, u, u′)− u′ ∂F

∂u′

)
x=b

= 0 (28)

and

Either Ĥ =
∂F

∂u′

∣∣∣∣
x=b

= 0 or u = ub. (29)

that are satisfied at the unknown end of the trajectory. Equation (28) together
with boundary conditions determine the boundary values of u and the length
of the interval of integration, while the equation SF (u) = 0 for x ∈ (a, b) states
that the Euler equation is satisfied along the optimal trajectory.
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If the boundary condition is not specified, ∂F
∂u′ = 0, and these two equations

are simplified to

F (x, u, u′) = 0,
∂F

∂u′
= 0, at x = b

The second-order differential equation SF (u) for the extremal has an ex-
tra boundary condition (28) to satisfy, but it also has an additional unknown
quantity: The non-fixed length of the interval of integration.

Remark 3.1 Notice that the condition at the unknown endpoint Ĥ = 0 has the
same form as the first integral Ĥ = C of the problem in the case when F (x, u, u′)
is independent of x. Since Ĥ remains constant along the extremal, the condition
(28) cannot be satisfied at an isolated point of the trajectory. Therefore, in this
case the problem does not have a solution.

Example 3.4 Consider the problem

min
u(x),s

∫ s

0

(
1

2
u′2 − u+

x

2

)
dx u(0) = 0,

Euler equation u′′ + 1 = 0 and the boundary condition u(0) = 0 leads to solution

u = −1

2
x2 +Ax, u′ = −x+A

where A is a constant. The conditions at the unknown endpoint s are

∂F

∂u′

∣∣∣∣
x=s

= u′ = −s+A = 0 or A = s

(condition (29)):

Ax = F (s, u(s), u′(s))|u′=0 = −1

2
s2 +

1

2
s =

1

2
s(1− s) = 0

(condition (28)). We obtain s = 1 and u = 1
2x

2 − x.

Endpoint at a given curve We may assume that the endpoint lies at a
curve u = φ(x). Then the variations δu and δx are bounded: δu = φ′δx. The
variation (27) of endpoint becomes Ac = (Auφ

′ − Ax)δx Since δx is arbitrary,
we obtain the boundary condition for the extremal:

Ac = F − (u′ − φ′)∂F
∂u′

= 0

Example 3.5 Find the shortest distance between the origin and a curve y = φ(x).

min
y(x),s

∫ s

0

√
1 + y′2dx, y(0) = 0, y(c) = φ(c)
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The Lagrangian is F =
√

1 + y′2, it is independent of y.
Euler equation admit the first integral

∂F

∂y′
= C;

y′√
1 + y′2

= C

Therefore, y′ is constant, the trajectory is a straight line y = a x as expected.
The condition at the meeting point is

Ac =
√

1 + y′2 − (y′ − φ′) y′√
1 + y′2

= 0

This expression is simplified to φ′y′ = −1. It shows that the optimal trajectory is a
line perpendicular to the curve φ(x) at the meeting point.

3.4 Extremal broken at an unknown point

The problem of en extremal broken in an unknown point is considered similarly.
The position of this point is determined from the minimization requirement.
Assume that Lagrangian has the form

F (x, u, u′) =
F−(x, u, u′) if x ∈ (a, ξ)
F+(x, u, u′) if x ∈ (ξ, b)

where ξ is an unknown point in the interval (a, b) of the integration. The Euler
equation is

SF (u) =
SF−(u) if x ∈ (a, ξ)
SF+

(u) if x ∈ (ξ, b)

The stationarity conditions at the unknown point ξ are

∂F+

∂u′
=
∂F0

∂u′
(30)

(the stationarity of the trajectory) and

F+(u)− u′+
∂F+

∂u′
= F−(u)− u′−

∂F−
∂u′

(31)

(the stationarity of the position of the transit point). They are derived by
the same procedure as the conditions at the end point. The variation δx of
the transit point increases the first part of the trajectory and increases the
second part, δx = δx+ = −δx− which explains the structure of the stationary
conditions.

In particular, if Lagrangian is independent of x, the condition (31) express
the constancy of the first integral (14) at the point ξ.

Example 3.6 Consider the problem with Lagrangian

F (x, u, u′) =
a+u

′2 + b+u
2 if x ∈ (a, ξ)

a−u
′2 if x ∈ (ξ, b)
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and boundary conditions
u(a) = 0, u(b) = 1

The Euler equation is

SF (u) =
a+u

′′ − b−u = 0 if x ∈ (a, ξ)
a−u

′′ = 0 if x ∈ (ξ, b)

The solution to this equation that satisfies the boundary conditions is

u+(x) = C1 sinh
(√

b+
a+

(x− a)
)

if x ∈ (a, ξ)

u−(x) = C2(x− b) + 1 if x ∈ (ξ, b)
;

it depends on three constants ξ, C1, and C2 (Notice that the coefficient a− does
not enter the Euler equations). These constants are determined from the thee
remaining conditions at the unknown point ξ which express
(1) continuity of the extremal

u+(ξ) = u−(ξ),

(2) the Weierstrass-Erdman condition

a+u
′
+(ξ) = a−u

′
−(ξ),

(3) and the transversality condition

−a+(u′+(ξ))2 + b+u(ξ)2 = −a−(u′−(ξ))2.

Let us analyze them. The transversality condition is the simplest one because it
states the equality of two first integral. It is simplified to

C2
1b+ = C2

2a−

From the condition (2), we have

C1

√
a+b+ cosh q = C2, where q =

√
b+
a+

(ξ − a)

Together with the previous condition and the definition of q, it allows for determi-
nation of ξ:

cosh q =
√
a+a−, ⇒ ξ = a+

a+
b+

cosh−1
√
a+a−

Finally, we define constants C1 and C2 from the continuity condition:

C1 sinh q = 1 + C2(ξ − b)

and the transversality condition as

C1 =

√
a−

√
a− sinh q −

√
b+(ξ − b)

, C2 =

√
b+

√
a− sinh q −

√
b+(ξ − b)

,
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4 Geometric optics

4.1 Geometric optics problem

A half of century before the calculus of variations was invented, Fermat sug-
gested that light particles propagate along the trajectory which minimizes the
time of travel between the source with coordinates (a,A) and the observer with
coordinates (b, B). The Fermat principle implies that light travels along straight
lines when the medium is homogeneous and along curved trajectories in an inho-
mogeneous medium in which the speed v(x, y) of light depends on the position.
This principle correctly predicted the refraction of light. (At that time people
did not ask how the particles “know” their destination point because of the
belief that everything in the world is designed to be the most effective.)

The same problem – minimization of the travel’s time – can be formulated
as the best route for a cross-country runner; the speed depends on the type
of the terrains which the runner crosses; it is a function of the position. This
problem is called the problem of geometric optics.

In order to formulate the problem of geometric optics, consider a trajectory
in a plane, call the coordinates of the initial and final points of the trajectory
(a,A) and (b, B), respectively, assuming that a < b and call the optimal trajec-
tory y(x) thereby assuming that the optimal route is a graph of a function. The
time T of travel can be found from the relation v = ds

dt where

ds =
√
dx2 + dy2 =

√
1 + y′2dx

is the infinitesimal length along the trajectory y(x). We have

dt =
ds

v(x, y)
=

√
1 + y′2

v(x, y)
dx

Then the travel time is expressed through the trajectory and the speed

T =

∫ b

a

dt =

∫ b

a

√
1 + y′2

v(x, y)
dx.

Consider minimization of travel time T by choosing the trajectory. The
corresponding Lagrangian has the form

F (x, y, y′) = ψ(y)
√

1 + y′2, ψ(x, y) =
1

v(x, y)
;

and the Euler equation (1) takes the form

d

dx

(
ψ(x, y)

y′√
1 + y′2

)
− ∂ψ(x, y)

∂y

√
1 + y′2 = 0, y(a) = A, y(b) = B

The problem can be further simplified if we assume that the medium is
layered and the speed v(y) = 1

ψ(y) of travel varies only along the y axis. Then,
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the Lagrangian is independent of x, the Euler equation admits the first integral
Ĥ(y, y′) = c (see (??)), or

ψ(y)
y′2√

1 + y′2
− ψ(y)

√
1 + y′2 = c.

The last expression is simplified to:

ψ(y) = −c
√

1 + y′2 (32)

Solving for y′, we obtain the first-order equation with separated variables

dy

dx
= ±

√
ψ2(y)− c2

c

with the solution

x = ±
∫

c dy√
ψ2(y)− c2

(33)

The equation (32) has a clear geometric interpretation: Derivative y′ of the
trajectory defines the angle α of the slope of it, y′ = tanα. The substitution of
this expression into (32) gives

ψ(y) cosα = −c (34)

which shows that the angle of the optimal trajectory varies with speed v = 1
ψ

of the signal in the media.

Legendre test Geometric optics problem passes the Legendre test ∂2F
∂y′2 > 0

∂2

∂y′2

(
ψ(y)

√
1 + y′2

)
=

ψ(y)

(1 + y′2)
3
2

> 0

that shows that the stationary trajectory corresponds to a local minimum.

Remark 4.1 The solution to the opposite problem of a maximum of travel time
should satisfy the same Euler equation, but the Legendre test for this problem is
∂2F
∂y′2 < 0 and it is not satisfied. What is wrong?

The solution of this problem does not exist; there are infinitely many wiggly
trajectories that correspond to arbitrary long time of travel.

4.2 Snell’s law of refraction

Assume that the speed of the signal in a medium is piecewise constant; it changes
when y = y0 and the speed v jumps from v+ to v−, as it happens on the
boundary between air and water,

v(y) =

{
v+ if y > y0
v− if y < y0
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Let us find what happens with an optimal trajectory. Weierstrass-Erdman con-
dition is written as [

∂F

∂u′

]+
−

= 0 or

[
y′

v
√

1 + y′2

]+
−

= 0

Recall that y′ = tanα where α is the angle of inclination of the trajectory to

the axis OX, then y′√
1+y′2

= sinα and we arrive at the expression called Snell’s

law of refraction
sinα+

v+
=

sinα−
v−

4.3 Brachistochrone

The problem of the brachistochrone that Johann Bernoulli put forward in 1696
is formulated as follows: Find the curve of the fastest descent (brachistochrone),
the trajectory that allows a mass that slides along it without tension under the
force of gravity to reach the destination point in minimal time.

To formulate the problem, we use the law of conservation of the total energy
– the sum of the potential and kinetic energy is constant at any time instance:

1

2
mv2 +mg(y − y0) = 0

where y(x) is the vertical coordinate of the sought curve. From this relation,
we express the speed v as a function of y

v =

√
y − y0

2a

where a is a constant. The problem is reduced to a special case of geometric
optics.

Remark 4.2 Johann Bernoulli used Fermat principle to solve brachistochrone; he
assumed that the speed is constant in a horizontal layer, and sent the number of
layers to infinity

Applying the formula (33), we obtain

x =

∫ √
y − y0√

2a− (y − y0)
dy

To compute the quadrature, we change the variable in the integral, setting:

y = y0 + 2a sin2 θ

2
, dy = 2a sin

θ

2
cos

θ

2
dθ

and find

x = 2a

∫
sin2 θ

2
dθ = a(θ − sin θ) + x0
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The optimal trajectory is a parametric curve called cycloid

x = x0 + a(θ − sin θ),
y = y0 + a(1− cos θ),

(35)

The cycloid is a curve generated by a motion of a point on ? wheel rim the
wheel of radius a rolls on a horizontal line.

Cycloid was a newly discovered curve in the seventeen century. Huygens
showed that if a particle slides along the cycloid under the uniform gravity, it
takes the same time for the particle to reach the lowest point independently of
the starting position of the particle. This property implies that the period of
oscillations along the cycloid is independent of the initial position of the particle;
this was important for pendulums in clocks.

Cycloid was called isochrone or tautochrone (from Greek prefixes tauto-
meaning same or iso- equal, and chrono- time). Johann Bernoulli ended his
solution with the remark:

Before I end I must voice once more the admiration I feel for the unexpected
identity of Huygens’ tautochrone and my brachistochrone. ... Nature always
tends to act in the simplest way, and so it here lets one curve serve two different
functions, while under any other hypothesis we should need two curves.

In modern terms, brachistochrone is an optimal design problem: the trajec-
tory must be chosen by a designer to minimize the time of travel.

5 Several minimizers

5.1 Euler equations and first integrals

The Euler equation can be naturally generalized to the problem with the vector-
valued minimizer

I(u) = min
u

∫ b

a

F (x, u, u′)dx, (36)

where x ∈ [a, b], and u = (u1(x), . . . , un(x)] is a vector function. We suppose
that F is a twice differentiable function of its arguments.

Let us compute the variation δI(u) equal to I(u + δu) − I(u), assuming
that the variation of the extremal and of its derivative is small and localized.
To compute the Lagrangian at the perturbed trajectory u + δu, we use the
expansion

F (x, u+ δu, u′ + δu′) = F (x, u, u′) +

n∑
i=1

∂F

∂ui
δui +

n∑
i=1

∂F

∂u′i
δu′i

We can perform n independent variations of each entry of vector u or variations
δiu = (0, . . . , δui . . . , 0). The increment of the objective functional should be
zero for each of these variations; otherwise the functional can be decreased by
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one of them. But the stationary condition for any of the considered variations
coincides with the single-minimizer case. We arrive at the system:

δiI(u) =

∫ b

a

(
δui

∂F

∂ui
+ δu′i

∂F

∂u′i

)
dx ≥ 0 i = 1, . . . , n.

Proceeding as before, we obtain the system of differential equations of the order
2n,

d

dx

∂F

∂u′i
− ∂F

∂ui
= 0, i = 1, . . . n (37)

and the boundary terms
n∑
i=1

∂F

∂u′i
δui

∣∣∣∣∣
x=b

x=a

= 0 (38)

Remark 5.1 The vector form of the system (37),

SF (u) =
d

dx

∂F

∂u′
− ∂F

∂u
= 0, δuT

∂F

∂u′

∣∣∣∣x=b
x=a

= 0 (39)

is formally identical to the scalar Euler equation.

Example 5.1 Consider the problem with the Lagrangian

F =
1

2
u′21 +

1

2
u′22 − u1u′2 +

1

2
u21 (40)

The system of stationarity conditions is

d

dx

∂F

∂u′1
− ∂F

∂u1
= u′′1 + u′2 − u1 = 0

d

dx

∂F

∂u′2
− ∂F

∂u2
= (u′2 − u1)′ = 0.

u1δu
′
1(z) + (u′2 − u1)δu2(z) = 0, z = a, b

If consists of two differential equations of second order for two unknowns u1(x) and
u2(x) and the boundary conditions

First integrals The first integrals that are established for the special cases
of the scalar Euler equation, can also be derived for the vector equation.

1. If F is independent of u′k, then one of the Euler equations degenerate into
algebraic relation:

∂F

∂uk
= 0

and the order of the system (37) decreases by two. The function uk(x)
can be a discontinuous at an optimal solution. Since the Lagrangian is
independent of u′k, the jumps in uk(x) may occur along the optimal tra-
jectory.
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2. If F is independent of uk, the first integral exists:

∂F

∂u′k
= constant

For instance, the second equation in Example 5.1 can be integrated and
replaced by

u′2 − u1 = constant

3. Finally, if F is independent of x, F = F (u,u′) then a first integral exist

Ĥ = u′T
∂F

∂u′
− F = constant (41)

Here

u′T
∂F

∂u′
=

n∑
i=1

u′i ·
∂F

∂u′i

For the Lagrangian in Example 5.1, this first integral is computed to be

Ĥ = u21 + u2(u2 − u1)−
(

1

2
u′21 +

1

2
u′22 − u1u′2 +

1

2
u21

)
=

1

2

(
u′21 + u′22 − u21

)
= constant

These three cases do not exhaust all possible first integrals for vector case.
If the functional depends only on, say (u1 + u2), then one can hope to find new
invariants for instance by changing the variables. A general method for finding
the first integrals will be discussed later in Sections ?? and ??.

Transversality and Weierstrass-Erdman conditions These conditions
are quite analogous to the scalar case and their derivation is straightforward.
We listen here these conditions.

The expressions ∂F
∂u′

i
, i = 1 . . . , n remain continuous at every point of an

optimal trajectory, including the points where ui is discontinuous.
If the end point b of the trajectory is unknown, the transversality condition

Ĥ(u) = u′T
∂F

∂u′
− F = 0, x = b

is satisfied.

5.2 Legendre condition

This condition is derived similarly to the Legendre condition for scalar case. It
says that the Hesian (matrix of second derivatives) of F with respect to vector
u′

H(F ) =


∂2F
∂u′21

∂2F
∂u1∂u′2

... ∂2F
∂u1∂u′n

∂2F
∂u1∂u′2

∂2F
∂u′23

... ∂2F
∂u2∂u′n

∂2F
∂u1∂u′n

∂2F
∂u1∂u′n

... ∂2F
∂u′2n
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is positively defined,
vTHv > 0, ∀V ∈ Rn (42)

5.3 Variational boundary conditions

The variational condition (38) which we rewrite here for convenience

∂F

∂u′1
δu1 + . . .+

∂F

∂u′n
δun

∣∣∣∣x=b
x=a

= 0 (43)

produces 2n boundary conditions for the Euler equations (37). If the value of a
minimizer is prescribed at one of the end points,ui(a) = uai then the correspond-
ing term equation (43) is zero. If this value is not not known, the variations
δui(a) is free and the natural boundary condition holds, ∂F

∂u′
i

= 0, x = a. One

of these two conditions holds for every term in (43)

Either
∂F

∂u′i

∣∣∣∣
x=a,b

= 0 or δui|x=a,b = 0 i = 1, . . . n. (44)

The total number of the conditions at each endpoint is n. The missing main
boundary conditions are supplemented by the natural conditions that express
the requirement of optimality of the trajectory. This number agrees with the
number of boundary conditions needed to solve the boundary value problem for
the Euler equation for a vector minimizer.

In a general case, p relations (p < 2n) between boundary values of u are
prescribed,

βk(u1(a), . . . , un(a), u1(b), . . . , un(b), ) = 0 (45)

at the end points x = a and x = b. In this case, we need to find 2n − p
supplementary variational constraints at these points that together with (45)
give 2n boundary conditions for the Euler equation (38) of the order 2n.

For simplicity of notation, we introduce a 2n vectors w

wk = uk(a) if k = 1, . . . , n
wk = uk−n(b) if k = n+ 1, . . . , 2n.

and
Rk = ∂F

∂uk
if k = 1, . . . , n

Rk = ∂F
∂uk−n

if k = n+ 1, . . . , 2n;

equation (45) takes the form

2n∑
k=1

Rkδwk = 0 (46)

The condition (46) are satisfied at the stationary and perturbed trajectories,

βk(w + δw) = 0, βk(w + δw) = 0
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therefore the 2n vector of variations δwi is constrained by p linear equations

2n∑
i=1

∂βk
∂wi

δwi = 0, k = 1. . . . , p

One can express p variations though the remaining 2n− p

δwi =

2n∑
k=2n−p

qikδwk, i = 1, . . . , p

substitute them into (46) and obtain

p∑
k=2n−p

(
Rk +

p∑
i=1

gkiRi

)
δwk = 0

Because the variations δwk are arbitrary, their coefficients must be zero for
stationarity, which gives the variational conditions

Rk +

p∑
i=1

gkiRi k = 2n− p, . . . , 2n

This representation provides the 2n− p missing boundary conditions.

Example 5.2 Consider again the variational problem with the Lagrangian (40)
assuming that the following boundary conditions are prescribed

u1(a) = 1, β(u1(b), u2(b)) = u21(b) + u22(b) = 1

Find the complementary variational boundary conditions. At the point x = a, the
variation δu1 is zero, and δu2 is arbitrary, we obtain

∂F

∂u′2

∣∣∣∣
x=a

= u′2(a)− u1(a) = 0

Since the condition u1(a) = 1 is prescribed, the variational condition becomes

u′2(a) = 1

At the point x = b, the variations δu1 and δu2 are connected by the relation

∂β

∂u1
δu1 +

∂β

∂u2
δu2 = 2u1δu1 + 2u2δu2 = 0

which implies the representation

δu1 = −u2v, δu2 = u1v
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where v is an arbitrary scalar. The variational condition at x = b becomes(
− ∂F
∂u′1

u2 +
∂F

∂u′2
u1

)
x=b

v = (−u′1u2 + (u′2 − u1)u1)x=b v = 0 ∀v

or
−u′1u2 + u1u

′
2 − u21

∣∣
x=b

= 0.

We end up with four boundary conditions for the system of two differential equations
of second order:

u1(a) = 1,
u′2(a) = 1,

u21(b) + u22(b) = 1,
u1(b)u′2(b)− u1(b)′u2(b)− u1(b)2 = 0.

The conditions in the second row are the variational conditions.

Periodic boundary conditions Consider a variational problem with peri-
odic boundary conditions u(a) = u(b). The variational boundary conditions are
obtained from the expression (43) of the variation of the functional when we use
the equalities δu(a) = δu(b). These conditions have the form

∂F

∂u′

∣∣∣∣
x=a

=
∂F

∂u′

∣∣∣∣
x=b

6 Lagrangian dependent on higher derivatives

Consider a more general type variational problem with the Lagrangian that
depends on the minimizer and its first and second derivatives,

J =

∫ b

a

F (x, u, u′, u′′)dx

The Euler equation is derived similarly to the previous canonical case by ex-
panding F (x, u, u′, u′′) in Taylor series and keeping the linear terms:

δJ =

∫ b

a

(
∂F

∂u
δu+

∂F

∂u′
δu′ +

∂F

∂u′′
δu′′
)
dx

Integrating by parts the second term, and integrating by parts the third term
twice, we obtain

δJ =

∫ b

a

(
∂F

∂u
− d

dx

∂F

∂u′
+

d2

dx2
∂F

∂u′′

)
δu dx

+

[
∂F

∂u′
δu+

∂F

∂u′′
δu′ − d

dx

∂F

∂u′′
δu

]x=b
x=a

(47)

The stationarity condition (Euler equation) becomes the fourth-order differen-
tial equation

d2

dx2
∂F

∂u′′
− d

dx

∂F

∂u′
+
∂F

∂u
= 0. (48)
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It is supplemented by two natural boundary conditions on each end,

δu′
∂F

∂u′′
= 0, δu

[
∂F

∂u′
− d

dx

∂F

∂u′′

]
= 0 at x = a and x = b (49)

or by the correspondent main conditions posed on the minimizer u and its
derivative u′ at the end points.

Example 6.1 The equilibrium of an elastic bending beam corresponds to the so-
lution of the variational problem

min
u(x)

∫ L

0

(
1

2
(E(x)u′′)2 − q(x)w)dx (50)

where u(x) is the deflection of the point x of the beam, E(x) is the elastic stiffness
of the material that can vary with x, q(x) is the load that bends the beam. Any of
the following kinematic boundary conditions can be considered at each end of the
beam. For example, and the end x = a the conditions may looks as follows
(1) A clamped end: u(a) = 0, u′(a) = 0
(2) a simply supported end u(a) = 0.
(3) a free end (no kinematic conditions).

Let us find an equation for equilibrium and the missing boundary conditions in
the second and third case. The Euler equation (48) becomes

(Ew′′)′′ − q = 0 ∈ (a, b)

The equations (49) become

δu′(Eu′′) = 0, δu ((Eu′′)′) = 0

In the case (1) two boundary conditions are given. In the case (2) (simply supported
end), the complementary variational boundary condition is Eu′′ = 0; it expresses
vanishing of the bending momentum at the simply supported end. In the case (3),
the variational conditions are Eu′′ = 0 and (Ew′′)′ = 0; the last one expresses
vanishing of the bending force at the free end (the bending momentum vanishes
here as well).

Generalization The Lagrangian

F
(
x, u, u′, . . . , u(k)

)
dependent on higher derivatives of u is considered similarly. The stationary
condition is the 2k-order differential equation

∂F

∂u
− d

dx

∂F

∂u′
+ . . .+ (−1)k

dk

dxk
∂F

∂u(k)
= 0
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supplemented at each end x = a and x = b of the trajectory by k boundary
conditions [

∂F

∂u(k)

]
δu(k−1)|x=a,b = 0[

∂F

∂u(k−1)
− d

dx

∂F

∂u(k)

]
δu(k−2)|x=a,b = 0

. . .[
∂F

∂u′
− d

dx

∂F

∂u′′
+ . . .+ (−1)k

d(k−1)

dx(k−1)
∂F

∂u(k)

]
δu|x=a,b = 0

u is a vector minimizer, this vector replaces u, but the structure of the necessary
conditions stays the same.
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