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Introduction

1 Subjects of Calculus of variations

Optimization The desire for optimality (perfection) is inherent in hu-
mans. The search for extremes inspires mountaineers, scientists, mathe-
maticians, and the rest of the human race. The development of Calculus
of Variation was driven by this noble desire. A mathematical technique of
minimization of curves was developed in the eighteen century to describe the
best possible geometric objects: The minimal surface, the shortest distance,
or the trajectory of fastest travel.

In the twentieth century, control theory emerged to address the ex-
tremal problems in science, engineering, and decision-making. These prob-
lems study the influence on the objective of the available free-chosen time-
dependent function called controls. Optimal design theory addresses space-
dependent analog of control problems focusing on multivariable control.
Minimax problems address optimization in conflict situations or in an un-
determined environment.

Description of fundamental laws of Nature For centuries, philoso-
phers and scientists tried to prove that the Universe is rational, symmet-
ric, or optimal in another sense. Attempts were made to formulate laws
of natural sciences as extreme problems (variational principles) and to use
the variational calculus as a scientific instrument to derive and investigate
the motion and equilibria in Nature (Fermat, Lagrange, Gauss, Hamilton,
Gibbs..). It was observed by Fermat that light ”chooses” the trajectory that
minimizes the time of travel, equilibria correspond to the local minimum of
the system’s energy, motion of mechanical systems correspond to stationar-
ity of a functional called the action, etc. In turn, the variational principles
link together conservation laws and symmetries.

Lagrange reformulated variational mechanics as a variational problem,
making calculus of variations a universal tool for the applications. The
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methods were developed and new test for optimality were suggested by by
Jacobi and Weierstrass, and a number of universal variational principles
were proposed by Gauss (principle of least constraint), Hertz (principle of
least curvature), Hamilton, and others. Today, aspecial branch of the theory
uses minimization principles to create effective numerical algorithms such as
finite element method for computing the equilibria.

Does the actual trajectory minimize the action? This question motivated
great researcher starting from Leibnitz and Fermat to develop variational
methods to justify the Nature’s ”desire” to choose the most economic way to
move, and it caused much heated discussions that involved philosophy and
theology. The general principle by Maupertuis proclaims: If there occur
some changes in nature, the amount of action necessary for this change
must be as small as possible. In a sense, this principle would prove that
our world is ”the best of all worlds” – the conclusion defended by Fermat,
Leibnitz, Maupertuis, and Euler and ridiculed by Voltaire. It turns out that
the action is minimized on sufficiently short trajectories, but correspond
to only stationary value of action for long ones, because of violation of
so-called Jacobi conditions. This mathematical fact was disappointing for
philosophical speculations, “a beautiful conjunction is ruined by an ugly
fact.” However, the relativity and the notion of the world lines returns the
principle of minimization of a quantity at the real trajectory over all other
trajectories.

Concise description of the state of an object No matter if the real
trajectories minimize the action or not, the variational methods in physics
become an important tool for investigation of motions and equilibria. Firstly,
the variational formulation is convenient and economic: Instead of formula-
tion of all the equations it is enough to write down a single functional that
must be optimized at the actual configuration. The equations of the state of
the system follow from the optimality requirement. Secondly, variational ap-
proach allows for accounting of symmetries, invariants of the configuration,
and derive (through the duality) several differential equations that describe
the same configuration in different terms.

There are several ways to describe a shape or a motion. The most
explicit way is to describe positions of all points: Sphere is described by the
functions −√

1 − x2 − y2 ≤ z(x, y) ≤ √
1 − x2 − y2. The more implicit way

is to formulate a differential equation which produces these positions as a
solution: The curvature tensor is constant everywhere in a sphere. An even
more implicit way is to formulate a variational problem: Sphere is a body
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with given volume that minimizes its surface area. The minimization of a
single quantity produces the ”most economic” shape in each point.

New mathematical concepts Working on optimization problems, math-
ematicians met paradoxes related to absence of optimal solution or its weird
behavior; resolving these was useful for the theory itself and resulted in
new mathematical development such as weak solutions of differential equa-
tions and related functional spaces (Hilbert and Sobolev spaces), various
types of convergence of functional sequences, distributions and other limits
of function’s sequences, Γ-limits and other fundamental concepts of modern
analysis.

Many computational methods as motivated by optimization problems
and use of the technique of minimization. Methods of search, finite elements,
iterative schemes are part of optimization theory. The classical calculus of
variation answers the question: What conditions must the minimizer satisfy?
while the computational techniques are concern with the question: How to
find or approximate the minimizer?

The list of main contributors to the calculus of variations includes the
most distinguish mathematicians of the last three centuries such as Leibnitz,
Newton, Bernoulli, Euler, Lagrange, Gauss, Jacobi, Hamilton, Hilbert.

Origin For the rich history of Calculus of variation we refer to such books
as [Kline, Boyer].. Here we make several short remarks about the ideas of
its development. The story started with the challenge:

Given two points A and B in a vertical plane, what is the curve
traced out by a point acted on only by gravity, which starts at
A and reaches B in the shortest time. 1

The brachistochrone problem was posed by Johann Bernoulli in Acta
Eruditorum in June 1696. He introduced the problem as follows:

I, Johann Bernoulli, address the most brilliant mathematicians
in the world. Nothing is more attractive to intelligent people than
an honest, challenging problem, whose possible solution will be-
stow fame and remain as a lasting monument. Following the ex-
ample set by Pascal, Fermat, etc., I hope to gain the gratitude of

1Johann Bernoulli was not the first to consider the brachistochrone problem. Galileo in
1638 had studied the problem in 1638 in his famous work Discourse on two new sciences.
He correctly concluded that the straight path is not the fastest one, but made an error
concluding that an optimal trajectory is a part of a circle.
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the whole scientific community by placing before the finest math-
ematicians of our time a problem which will test their methods
and the strength of their intellect. If someone communicates to
me the solution of the proposed problem, I shall publicly declare
him worthy of praise.

Within a year five solutions were obtained, Newton, Jacob Bernoulli, Leibniz
and de L’Hôpital solving the problem in addition to Johann Bernoulli.

The May 1697 publication of Acta Eruditorum contained solutions to the
brachistochrone problem by Leibniz, Johann Bernoulli , Jacob Bernoulli, and
Newton. The solution by de L’Hôpital was discovered only in 1988 Jeanne
Peiffer presented it in [].

Johann Bernoulli’s solution divides the plane into strips and he assumes
that the particle follows a straight line in each strip. The path is then
piecewise linear. The problem is to determine the angle of the straight
line segment in each strip and to do this he appeals to Fermat’s principle,
namely that light always follows the shortest possible time of travel. If v is
the velocity in one strip at angle a to the vertical and u in the velocity in
the next strip at angle b to the vertical then, according to the usual sine
law v/sin a = u/sin b.

The optimal trajectory turns out to be a cycloid (see Section ?? for
the derivation). Cycloid was a well investigated curve in seventeen century.
Huygens had shown in 1659, prompted by Pascal’s challenge, that the cycloid
is the tautochrone of isochrone: The curve for which the time taken by a
particle sliding down the curve under uniform gravity to its lowest point is
independent of its starting point. Johann Bernoulli ended his solution with
the remark: Before I end I must voice once more the admiration I feel for
the unexpected identity of Huygens’ tautochrone and my brachistochrone. ...
Nature always tends to act in the simplest way, and so it here lets one curve
serve two different functions, while under any other hypothesis we should
need two curves.

The methods which Bernoulli developed were put in a general setting by
Euler in his 1744 work Methodus inveniendi lineas curvas maximi minimive
proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu
accepti.2 In this work, Euler found the differential equation (Euler equation
or Euler-Lagrange equation) for a minimizer.

Lagrange, in 1760, published Essay on a new method of determining
the maxima and minima of indefinite integral formulas. It gave an analytic
method to attach calculus of variations type problems. In the introduction

2Method for finding plane curves that show some property of maxima and minima.
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to the paper Lagrange gives the historical development of the ideas which we
have described above but it seems appropriate to end this article by giving
what is in effect a summary of the developments in Lagrange’s words:- The
first problem of this type [calculus of variations] which mathematicians solved
was that of the brachistochrone, or the curve of fastest descent, which Johann
Bernoulli proposed towards the end of the last century.

2 Properties of the extremals

Every optimization problem contains several necessary components. It deals
with a set X of admissible elements x, that can be real or complex num-
bers, differentiable curves, integrable functions, shapes, people in the town,
or ants in the colony. A real-valued function I(x) called objective is put
into correspondence to each admissible element. The objective could be an
absolute value of a complex number, value of the function at a certain point,
value of the integral of a function over an interval, weight of a town inhabi-
tant, or length of an ant. The goal is to find or characterize the element x0

called minimizer, such that

I(x0) ≤ I(x), ∀x ∈ X

We denote this element as

x0 = arg min
x∈X

I(x)

and we denote the value I(x0) as I0

I0 = I(x0) = min
x∈X

I(x)

Next, we list the basic properties of any extreme problem that are based
on the definition of the minimizer.

1. Minimum over a larger set is equal or smaller than minimum of the
smaller set

If X1 ⊇ X2, then
min
x∈X1

F (x) ≤ min
x∈X2

F (x)

Restricting the class of admitted functions or parametrizing, we find an
upper estimate of the minimum, and increasing that class, e.i. lifting
some restrictions, we come to the lower estimate of it.
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2. Minimum of a function F (x) is equal to the negative of maximum of
−F (x),

min
x∈X

F (x) = −max
x∈X

(−F (x))

This property allows us not to distinguish between minimization and
maximization problems: We always can reformulate the maximization
problem as the minimization one.

3. Generalizing the previous property, we consider a multiplication of the
minimizing functional by a real number c:

min
x∈X

[cF (x)] =

{
cminx∈X F (x) if c ≥ 0

−cmaxx∈X (−F (x)) if c ≤ 0

4. Minimum of sum is not smaller than the sum of minima of additives.

min
x

[f(x) + g(x)] ≥ min
x

f(x) + min
x

g(x)

Splitting the minimizer into two and evaluating the parts separately,
we find a lower estimate of it.

5. Superposition. Consider the functions F : X ⊂ Rn → Y ⊂ R1 and
G : Y → Z ⊂ R1 and assume that G monotonically increases:

G(y1) − G(y2) ≤ 0 if y1 ≤ y2

Then minima of F (x) and of G(F (x)) are reached at the same mini-
mizer,

x0 = arg minF (x) = arg min G(F (x))

6. Minimax theorem

max
y

min
x

f(x, y) ≤ min
x

max
y

f(x, y)

providing that the quantities in the left and righthand side exist.

The next several colloraries are often used in the applications:

7. Linearity: If b and c > 0 are real numbers, than

min
x

(c f(x) + b) = c
(
min

x
f(x)

)
+ b
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8. The minimizer is invariant to the superposition of the objective with
any monotonic function. Namely, The minimizer

x0 = arg min
x

f(x)

where f : X → Y ⊂ R1 is also the minimizer of the problem

x0 = argmin
x∈X

g (f(x))

where g : Y → R1 is monotone everywhere on Y .

9. Maximum of several minima is not larger than minimum of several
maxima:

max
{
min

x
f1(x), . . . min

x
fN (x)

}
≤ min

x
fmax(x)

where
fmax(x) = max{f1(x), . . . fN (x)}

The listed properties can be proved by the straightforward use of the defi-
nition of the minimizer. We leave the prove to the reader.

3 Variational problem

The extremal (variational) problem requires to find an optimal function
u0(x) which can be visualized as a curve (or a surface). Function u0(x)
belongs to a set of admissible functions U : u ∈ U ; it is assumed that U is a
set of differentiable function on the interval [a, b] that is denoted as C1[a, b].
To measure the optimality of a curve, we define a functional (a real num-
ber) I(u) which may depend on u(x), and its derivative u′(x) as well as on
the independent variable x. The examples of variational problems are: The
shortest path on a surface, the surface of minimal area, the best approxi-
mation by a smooth curve of the experimental data, the most economical
strategy, etc.

The classical variational problem is formulated as follows: Find

I(u0) = min
u(x)∈Ub

J(u) Ub = {u : u ∈ C1(a, b), u(a) = α, u(b) = β} (1)

where x ∈ [a, b], u0(x) is an unknown function called the minimizer, the
boundary values of u are fixed, J(u) is the functional of the type

J(u) =
∫ b

a
F (x, u(x), u′(x))dx. (2)
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F is a function of three arguments, x, u(x), u′(x), called Lagrangian, and it
is assumed that the integral in (??) exists.

The value of the objective functional I(u) (also called the cost func-
tional) is a real number. Since real numbers are ordered, one can compare
functionals J(u1), J(u2), . . . of different admissible functions u1, u2, . . ., and
build minimizing sequences of functions

u1, u2, . . . , un, . . .

with the property:

I(u1) ≥ I(u2) ≥ . . . ≥ I(un) . . .

The limit u0 of a minimizing sequence (if it exists) is called the minimizer;
it delivers the minimum of I

I(u0) ≤ I(u) ∀u ∈ U (3)

The minimizing sequence can always be built independently of the existence
of the minimizer.

Generalization The formulated problem can be generalized in several
ways.

• The minimizer and an admissible function can be a vector-function;
the functional may depend of higher derivatives, and be of a more
general form such as the ratio of two integrals.

• The integration can be performed over a spacial domain instead of the
interval [a, b]; this domain may be completely or partly unknown and
should be determined together with the minimizer.

• The problem may be constrained in several ways: The isoperimetric
problem asks for the minimum of I(u) if the value of another functional
Ir(u) is fixed. Example: find a domain of maximal area enclosed by
a curve of a fixed length. The constrained problem asks for the mini-
mum of I(u1, . . . un) if a function(s) φ(u1, . . . un) is fixed everywhere.
Example: The problem of geodesics: the shortest distance between
two points on a surface. In this problem, the path must belong to the
surface everywhere.
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Outline of the methods There are several groups of methods aimed to
find the minimizer of an extremal problem.

1. Methods of necessary conditions (variational methods). Us-
ing these methods, we establish necessary conditions for u(x) to pro-
vide a local minimum. In other words, the conditions tell that there
is no other curve u + δu that is (i) sufficiently close to the chosen
curve u (that is assuming ‖δu‖ is infinitesimal), (ii) satisfies the same
boundary or other posed conditions, and (iii) corresponds to a smaller
value I(u + δu) < I(u) of the objective functional. The closeness of
two compared curves allows for a relative simple form of the result-
ing variational conditions of optimality; on the other hand it restricts
the generality of the obtained conditions. Variational methods yield
to only necessary conditions of optimality; they detect locally optimal
curves. On the other hand, variational methods are regular and ro-
bust; they are applicable to a great variety of extremal problems called
variational problems. Necessary conditions are the true workhorses of
extremal problem theory, while exact sufficient conditions are rare and
remarkable exceptions.

2. Methods of sufficient conditions. These rigorous methods directly
establish the inequality I(u0) ≤ I(u),∀u ∈ U . They are applicable to
a limited variety of problems, and the results are logically perfect. To
establish the above inequality, the methods of convexity are commonly
used. The method often requires a guess of the global minimizer u0

and is applicable to relatively simple extremal problems.

For example the polynom F (x) = 6 + 13x2 − 10x + 2x4 − 8x3 has its
global minimum at the point x = 1 because it can be presented in the
form F (x) = 3 + (x − 1)2 + 2(x − 1)4; the second and the third term
reach minimum at x = 1.

3. Sequential optimization algorithms These are aimed to building
the minimizing sequence {us} and provide a sequence of better solu-
tions. Generally, the convergence to the true minimizer may not be
required, but it is guaranteed that the solutions are improved on each
step of the procedure: I(us) ≤ I(us−1) for all s. These methods re-
quire no a priori assumption of the dependence of functional on the
minimizer only the possibility to compare a project with an improved
one and chose the best of two. Of course, additional assumptions help
to optimize the search but it can be conducted without these. As an
extreme example, one can iteratively find the oldest person from the
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alphabetic telephone directory calling at random, asking for the age
of the responder and comparing the age with the maximum from the
already obtained answers.

Global methods Variational meth-
ods

Algorithmic
search

Objectives Search for the
global minimum

Search for a local
minimum

An improvement
of existing solu-
tion

Means Sufficient condi-
tions

Necessary condi-
tions

Algorithms of se-
quential improve-
ment

Tools Inequalities,
Fixed point
methods

Analysis of fea-
tures of optimal
trajectories

Gradient-type
search

Existence
of solu-
tion

Guaranteed Not guaranteed Not discussed

ApplicabilitySpecial problems Large class of
problems

Universal

Table 1: Approaches to variational problems
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