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1 Pointwise constraints: Optimal design

1.1 Stationarity conditions

Consider an optimal design problem. The statement of the problem requires
the definition of the goal functional, differential constraints (the equations of
the equilibrium of dynamics), the possible integral constraints, and the set K of
controls. It may look as follows: Minimize a functional of the type

Φ = min
k(x)∈K

[∫
Ω

F (k, u) dx+

∫
∂Ω

F∂(k, u) ds

]
(1)
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where u = u(x1, . . . , xd) is a solution of a partial differential equation

Q(k,∇u, u) = 0 in Ω, u = u0 on ∂Ω (2)

The approach with pointwise algebraic or differential constraints is similar
those used in to one-dimensional variational problems. We construct an aug-
mented functional I, adding to the functional the differential equation multiplied
by a Lagrange multiplier λ(x)- the function of x, as follows

I = min
k(x)∈K

[
min

u: u=u0 on ∂Ω

(
max
λ

J(u, k, λ)

)]
(3)

J =

∫
Ω

[F (k, u) + λQ(∇u, u)] dx+

∫
∂Ω

F∂(k, u0) ds (4)

We arrive at the variational problem with three variables, u, k, and λ. The
stationarity condition with respect of µ is equation (5). The other two conditions
are

Su(F + λQ) = 0, Sλ(F + λQ) = 0, in Ω (5)

and corresponding boundary conditions.
Below we consider two simple minimization problems with differential con-

straints that express a thermal equilibrium. The equilibrium depends on the
control (thermal sources or boundary temperature) that must be chosen to
minimize a functional related to the temperature distribution. The differential
constraint is the conductivity equation; it relates the temperature and control.

1.2 Design of boundary temperature

Consider the following problem: A bounded domain Ω is in thermal equilibrium.
The temperature on its boundary θ(s) must be chosen to minimize the L2 norm
of deflection of the temperature T from a given target distribution ρ(x).

Let us formulate the problem. The objective is

I = min
T

1

2

∫
Ω

(T − ρ)2dx. (6)

Temperature T is a solution to the boundary value problem of thermal equilib-
rium (the differential constraint)

∇2T = 0 in Ω, T = θ on ∂Ω. (7)

Here, control θ enters the problem through the boundary condition of the differ-
ential constraint. The constraint connects control θ(s) with the variable T (x),
which is needed to compute the objective. The set of controls θ is an open set
of all piece-wise differentiable functions.

Harmonic target The problem becomes trivial when target ρ is harmonic,
∇2ρ = 0 in Ω. In this case, we simply set T = ρ everywhere in Ω and in
particular at the boundary. The differential constraint is thus satisfied. The
cost of the problem is zero, which mean that the global minimum is achieved.
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Nonharmonic target: Stationarity We account for the first equation (7)
as for the pointwise constraint. The Lagrange multiplier for the differential
constraint (called also the adjoint variable) λ(x) is a function of a point of the
domain, because the constraint is enforced everywhere there. The augmented
functional is

IA =

∫
Ω

(
1

2
(T − ρ)2 + λ∇2T

)
dx. (8)

It reaches stationarity at the optimal solution. To compute variation of IA with
respect to T , we twice integrate by parts the last term. The computation gives
the following

δIA =

∫
Ω

(
T − ρ+∇2Λ

)
δT dx+

∮
∂Ω

[(
δ
∂T

∂n

)
λ− δT

(
∂

∂n
λ

)]
ds (9)

The variation leads to the stationarity condition, which here has the form of the
boundary value problem for λ,

∇2λ = ρ− T in Ω, (10)

and

λ = 0,
∂

∂n
λ = 0 on ∂Ω (11)

Notice that the variations (see (7)) of the value of T and its normal derivative
∂T
∂n at the boundary ∂Ω are arbitrary because the control θ is not constrained,
therefore the coefficients by these variations must be zero at the stationary
solution.

Remark 1.1 The problem (10) for the dual variable λ has two boundary condi-
tions, and the problem (7) for T has none! That is fine because these two problems
are solved as a system of two second-order partial differential equations with two
boundary conditions (11).

The primary problem is underdetermined because the control cannot be spec-
ified without the dual problem. The dual problem is overdetermined because it
determines the control. The system of the pair of problem is well-posed.

Analysis To solve the system of necessary conditions, we first exclude T by
taking Laplacian ∇2 of the left- and right-hand side of the equation (10) and
accounting for (7). Thus, we obtain a regular fourth-order boundary value
problem for λ

∇4λ = ∇2ρ in Ω, λ = 0,
∂

∂n
λ = 0 on ∂Ω. (12)

that has a unique solution. After finding λ, we find T from (10). Then we
compute the boundary values θ = T |∂Ω and define the control.

Notice that if the target is harmonic, ∇2ρ = 0, then (12) gives λ = 0 and
(10) gives T = ρ, as expected.
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1.3 Design of bulk sources

Consider again problem (6) of the best approximation of the target temperature.
This time, consider control of bulk sources. Namely, assume that the heat
sources µ = µ(x) can be applied everywhere in the domain Ω but the boundary
temperature is kept equal zero. Assume in addition, that the L2 norm of the
sources is bounded.

In this case, T is a solution to the boundary value problem (the differential
constraint)

∇2T = µ in Ω, T = 0 on ∂Ω (13)

and µ is bounded by an integral constraint

1

2

∫
Ω

µ2dx = A (14)

but not pointwise. These constraints are accounted with Lagrange multipliers
λ(x) and γ, respectively. The extended functional depends on two functions T
and µ, ∫

Ω

L(T, µ)dx− γA‖Ω‖

where

L(T, µ) =
1

2
(T − θ)2 + λ(∇2T − µ) +

1

2
γµ2 (15)

The variations of L with respect to T and µ lead to stationary conditions. The
stationarity with respect to T results in the boundary value problem for λ,

∇2λ = T − θ in Ω, λ = 0 on ∂Ω (16)

The stationarity with respect to variation of µ leads to the pointwise condition

λ = −γµ

that allows to exclude µ from (13). and obtain the linear system{
∇2T − 1

γλ, ∇
2λ = T − θ if x ∈ Ω

T = 0, λ = 0 if x ∈ ∂Ω
(17)

and an integral constraint

1

2

∫
Ω

λ2dx =
A‖Ω‖
γ2

.

that scales λ and, therefore, control µ. This system could be solved for T (x),
λ(x) and the constant γ, which would completely define the solution.

Problem 1.1 Reduce the system to one fourth-order equation as in the previous
problem. Derive boundary conditions. Using Green’s function, obtain the integral
representation of the solution through the target.
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2 Optimal Conducting Structures

In this chapter we consider minimization of functionals that depend on the so-
lution of the stationary conductivity problem. Energy minimization is one such
problem. Other examples include minimization of the mean temperature within
some area in the body, minimization of a norm of the difference between the
desired and actual temperature, or maximization of the total current through a
boundary component. Again, microstructures appear in these optimal designs.
We describe an approach based on homogenization and demonstrate that the
optimal composites are surprisingly simple: Laminates are the optimal struc-
tures for a large class of cost functionals.

We are turning toward a construction of minimizers for problem (73), (74).
Here, we introduce the formal solution scheme to the problem and demonstrate
that optimal designs correspond to the laminate structures. We describe a
method suggested in [?]: The constrained extremal problem is reduced to a
minimal unconstrained variational problem similar to the problem of energy
minimization.

For definiteness, we consider a weakly continuous functional of the type

I(w) =

∫
Ω

F (w) +

∮
∂Ω

Φ(w,wn), (18)

where F and Φ are differentiable functions. As an example, one can think of
the problem of minimizing a temperature in a region inside the domain Ω.

2.1 Augmented Functional

Consider the minimization problem

I = min
σ

∫
Ω

F (w) +

∮
∂Ω

Φ(w,wn) (19)

where w is the solution to system (73). Assume that the functional (18) is
weakly continuous. Therefore, the solution to (18) exists if the set U of controls
is G-closed. Here we find that all optimal structures are laminates.

In dealing with the constrained optimization problem we use Lagrange mul-
tipliers to take into account the differential constraints. We construct the aug-
mented functional IA. Namely, we add to I the two differential equations (73)
multiplied by the scalar Lagrange multiplier λ = λ(x) and vector Lagrange
multiplier κ = κ(x), respectively,

G = λ(∇ · j − q) + κ · (∇w − σ−1j).

This way we obtain the augmented functional

IA = min
σ

min
w,j

max
λ,κ

∫
Ω

(F +G) +

∮
∂Ω

Φ(w,wn). (20)

The boundary conditions (73) are assumed. The value of the augmented functionalIA
is equal to the value of I; see, for example, [?].
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The Adjoint Problem To find the Lagrange multipliers λ and κ we calculate
the variation of the augmented functional (20) caused by the variation δw of
w and the variation δj of j. The multipliers satisfy the stationarity condition
δIA = 0, where

δIA =

∫
Ω

(
∂F

∂w
δw + λ(∇ · δj) + κ · (∇δw − σ−1δj)

)
+

∮
∂Ω

(
∂Φ

∂w
δw +

∂Φ

∂jn
δjn

)
.

We apply the standard variational technique, transforming the terms on the
right-hand side using Green’s theorem:∫

Ω

(a∇ · b+ b · ∇a) =

∮
∂Ω

abn (21)

where a, b are differentiable scalar and vector functions, respectively; bn = b ·n
is the normal component of b, and Ω is a domain with a smooth boundary ∂Ω.

We apply this theorem to the two terms on the right-hand side of the ex-
pression for δIA: ∫

Ω

λ∇ · δj = −
∫

Ω

δj · ∇λ+

∮
∂Ω

λδjn,∫
Ω

κ · ∇δw = −
∫

Ω

δw∇ · κ+

∮
∂Ω

κnδw.

This brings δIA to the form

δIA =

∫
Ω

(Aδw + B · δj) +

∮
∂Ω

(Cδw +Dδjn), (22)

where
A = −∇·(κ) + ∂F

∂w , B = −σ−1κ−∇λ,
C = ∂Φ

∂w + κn, D = ∂Φ
∂jn

+ λ.

The stationarity δIA = 0 of IA with respect to the variations δw and δj,
together with the boundary conditions (73), implies

A = 0 in Ω, B = 0 in Ω,
C = 0 on ∂Ω1, D = 0 on ∂Ω2.

The pair λ, κ satisfies the adjoint problem (compare with (73))

∇ · κ = −∂F∂w
σ(χ)∇λ = −κ

}
in Ω,

λ = − ∂Φ
∂jn

on ∂Ω1,

κn = − ∂Φ
∂w on ∂Ω2.

(23)

To obtain these boundary conditions we notice that δw|∂Ω1
= 0 and δjn|∂Ω2

= 0.
System (23) allows us to determine λ for given σ and w. The multipliers

λ and κ (23) are similar to the variables w and −j (73), respectively, because
they correspond to the same inhomogeneous layout σ but to a different right-
hand-side term and boundary conditions.
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Self-Adjoint Problem An important special case of problem (20) is the
coincidence of λ and w. This happens if

∂F

∂w
= q,

∂Φ

∂jn
= −ρ1,

∂Φ

∂w
= ρ2. (24)

The solutions to these problems also coincide:

λ = w, j = −κ. (25)

In this case we call the problem self-adjoint. The self-adjoint problem corre-
sponds to the special functional (19):

F (w) = qw, Φ =

{
−ρ1w on ∂Ω1,
ρ2jn on ∂Ω2.

(26)

The reader can check that this functional represents the total energy stored in
the body.

Also, we deal with a self-adjoint problem when the problem for a Lagrange
multiplier λ differs only by sign from the variable w:

λ = −w, j = κ. (27)

This happens when the negative of the value of the work is minimized, or,
equivalently, when the work is maximized; in this case both integrands F and
Φ are negatives of those given by (26).

The self-adjoint problems minimize or maximize the energy of a structure;
they were discussed in Chapter 4.

2.2 The Local Problem

Equations (73) and (23) determine two of three unknown functions w, λ, and
σ. The remaining problem is to find an additional relation among σ, w, and λ.

Remark 2.1 In the exposition, we will associate the conductivity problem with
the potential w assuming that j is computed from (73). Similarly, we associate the
adjoint problem with the potential λ assuming that κ is computed from (23).

We use the homogenization approach. Let us average the augmented functional.
We bring problem (19) to a symmetric form by integration by parts of the term
that contains the control σ:

IA = min
σ

min
w

max
λ

∫
Ω

(F (w)− qλ−∇λ · σ∇w) + boundary terms, (28)

and we apply the averaging operator (??) 〈 〉 to it.
In performing the averaging we replace (28) by the homogenized problem

IεA = min
σ

min
〈w〉

max
〈λ〉

P,
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where

P =

∫
Ω

(〈F (w)〉 − 〈qλ〉 − 〈∇λσ · ∇w〉) + boundary terms. (29)

The cost of the homogenized problem is arbitrarily close to the cost of the
original problem:

IεA → IA when ε→ 0.

It is easy to compute the first two terms of the integrand in the volume
integral on the right-hand side of (29), supposing that the functions F (w) and
q are continuous:

〈F (w)〉 = F (〈w〉) + o(ε) and 〈q · λ〉 = q · 〈λ〉+ o(ε). (30)

Calculation of the remaining term,

〈∇λσ · ∇w〉) = K(∇λ,∇w),

where

K(∇λ,∇w) =
1

‖ω‖
min
σ(x)

min
w

max
λ

∫
ω

∇(−λ)(σ(x))∇w, (31)

requires homogenization. Term K should be expressed as a function of the
averaged fields

p = 〈∇w〉 and q = 〈∇λ〉 (32)

as K = K(p, q).
This problem is called the local problem. It asks for an optimal layout σ in

the element of periodicity ω (considered a neighborhood of a point of the body
Ω in the large scale).

Fixed Volume Fractions First, we solve an auxiliary problem. Consider the
functional K (31) and assume that the volume fraction m of the first material
in the structure is also given. The cost of (31) can be expressed through the
tensor of effective properties σ∗. It takes the form

J(p, q,m) = min
σ∗∈GmU

〈p · σ∗q〉 (33)

and asks for the best structure of a composite with the fixed volume fractions of
components. The volume fraction m will be determined later to minimize the
cost of (31). Note that

K(p, q) = min
m∈[0,1]

J(p, q,m). (34)

We calculate J(p, q,m), referring only to the Wiener bounds; the eigenvalues
λi of any effective tensor σ are bounded as

σh ≤ λ1 ≤ λ2 ≤ λ3 ≤ σa. (35)
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Note that the bounds of the Gm-closure restrict eigenvalues of the effective
tensor but not its orientation. Although these bounds are uncoupled and there-
fore not complete, they provide enough information to solve the optimization
problem.

Let us analyze the bilinear form J . It depends only on magnitudes |p| and
|q| and the angle 2θ between them:

J = min
σ∈GmU

p · σq = J(|p|, |q|, θ), (36)

where

θ =
1

2
arccos

|p · q|
|p| |q|

. (37)

Next, J is proportional to the magnitudes |p| and |q| of both external fields
p and q; it can be rewritten in the form

J(p, q,m) = |p||q| min
σ∗∈GmU

ip · σ∗iq, (38)

where the unit vectors ip and iq show the directions of p and q:

ip =
1

|p|
p, iq =

1

|q|
q. (39)

Thus (38) is reduced to the minimization of a nondiagonal p q-component of the
tensor σ ∈ GmU in the nonorthogonal coordinate system of axes ip and iq.

Diagonalization To find the optimal orientation of the tensor σ we introduce
a pair of vectors

a = ip + iq, b = ip − iq. (40)

Due to normalization (39), these fields are orthogonal: a · b = 0.
The magnitudes of a and b depend only on θ (see (37)). They equal |a| =

2 cos θ, |b| = 2 sin θ (see ??).
In the introduced notation, the bilinear form J takes the form of the differ-

ence of two quadratic functions,

J = min
σ∈GmU

|p||q|[a · σa− b · σb]. (41)

Optimal Effective Tensor The minimization of J over σ ∈ GmU requires
the optimal choice of the eigenvectors and eigenvalues of σ. To minimize J , we
direct the eigenvectors of σ as follows. The eigenvector of σ that corresponds
to the minimal eigenvalue λmin is oriented parallel to a, and the eigenvector of
σ that corresponds to the maximal eigenvalue λmax is oriented parallel to b:

J ≥ |p||q|(λmina
2 − λmaxb

2). (42)

Next, J decreases if λmin coincides with its lower bound, and λmax coincides
with its upper bound; the bounds are given by (35). We have

J ≥ |p||q|(σha2 − σab2). (43)
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Remark 2.2 The value of the intermediate eigenvalue is irrelevant. This feature
recalls the definition of the weak G-closure (Chapter 3). The weak G-closure is
adequate for this problem because it deals with an arbitrary pair of the field and
the current.

Formula (43) displays the basic qualitative property of an optimal composite:

The optimal effective tensor σ∗ possesses maximal difference be-
tween weighted maximal and minimal eigenvalues. The optimal
structures are extremely anisotropic.

Substituting the values of the original fields a and b into (43), we find that
J is bounded from below as follows:

J ≥ 2[(σa + σh)(|p||q| − (σa − σh)p · q). (44)

Inequality (44) is valid for all composites independent of their structure.
The fields p and q lie in the plane of maximal and minimal eigenvalues

of σ∗. The direction of λmin bisects the angle between the vectors p and q.
Qualitatively speaking, p shows the attainable direction of currents, q shows
the desired direction of them. The direction of maximal conductivity in the
optimal structure bisects this angle. This rule provides a compromise between
the availability and the desire.

Remark 2.3 Note that the self-adjoint problem (25), where p = q, corresponds
to a = 0 and the problem where p ≡ −q (27) corresponds to b = 0.

Optimal Structures An appropriately oriented laminate provides the
minimal value of J . Indeed, the laminates have simultaneously the maximal
conductivity σa in a direction(s) (along the layers) and the minimal conductiv-
ity σh in the perpendicular direction (across the layers).

The optimal laminates are oriented so that the normal n coincides with the
direction of the field a, and the tangent t coincides with the direction of b. The
cost J(σlam) of the local problem for laminate structure σlam coincides with
the bound (44).

2.3 Solution in the Large Scale

The solution to the auxiliary local problem allows us to compute K from (34).
We denote m1 = m, m2 = 1−m; assume that σ2 > σ1; and calculate an optimal
value of the volume fractions of materials in the laminates. We have

K

|p| |q|
= min

m∈[0,1]

(
λmin(m)a2 − λmax(m)b2

)
= min

m∈[0,1]

(
σ1σ2

mσ2 + (1−m)σ1
a2 + (mσ1 + (1−m)σ2)b2

)
. (45)
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The optimal value mopt of m depends only on the ratio between |a| and |b|,

|a|
|b|

= cot θ, (46)

and is equal to

mopt =


0 if cot θ ≤

√
σ1

σ2
,

√
σ1σ2

σ2−σ1

(
cot θ −

√
σ1

σ2

)
if
√

σ1

σ2
≤ cot θ ≤

√
σ2

σ1
,

1 if cot θ ≥
√

σ2

σ1
.

(47)

Equation (47) says that the optimal concentration of materials in the laminates
depends only on the angle θ.

We find the optimal value of the functional K = J(mopt):

K

|p| |q|
=


σ2 cos 2θ if cot θ ≤

√
σ1

σ2
,

(σ1 + σ2) sin2 θ if
√

σ1

σ2
≤ cot θ ≤

√
σ2

σ1
,

σ1 cos 2θ if cot θ ≥
√

σ2

σ1
.

(48)

To complete the solution, it remains to pass to the original notation ∇〈w〉 =
p and ∇〈λ〉 = q, substitute the value of the local problem into the functional
(20), and find the Euler–Lagrange equations of the problem:

IA = min
〈w〉

max
〈λ〉

∫
O

[F (〈w〉) + 〈λ〉q +K]. (49)

Note that the equations for 〈w〉 and 〈λ〉 are coupled because the optimal prop-
erties depend on both of them.

Numerical Procedure Practically, we have used a different procedure for
the numerical solution; see [?]. The iterative method has been organized as
follows:

1. Given a layout of σ, we compute the solution w of problem (73) and the
solution λ of the adjoint problem (23).

2. The optimal layouts m(x) and θ(x) is found from (46). Then we return
to the first step.

3 Reducing to a Minimum Variational Problem

Duality In this section, we reformulate the local minimax problem (41) as
a minimal variational problem. This way we reduce the problem to the type
discussed in Chapter 4. The relaxation is obtained by the convexification. The
transformation is done by the Legendre transform.
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The Legendre transform replaces the saddle Lagrangian (41) with a convex
Lagrangian. Recall (chapter 1) that the Legendre transform or Young–Fenchel
transform f∗(x∗) (??) of a concave function f(x) is given by (??),

f∗(x∗) = min
x

[xx∗ − f(x)], (50)

where f∗(x∗) is the conjugate to f(x).
Consider the Legendre transform of the function

f(b) =
λ1

2
a2 − λ2

2
b2, (51)

where a is a parameter. We compute

f∗b (a, b∗) = min
b

[b b∗ − f(a, b)] =
λ1

2
(a)2 +

1

2λ2
b∗2, b∗ = λ2b. (52)

Notice that f∗b (a, b∗) is a convex function of a and b∗

Consider the normalized local minimax problem (see (41))

J = min
σ∗∈GmU

{
1

2
min
a

max
b
{〈a〉 · σ∗〈a〉 − 〈b〉 · σ∗〈b〉}

}
, (53)

where we put |p| = |q| = 1,
To reduce (53) to a minimum problem, we perform the Legendre transform

on the variable b. We replace the problem of maximization of conductivity in
the direction b with the problem of the minimization of the resistance in this
direction. This transform does not include optimization; we simply change the
variable b to its conjugate variable b∗.

The dual to b variable b∗ = j is (see (52)):

j = σb. (54)

If we substitute (54) into (53), the latter becomes the following minimum
problem:

R∗(a, j) = min
σ

R(a, j,σ),

R(a, j,σ) =

〈(
−b · j +

1

2
a · σa+

1

2
j · σ−1j

)〉
. (55)

Recall that the eigenvectors of σ are oriented along a and b. Therefore, the
vectors j and b are parallel, and j and a are orthogonal.

The reformulated local problem (55) asks for a medium that stores the mini-
mal sum of the energy and the complementary energy caused by two orthogonal
external fields.
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Minimal Variational Problem The function R is a solution to a variational
problem for unknown fields and layout, similar to the variational problem of
Chapter 4.

This local variational problem can be rewritten as:

R(a, b,m) = min
χ

min
α∈A

min
β∈B

JR(α,β, χ),

where χ is subject to the constraint 〈χ〉 = m, and

JR(α,β, χ) = 〈−α · β +
1

2
α · σ(χ)α+

1

2
β · σ(χ)−1β〉, (56)

A is the set of periodic gradient fields with mean value a,

A = {α : ∇×α = 0, 〈α〉 = a, α(x) is Ω− periodic} , (57)

and B is the set of divergencefree periodic vectors with the mean value b,

B = {β : ∇ · β = 0, 〈β〉 = j, β(x) is Ω− periodic} . (58)

Note that variational problem (56) does not contain differential constraints.
As with the problem in Chapter 4, this problem can be analyzed by classical
variational methods.

Remark 3.1 The minimal form JR of the Lagrangian is symmetric in the sense
that the field a and the current j enter into the problem in the same way. One
expects this property because the original conductivity problem could be formulated
in two equivalent ways: By using a field potential or a current potential; the result
is unrelatedto this choice. Both self-adjoint cases correspond to either a = 0 or
j = 0. The problem is reduced to minimization of the energy in one of the dual
forms, as one would expect.

The Transferred Problem as a Nonconvex Variational Problem Prob-
lem (56) depends on χ and it needs a relaxation. The problem can be relaxed
by convexification. As in the problem in Chapter 4, we can exclude the control
χ by interchanging the minimal operations:

R(a, b,m) = min
σ(χ)

min
α∈A

min
β∈B

JR = min
α∈A

min
β∈B

min
σ(χ)

JR. (59)

The inner minimum minσ(χ) JR can be easily computed, because χ takes only
two values: zero and one. The problem becomes

R(a, b,m) = min
a∈A

min
j∈B

JRR, (60)

where

JRR(α,β) =

〈
−α · β +

1

2
min

{
σ1|α|2 +

1

σ1
|β|2, σ2|α|2 +

1

σ2
|β|2

}〉
. (61)
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Notice that JRR(α,β) is a nonconvex function of its arguments.
To relax problem (56) we again perform the convexification of the Lagrangian

JRR(α,β). It is a two-well Lagrangian, and therefore its convex envelope is
supported by two points that belong to different wells. Following the calculation
in Chapter 4, we find these points and show that the convex envelope is equal
to

CJRR(a, j) = −a · j +
1

2
min

m∈[0,1]

{
σh(m) a2 +

1

σa(m)
j2

}
, (62)

where (·)h and (·)a are again the harmonic and the arithmetic means. To obtain
the term 1

σa(m) , we use the identity
(

1
σ

)
h

= 1
σa

.

To compute the first term 〈α · β〉 = a · j on the right-hand side, we use the
property of divergencefree and curlfree fields called compensated compactness
(see Chapter 8 and [?, ?]).

The convex envelope of the Lagrangian (61) is again attainable, this time
due to the orthogonality of a and j. Indeed, the laminates have conductivity
σh and σa in orthogonal directions. The structure can be oriented so that the
axis σh is directed along a and the axis σa along j.

The Legendre transform is an involution: After the convexification is per-
formed, we perform the transform with respect to j to bring the problem back
to the form (41).

Remark 3.2 Another approach to these problems was developed in [?, ?]. Instead
of transforming the functional, the author developed a method for finding an saddle-
type envelope of the Lagrangian of a minimax problem. Both approaches lead to
similar results, as expected.

Summary of the Method Let us outline the basic steps of the suggested
method of relaxation. We assume that the problem is described by self-adjoint
elliptic equations; the shape of the domain, boundary conditions, and external
loadings (right-hand-side terms) are fixed; the minimizing functional is weakly
lower semicontinuous. To relax the problem, we follow this procedure:

1. Formulate the local problem as a min-min-max problem for bilinear form
of the field and gradient of the Lagrange multiplier; the coefficients of the
form are the effective properties of the composite.

2. Normalize the bilinear form and transform it to the diagonal form by
introducing new potentials. A transformed problem asks for minimization
of the difference of energies caused by two orthogonal fields by the layout
of the materials.

3. Use the Legendre transform to reduce the problem to a minimal variational
problem, ending up with a problem of the minimization of the sum of an
energy and a complementary energy.
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4. Use convexification to bound the minimized nonconvex functional from
below and find a minimizing sequence (i.e., the optimal microstructure)
that bounds it from above.

5. Return to the original notation performing the Legendre transform of the
convexified problem.

4 Examples

Example 4.1 Consider a thin circular cylindrical shell of height h and radius r
made of two conducting materials σ1 and σ2. Suppose that its upper and lower
faces are kept by different potentials. Let us find a layout of materials that maximizes
the circumferential component of the current; this component is zero for isotropic
materials.

Introduce the rectangular coordinates z,Θ on the surface. The surface Ω is the
rectangle

0 ≤ z ≤ h, 0 ≤ Θ ≤ 2πr.

The potential w(z,Θ) is the solution to the problem

∇ · σ∇w = 0 in Ω, (63)

with the boundary conditions

w(0,Θ) = 0, w(h,Θ) = U, w(z, 0) = w(z, π),
∂w(z, 0)

∂Θ
=
∂w(z, π)

∂Θ
.

The maximizing functional is the circumferential component of the current; it
is written as

I =

∫
Ω

iΘ · σ∇w, (64)

where iΘ is a unit vector that points in the circumferential direction.
Applying the preceding analysis, we find that the Lagrange multiplier λ satisfies

the problem (see (23))

∇ · σ(∇λ+ iΘ) = 0 in Ω,

with boundary conditions

λ(0,Θ) = 0, λ(h,Θ) = 0,

λ(z, 0) = λ(z, π), ∂λ(z,0)
∂Θ = ∂λ(z,π)

∂Θ .
(65)

The solution to the averaged problem is easily found. We observe that the
constant tensor σ∗ and constant fields

〈∇λ〉 = −iΘ and 〈∇w〉 =
U

h
iz, σ∗ = constant(x), (66)
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satisfy the equations and the boundary conditions due to the symmetry of the
domain and the special boundary conditions. The same composite is used at each
point of the domain.

The angle θ that bisects the direction of the fields 〈∇λ〉 and 〈∇w〉 is equal to
π
4 . The optimal volume fraction mopt of the first material (see (48)) is

mopt =

√
σ1√

σ1 +
√
σ2
. (67)

The cost K of the local problem (see (48)) is equal to the maximal current across
the acting field. This cost and the functional I are

K =
U

h
(
√
σ1 −

√
σ2)2, I =

∫
Ω

K = 2πr(
√
σ1 −

√
σ2)2U. (68)

Example 4.2 The next problem is more advanced. It deals with an inhomoge-
neous layout of optimal laminates. The problem has been formulated and solved in
[?]; an exposition of the solution can be found in [?].

Consider a circular cylinder (0 < r < 1, 0 < z < h). Suppose that the constant
heat flux −j ·n is applied to the upper face (z = h). The lateral surface (r = 1) of
the cylinder is heat insulated, and the lower face (z = 0) is kept at zero temperature.

The cylinder is filled with two materials with heat conductivities σ1 and σ2. The
steady state is described by the boundary value problem

j = σ(r, z)∇T, ∇ · j = 0, inside the cylinder,
iz · j = 1, on the upper face,

T = 0, on the lower face,
ir · j = 0, on the lateral surface.

(69)

Here T is the temperature; σ(r, z) = χ(r, z)σ1 + (1 − χ1(r, z))σ2; χ(r, z) is the
characteristic function; ir and iz are the unit vectors directed along the axes of the
cylindrical coordinate system.

It is required to lay out the materials in the domain to minimize the functional
over the lower face

I =

∫ 1

0

ρ(r)iz · j|z=0 r dr.

Here ρ(r) is a weight function. Notice that I is the boundary integral, and the
problem asks for the optimization of boundary currents caused by fixed boundary
potentials.

In particular, if the weight function ρ(r) is

ρ(r) =

{
1 if 0 < r < r0,
0 if r0 < 1,

(70)

then the problem is transformed to maximization of the heat flux through a circular
“window” of radius r0 on the lower surface of the cylinder.
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Assuming that the set of admissible controls contains the initial materials and the
composites assembled from them, we relax the problem. The augmented functional
of the problem has the following form:

J =

∫ 1

0

ρ(r)iz · j|z=0r dr + 2π

∫ 1

0

∫ h

0

λ∇ · σ∗∇T r dr dz. (71)

Varying (71) with respect to T and j and taking into consideration the boundary
conditions (69), we obtain a boundary value problem for the conjugate variable λ:

κ = σ∗∇λ, ∇ · κ = 0 inside the cylinder,
κ · ir = 0 on the lateral surface,
κ · iz = 0 on the upper face,

λ = ρ(r) on the lower face.

(72)

Problem (72) describes the “temperature” λ generated by the prescribed boundary
values of λ on the lower face z = 0 if the upper face and lateral surface of the
cylinder are heat insulated.

According to our analysis, an optimal layout of materials is characterized by a
zone of material of low conductivity if the directions of gradients ∇T and ∇λ are
close to each other, by a zone of material of high conductivity if the angle between
directions of gradients ∇T and ∇λ is close to π, and by an anisotropic zone if the
directions of gradients form an angle close to π

2 . In the last zone the normal to the
layers divides the angle between the gradients in half; the optimal medium tries to
turn the direction of the vector of heat flow in the appropriate direction.

The drafts of the vector lines ∇T and ∇λ are shown in ??. It is assumed that
the function ρ(r) is defined by (70). All vector lines ∇T begin on the lower face
and end on the upper face (??); all vector lines ∇λ begin on the part of the lower
face where ρ = 0 and end on the part where ρ = 1. The exterior vector line ∇λ
passes around the lateral surface and the upper face of the cylinder, returning to
the lower face along the axis Oz (??).

It is not difficult to see (??) that the zone A, where the angle ψ is close to zero,
adjoins the lateral surface of the cylinder. The zone C is located near the axes of
the cylinder; here this angle is close to π

2 . Zones A and C join at the endpoint
of a “window” through which one should pass the maximal quantity of heat; they
are divided by zone B where the angle ψ is close to π

4 ; this zone adjoins the upper
face. In zone B, the layered composites are optimal; the directions of the layers are
shown by the dotted line.

Physically, the thermolens focuses the heat due to the following effects:

1. The heat flow is forced out from zone A by the low-conductivity material σ1.

2. The heat flow turns in a favorable direction due to refraction in the optimally
oriented layers in zone B.

3. The heat flow is concentrated in zone C, which is occupied by the high-
conductivity material σ2.

17



The next example of “inhomogeneous heater” demonstrates construction
that maximize the temperature in a target point. It was obtained in [?] The
problem is similar to the previous one.

Example 4.3 Consider a domain (Ω : 0 < x < 1, 0 < y < 1) filled with two
materials with heat conductivities σ1 and σ2. Suppose that the boundary ∂Ω is
kept at zero temperature and that the domain has a concentrated source inside.

The equilibrium is described by the boundary value problem

j = σ(x, y)∇T, ∇ · j = δ(x− x0, y − y0), in Ω
T = 0, on ∂Ω

Here T is the temperature;

σ(x, y) = χ(x, y)σ1 + (1− χ1(x, y))σ2;

δ(x−x0, y− y0) is the δ-function supported at the point (x0, y0) where the source
is applied.

It is required to lay out the materials in the domain to maximize the temperature
T (xt, yt) at a target point (xt, yt) ∈ Ω. The functional is

I =

∫
Ω

T (x, y)δ(x− xt, y − yt)dx dy.

?? demonstrates the directions of ∇T and ∇λ. ?? shows the optimal project.
The optimal layout provides the best conductance between the source and target

points and also insulate the boundary. Notice the optimal layout in the proximity of
the source and target points: the volume fraction of the insulator varies from zero
(in the direction between the point) to one (in the opposite direction).

5 Conclusion and Problems

Relaxation and G-Closure We already mentioned that the solution to an
optimal design problem exists if the set of controls is Gm-closures. If this set is
known, one could choose the element σ∗ ∈ GmU that provides the minimum of
the functional J . However, here we have shown an alternative, straightforward
way of solution, so that unnecessary difficulties of a complete description of
Gm-closure are avoided.

Recall that the problem of optimal conductivity of a composite was solved
using only the simplest bounds of the Gm-closure or by using the weak G-
closure (Chapter 3). We deal with a pair of fields p and q, and we minimize
their weighted scalar product p·σ∗q. In this problem, we are looking for a tensor
with an extreme element; we are not interested in a description of other elements
of it. The extremal tensors belong to a special component of the boundary of
GmU ; it is enough to describe this component.

Another way to look at this phenomenon is as follows. The constitutive
relations in a medium 〈j〉 = σ∗ 〈e〉 are completely determined by the projection
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of the tensor σ∗ on a plane formed by vectors 〈j〉 and 〈e〉. Particularly, for
any optimization problem only this projection is needed, no matter what the
cost functional is. These arguments show again that it is enough to describe
only a two-dimensional projection on the plane of eigenvectors of maximal and
minimal eigenvalues (the weak G-closure). Moreover, only the “corner” of this
two-dimensional set is needed to solve the problem.

Clearly, the results obtained could easily be extended to composites of more
than two components, which are considered here for simplicity. The result in
the general case is the same: Optimal structures are just laminates that bisect
the directions of the fields 〈p〉 and 〈q〉.

We also could apply this method of relaxation to optimization problems
for the processes associated with more general operators than the conductivity
operators. The main qualitative result remains the same: The optimal medium
has the maximal difference between the energies stored in two different fields.
However, we would observe that Wiener bounds are not achievable by a laminate
structure. Our next goal, therefore, is to develop a technique for strict bounds
and to enlarge the class of available microstructures.

Problems

1. Consider the problem of Section 5.2 for an anisotropic material with vari-
able orientation of the eigenvectors. The G-closure corresponds to all
polycrystals. Using the general properties of G-closures, show that the
range of eigenvalues of polycrystals lies inside the range of eigenvalues of
the original anisotropic material. Analyze the necessary conditions. Do
microstructures (polycrystals) appear in an optimal project?

2. Consider the problem of Section 5.2 for three conducting materials. An-
alyze the necessary conditions. What microstructures are optimal? Does
the material with the intermediate conductivity appear in an optimal
project?

3. Consider the problem of Section 5.2 with the additional constraint∫
Ω

χ = M.

Derive and analyze the necessary conditions. Can the Lagrange multiplier
associated with the constraint change its sign? When does the multiplier
equal zero?

4. Investigate the problem of Section 5.2 about the process described by the
differential equation

∇ · σ(χ)(∇w + φ(w)) + v · ∇w + k(χ)w = f,

where φ, k, f are the differentiable functions, and v is a given vector field.
Derive the differential equation for the Lagrange multiplier. What mi-
crostructures are optimal? What is the relaxed form of the problem?
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5. Consider the example of Section 5.4. Assume that the boundary conditions
on the lateral surface are

w(h, 1)− κ∂w(h, r)

∂r

∣∣∣∣
r=1

= 0.

Derive the boundary conditions for λ and discuss the dependence of the
optimal structure on κ.

6. Qualitatively describe a composite in an optimal conducting rectangular
plate −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1, subject to the boundary conditions

∂w

∂x2

∣∣∣∣
x1=−1

=
∂w

∂x2

∣∣∣∣
x1=1

= 0, w|x2=−1 = 0, w|x2=1 = 1

with respect to the following optimality requirements:

(a) A domain in the center is kept at lowest temperature

min

∫
Ωε

T,

where Ωε is a circle with center at (0, 0) and with the radius much smaller
than one. Derive the problem for Lagrange multiplier λ and draw a draft
of the gradient lines of ∇w and ∇λ. Draw a draft of the optimal layout.

(b) The current j in Ωε is directed to minimize the functional

min

∫
Ωε

j · t, t = constant.

Derive the equation for the Lagrange multiplier λ and draw a draft of ∇w
and ∇λ. Draw a draft of the optimal layout.

Hint. To draw the draft of an optimal project, sketch the fields ∇w and
∇λ for the isotropic domain and apply necessary conditions to find an
approximation to the optimal layout.

6 Compliment 1. Relaxation and G-Convergence

6.1 Weak Continuity and Weak Lower Semicontinuity

First, we describe the type of functionals that can be minimized by homoge-
nization methods. In minimizing the functional, we likely end up with a highly
inhomogeneous sequence of materials layout. The homogenization replaces these
highly inhomogeneous materials with effective materials. The question is: How
does this replacement effect a cost functional?
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Formulation Consider again a domain Ω with a smooth boundary ∂Ω filled
with a two-phase inhomogeneous material of conductivity σ(χ), where χ = χ(x)
is the characteristic function of the subdomain Ω1 occupied with the material
σ1. The rest of the domain is filled with material σ2.

Consider the conductivity equations (??), (??), (??), and (??) in Ω. We
rewrite them for convenience:

∇ · j = q
σ(χ)∇w = j

}
in Ω,

w = ρ1 on ∂Ω1,
jn = ρ2 on ∂Ω2,

(73)

where w is a potential, j is the current, q is the density of sources, ρ1 and ρ2

are the boundary data imposed on the supplementary components ∂Ω1, ∂Ω2 of
the boundary ∂Ω, and jn = j · n is the normal component of j. We assume
that ρ1(s), ρ2(s), and q(x) are differentiable, where s is the coordinate on the
surface ∂Ω.

We suppose that problem (73) has a unique solution for the given q, ρ1, ρ2

and for arbitrary layout χ, and this solution is bounded,

‖w‖H1(Ω) =

∫
Ω

(∇w2 + w2) < C.

Consider the minimization problem

min
w as in (73)

I(w); I(w) =

∫
Ω

F (w, ∇w), (74)

where w is the solution to (73). Equation (73) is treated as a constraint on
w(χ), and χ is the control. Therefore, the functional I is determined by the
control, too: I = I(w(χ)). We denote by U the set of conductivities of the
available materials. Thus we have formulated a restricted variational problem
(the so-called Mayer-Bolza problem; see, for example, [?]).

The scheme of the dependence of the functional on the control is as follows:

χ =⇒ w(χ) =⇒ I(w).

Stability against Homogenization In dealing with structural optimization
problems we expect that a minimizer χ(x) is characterized by fine-scale oscil-
lations. Homogenization can be used to describe such oscillatory solutions. Let
us find a class of functionals that can be minimized by this approach. The
corresponding mathematical technique is the theory of sequentially weak lower
semicontinuity of functionals. We give an informal introduction to the use of
this theory in homogenization, and we refer the reader to a rigorous exposition
in [?, ?, ?, ?].

Compare the potential wε associated with the problem for the conductiv-
ity operator ∇σε∇ with fast oscillating coefficients σε and the potential w0

associated with the homogenized conductivity operator ∇σ∗∇ with smooth co-
efficients σ∗. Recall that wε tends to w0,

lim
ε→0

∫
Ω

(wε − w0)
2

= 0, or wε → w0 strongly in L2. (75)
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However, ∇w0 and ∇wε are not close pointwise:

lim
ε→0

∫
Ω

(∇wε −∇w0)
2
> 0 (76)

because ∇wε is a discontinuous function that has finite jumps on the boundary
of the regions of different materials and ∇w0 is a continuous function. The limit
∇w0 represents the mean value of ∇wε over an arbitrary regular small region
Ωε when the frequency of oscillations 1

ε goes to infinity,

∇w0 = lim
ε→0
〈∇wε〉; (77)

∇wε weakly converges to ∇w0 in L2.

Weakly Continuous Functionals Some functionals I(w) are stable under
homogenization, while others can significantly change their value: I(w0) −
I(wε) = 0(1). In the latter case, the solution to the homogenized problem may
have nothing in common with the solution to the original problem. Therefore,
it is important to distinguish these types of functionals.

The functional I(w) is called weakly continuous, if

I(w0) = lim
ws⇁w0

I(ws) (78)

where ⇁ means the weak convergence in H1(Ω). Weakly continuous functionals
are stable under homogenization.

For example, the functional

I1(w) =

∫
Ω

(F (w) +A · ∇w),

is weakly continuous if F is a continuous function and A is a constant or
smoothly varying vector. Indeed, (75), (77) imply that

I1(wε)− I1(w0) =

∫
Ω

(F (wε)− F (w0)) +

∫
Ω

(A · ∇(wε − w0))→ 0 (79)

when ε → 0. The first integral goes to zero because ‖w0 − wε‖L2
is arbitrary

near to zero and the function F is continuous, and the second integral goes to
zero because ∇wε goes to ∇w0 weakly in L2. Therefore, I1(w) is stable under
homogenization.

Generally, the functional I(w) =
∫

Ω
F (∇w), where F is a nonlinear function,

does not keep its value after homogenization. The limit

I0 = lim
ws⇁w0

I(wε),

where ws is a fine-scale oscillatory function, can generally be either greater or
smaller than I(w0) depending on the minimizing sequence {ws}. These func-
tionals are called weakly discontinuous.
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Weakly Lower Semicontinuous Functionals The weak continuity is suf-
ficient but not necessary to pass to the weak limit of the minimizer in the vari-
ational problem. The property needed is called the weak lower semicontinuity
[?]:

I0 = lim
ε→0

I(wε) ≥ I(w0), wε ⇁ w0. (80)

For these functionals, the limit only decreases when the minimizer coincides
with the weak limit of the minimizing sequence.

Each functional of the type

I2(w) =

∫
Ω

F (w,∇w), (81)

where F (w,∇w) is a continuous function of w and a convex function of ∇w, is
weakly lower semicontinuous.

Example 6.1 The functional

I3(w) =

∫
Ω

(∇w)
2

(82)

is weakly lower semicontinuous, because

I0
3 = lim

wε⇁w0

I(wε) = I3(w0) +

∫
Ω

(∇wε −∇w0)2 ≥ I3(w0),

when wε ⇁ w0 (to compute I0
3 we use the limit ∇(〈wε〉 − w0) ⇁ 0).

Dependency on χ A broader class of optimization problems deals with
functionals

I4(w,χ) =

∫
Ω

F (w,∇w,χ) (83)

that explicitly depend on the characteristic function χ. The functional I4 de-
pends on the amount (or cost) of the materials used in the design. For these
problems, weak lower semicontinuity is formulated as

lim
ε→0

I4(wε, χε) ≥ I(w0,m), when

{
χε ⇁ m,
wε ⇁ w0.

(84)

Analogously to (81), the functional I4 is weakly lower semicontinuous if F (w,∇w,χ)
is a continuous function of w and a convex function of ∇w and χ.

Remark 6.1 Dealing with relaxation of the nonconvex Lagrangians, we consider
the inverse problem: What property of the Lagrangian is necessary and sufficient
for the weakly lower semicontinuity? This question is discussed in the next chapter.
Here, we only mention that the convexity of F (w,∇w,χ) with respect to ∇w and χ
and the continuity with respect to w is sufficient for the weakly lower semicontinuity.

In summary, the homogenization technique is directly applicable to the
weakly lower semicontinuous functionals that do not increase their values by
homogenization.
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6.2 Relaxation of Constrained Problems by G-Closure

G-Closed Sets of Control Here we are dealing with a variational problem
with differential constraints that expresses the equilibrium (the Mayer-Bolza
problem): w is the solution of an equilibrium problem defined by the control.

Consider the minimization of a weakly lower semicontinuous functional I(w),
where w is the solution to a boundary value problem (73). Consider a sequence
of solutions wε = w(σε) that minimizes the functional I(w):

I(wε) → I0 = inf I(w). (85)

Because the functional is weakly lower semicontinuous, the minimizing sequence
{wε} weakly converges to w0,

wε ⇁ w0 : I0 = I(w0). (86)

Let us find out what happens to the corresponding sequence of materials’
layouts σε. Recall the definition of G-convergence (Chapter 3): A sequence {σε}
G-converges to a tensor-valued function σ∗ if the sequence {wε} : wε = w(σε)
weakly converges to w0 = w(σ∗). Therefore, an optimal solution w0 (a weak
limit of wε) corresponds to a G-limit σ∗ of {σε}:

I0 = inf
σε

I(w(σε)) = min
σ∗∈GU

I(w(σ∗)). (87)

A minimization problem of a weakly lower semicontinuous functional has a
solution in the set U of values of σ if all G-limits σ∗ belong to this set or if the
set U is G-closed.

Remark 6.2 This approach, called the “homogenization approach,” was devel-
oped in different forms in many papers [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?] We do
not mention here the control problems dealing with ordinary differential equations,
where these ideas were developed several decades earlier.

G-Closure of the Set of Controls We mentioned in Chapter 3 that the set
of conductivities U usually does not coincide with its G-closure. In that case,
the solution to problem (74) may not exist. This means that any value I(ws)
that corresponds to a layout of materials σ(χs) can be decreased by another
layout σ(χs+1) and so on.

Example 6.2 Recall the simplest example of the absence of an optimal element
in an open set; there is no minimal positive number. The infimum of all positive
numbers is zero, but zero is not included in the set. To make the problem of the
minimal positive number well-posed, one must enlarge the set of positive numbers
by including the limiting point (zero) in it. Similarly, we reformulate (relax) the
optimal design problem including all G-limits into the set of admissible controls.
An extended problem has a solution equal to the limit of the minimizing sequences
of solutions to the original ill-posed problems.
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A functional I4(w, χ) (84) that explicitly depends on χ requires similar
relaxation. This time we need to consider the convergence of a pair (ws, χs)
to the pair (w0, m), where m = m(x) is the variable volume fraction of the
first material in an optimal composite. Accordingly, the Gm-closures (instead
of G-closures) are used for the relaxation.

Notion of G-Closure is Sufficient (but Not Necessary) for Relaxation
The problem of existence of optimal controls for lower weakly continuous func-
tionals is trivially solved when one passes from the set U to its G- or Gm-closure.
However, this problem is in fact replaced by another one: how to find the Gm-
closure itself. The last problem is by no means simpler than the problem of
relaxation. On the contrary, some optimization problems are less complex than
the problem of the description of the G-closure. The problem in Chapter 4 is
an example of relaxation without complete description of the Gm-closure.

More direct approaches to the relaxation of the optimal problems than the G-
closure procedure have been considered in a number of papers, beginning with [?,
?, ?, ?, ?]. It was noted that the given values of the pair of current and gradient
fields in the constitutive relations do not determine the tensor of properties
completely. One can consider the equivalence of the class of anisotropic tensors
[?] that produces the same current in a given gradient field. This idea (the weak
G-closure; see Chapter 3) allows one to prove that only laminates can be used
for relaxation.

A different approach [?, ?] is based on direct bounds of the value of the
minimax augmented functional that replaces the original minimal problem with
differential constraints. It was suggested to use the saddle-type Lagrangians for
the upper and lower bound of the min-max variational problem for an augmented
functional. That approach enables one to immediately find the bounds for a
minimax problem.

The Detection of Ill-Posed Extremal Problems To find whether the
optimization problem is ill-posed and needs relaxation, one can use the Weier-
strass test. For example, one can consider the variation in a strip and detect the
existence of a forbidden region where the test fails. This approach was suggested
in early papers [?, ?] where the Weierstrass-type conditions were derived and
the forbidden region was detected in a problem similar to the one considered
here.
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