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1 Euler-Lagrange equations

In this chapter, we study stationarity conditions for multivariable variational
problems with vector minimizer. Assume that x ∈ Rd, Ω is a domain in Rd,
and a vector function u : Rd → Rn, has components uk, k = 1, ..., n. Consider
the following variational problem

I = min
u(x)

J, J =

∫
Ω

F (x, u,∇u)dx (1)

assuming that the Lagrangian F depends on components of u = (u1, . . . , un)
and their derivatives – d× n Jacobian matrix

∇u =

 ∂u1

∂x1
. . . ∂un

∂x1

. . . . . . . . .
∂u1

∂xd
. . . ∂un

∂xd

 .

The stationarity conditions are derived in the same way as in the case of one
unknown function u. The first variation δkJ of J with respect to uk – the k-th
component of the vector minimizer u is

δkJ =

∫
Ω

(
n∑
k=1

SF (uk)δuk

)
dx+

∫
∂Ω

(
n∑
k=1

S∂F (uk, n)δuk

)
ds

where SF (uk) and S∂F (uk, n) (see (??), (??), and (??)) are the bulk and bound-
ary parts of the functional derivative, respectively. Stationarity conditions cor-
respond to the system of Euler equations

SF (uk) = 0 in Ω, S∂F (uk, n)δuk = 0 on ∂Ω, k = 1, . . . , n

which expresses independency of the variation of each potential uk. The sta-
tionarity conditions form a system of n second-order equations for n unknown
potentials. Equations are of the same form as the Euler equations for the scalar
case: scalar operations are simply replaced by vectorial ones and vectorial op-
erations become matrix ones:

−∇ · ∂F

∂(∇u)
+
∂F

∂u
= 0 (2)

where u is a vector u = (u1, . . . , un). The coordinate form of this system of
equations is

−
d∑
k=1

∂

∂xk

∂F

∂gik
+
∂F

∂ui
= 0, gik =

∂ui
∂xk

, i = 1, . . . , n (3)

Obviously, the system degenerates into (??) when n = 1 and into (??) when
d = 1.

When the boundary values of u are prescribed, the variation δuk is zero, and
we deal with the main boundary conditions. The natural boundary conditions
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result from the stationarity requirement when the boundary variation δuk is not
constrained. They are

S∂(ui, F ) =
∂F

∂(∇ui)
n = 0, i = 1, . . . , n

or, in the coordinate form,

∂F

∂gik
nk = 0, gik =

∂ui
∂xk

, i = 1, . . . , n

where nk is the projection of the normal to the axis xk. The case of constrained
boundary conditions is analogous to one-variable problem discussed above in
Chapter ??. Hence, the equations in (3) can have main or natural boundary
conditions.

Example 1.1 (An optimal design problem) Consider the following problem:
Suppose that the values of the potential u are given on the boundary of a domain
Ω. Minimize the energy E of the domain Ω,

E = min
u∈U

1

2

∫
Ω

k(x)|∇u|2dx,

by choosing optimal conductivity k(x) > 0 in each point of the domain. Here u is
the potential that belongs to the set U :

U = {u : u|∂Ω = ubound}

and ubound is the given boundary function.
The cost c of the material depends on its conductivity. For definiteness, let

us assume that it is inverse proportional to conductivity or it is proportional to
resistivity, c = α

k where α > 0 is a parameter.The total cost C must be fixed,

C = α

∫
Ω

k−1dx (4)

By assumption, the cost is inverse proportional to conductivity or it is proportional
to resistivity.

The design problem asks to distribute different conducting materials in the do-
main in order to minimize the total energy plus the cost of materials. The problem
for the minimizers k and u is the following:

I = inf
k(x)>0

[E + C] = inf
k(x)>0

min
u∈U

∫
Ω

L(u,∇u, k)dx

where L(u,∇u, k) = k|∇u|2 +
α

k
(5)

This Lagrangian depends on two minimizers, u and k. It does not depends on ∇k,
therefore the optimal k can be expressed through∇u and excluded. The stationarity
with respect to k corresponds to the algebraic relation

∂L

∂k
= |∇u|2 − α

k2
= 0
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Solving it for k, we obtain dependence of the optimal conductivity kopt on the
intensity of the gradient field:

kopt =

√
α

|∇u|
.

To minimizer the total energy, one places more resistant and more expensed material
in the places where the intensity of the field is greater. Substitution of this value
into L results in the Lagrangian which depends only on potential u and constant α
and represents the energy density of an optimal domain:

L(u,∇u, kopt) = 2
√
α|∇u|

The Euler equation for this Lagrangian (see (??)) is

∇ · ∇u
|∇u|

= 0

Notice that the problem of the optimal distribution of linear conducting materials
with quadratic energy k |∇u|2 turns out to be equivalent to a conductivity problem
for a nonlinear material. The nonlinearity occurs because the optimal conductivity
kopt depends on the field intensity |∇u|. Local increase of the field intensity changes
the energy kopt|∇u|2 both directly and through the change in the optimal material’s
conductivity kopt following from the optimality requirements.

2 Null-Lagrangians

Example 2.1 (Coupled conductivity) Find the Euler-Lagrange equation for
minimization of quadratic Lagrangian

F =
1

2
∇u1 ·K1∇u1 +

1

2
∇u2 ·K2∇u2 +∇u1 ·K12∇u2 + φ(u1, u2) (6)

where u = (u1, u2), x ∈ R3, φ is a continuously differentiable function. The Euler
equations are obtained by varying separately u1 and u2

(δu1) : −∇ · (K1∇u1 +K12∇u2) +
∂φ

∂u1
= 0

(δu2) : −∇ ·
(
KT

12∇u1 +K2∇u2

)
+

∂φ

∂u2
= 0

They are partial differential equations of second order. The natural boundary con-
ditions are the coefficients by the boundary variations:

(δu1|∂Ω) : n · (K1∇u1 +K12∇u2) = 0

(δu2|∂Ω) : n · (K12∇u1 +K2∇u2) = 0

These equations described a coupled diffusion. They may describe diffusion of two
groups of particles that can transform into each other. For example, the model
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describes diffusion of groups of fast and slow neutrons in a nuclear reactor; in this
example φ accounts the recombination. Or u1 and u2 may describe the diffusion of
two species in the habitat, φ describes its interaction.

Nonlinear Null-Lagrangians The vector problem admits a new type of non-
linear null-Lagrangians. A quadratic nonlinear null-Lagrangian has the form

L0 = ∇uT1 A12∇u2

where A12 is antisymmetric aij = −aji. We compute the Euler equation varying
u1. The coefficient by δu1 is:

∇ ·A12∇u2 =
∑
i,j

∂

∂xi
aij

∂u2

∂xj
=
∑
i,j

(aij + aij)
∂2u2

∂xi∂xj
≡ 0 ∀u2

(the equation for u1 is similar). If A is antisymmetric, the coefficient of the
Eular equation identically vanish.

As in the one-dimensional case, the null-Lagrangian is a divergence of a
function L0 = ∇ · (F (u∇u), For example, consider a two-dimensional case.

det(∇u) =
∂u1

∂x1

∂u2

∂x2
− ∂u1

∂x2

∂u2

∂x1
= ∇u1A12∇u2, A12 =

(
0 1
−1 0

)
We find that the det∇u is a null-Lagrangian. If is also a divergence:

det∇u = ∇ · Z, Z = u1

( ∂u2

∂x2

−∂u2

∂x1

)
The integral of F0 is expressed through the boundary integral by Green’s theo-
rem. ∫

Ω

∇ · Z =

∫
∂Ω

Z · nds =

∫
∂Ω

u1
∂u2

∂s
ds

Clearly, a variation of u inside Ω does not change the functional that depends
only on the boundary data. It does, however, influence the natural boundary
conditions.

Remark 2.1 Euler equation is identically satisfied thanks to the integrability con-
ditions (the equality of the mixed derivatives). This null-Lagrangian does not have
a one-variable analogs. L0 is polylinear: it depends linearly on ∇u1 for a fixed ∇u2,
and vice versa.

Example 2.2 (Null-Lagrangians in the coupled diffusion equation) Consider
again the problem in Example . If a term β∇u1A∇u2 is added to the Lagrangian
(6), the Euler equations remain the same, but the main boundary conditions change
to

(δu1|∂Ω) : n · (K1∇u1 + (K12 +A)∇u2) = 0

(δu2|∂Ω) : n · (K2∇u2 + (K12 −A)∇u1) = 0
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Null-Lagrangians in the problems with higher derivatives Similarly,
nonlinear Null-Lagrangian arrive in the problem with higher derivatives. Con-
sider, for example, minimization of an elastic energy Wbend of a bended plate.
Its energy is a rotation invariant quadratic function of the Hessian ∇∇u of the
vertical deflection u(x1, x2) of a point of a plate. A general form of such function
is:

Wbend = a Tr∇∇u+ bdet(∇∇u) =

a

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)2

+ b

[
∂2u

∂x1
1

∂2u

∂x2
2

−
(

∂2u

∂x∂x2

)2
]

The coefficient by b is a null-Lagrangian, as one can prove straightforward.

3 Elasticity

The problem Here we derive equation of elasticity (Lamé system) by min-
imizing an elastic energy of the body. Consider a linear elastic body which
occupies a bounded three-dimensional domain Ω. A part ∂Ω1 of the bound-
ary surface is fixed. Some external forces f are applied to the other part ∂Ω2

of the boundary. Assume that the forces and the reaction of supports are in
equilibrium so that the body does not rotate, and the center of mass does not
move.

Being deformed by the forces f , the points of the body are displaced: A
point with coordinates x = (x1, x2, x3) moves to the point x+u = (x1 +u1, x2 +
u2, x3+u3). The vector u = (u1, u2, u3) is called the vector of displacement. The
displacement can be found by solving a variational problem of the minimization
of the elastic energy of the domain Ω.

3.1 Elastic energy

First, we argue on the form of elastic energy. Assume that the elastic equi-
librium is defined by the vector u and its gradient – the 3 × 3 matrix ∇u =
(∇u1|∇u2|∇u3). We postulate that the equilibrium corresponds to the mini-
mization of an integral of a Lagrangian (the elastic energy) Wa(u,∇u) plus the
work f · u of the applied force f :

min
u∈U

∫
Ω

W (u,∇u)dx+

∫
∂Ω2

f · u ds, U = {u : u|∂1 = u0} (7)

We require that the elastic energy W (u,∇u) possesses several properties:

1. The energy is invariant to a translation of a body as a solid in space. The
translation replaces u with u+C where C is an arbitrary constant vector,
and keeps the value of ∇u,

u→ u+ c, ∇u→ ∇u

6



The invariance reads as W (u+C,∇u) = W (u,∇u) for any C. Therefore,
the energy depend only on ∇u and not on u, W (u,∇u) = W (∇u).

2. The energy depends only on the symmetric part of the displacement gra-
dient. Indeed, the energy must be invariant to rotations φ of the labor
coordinate system. This invariance, however, cannot be consistent with
the linearity of the Euler equations, see []. Instead, we request the in-
variance of the energy to infinitesimal rotations φ. One can see that the
symmetric (∇u)S and antisymmetric (∇u)A parts of ∇u

∇u = (∇u)S + (∇u)A

(∇u)S =
1

2

(
∇u+ (∇u)T

)
, (∇u)A =

1

2

(
∇u− (∇u)T

)
differently respond to such a rotation. The antisymmetric part of ∇u
varies on the order of ‖φ‖, while the symmetric part - of the order of
‖φ‖2, see Problem ??. Therefore, the elastic energy depends only on the
symmetric part (∇u)S that is called strain, W (∇u) = W (ε).

ε =
1

2

[
∇u+ (∇u)T

]
.

The coordinate form of the strain is

εii =
∂ui
∂xi

and εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
if i 6= j

The eigenvalues of symmetric the 3×3 strain matrix ε are real. The strain
matrix depends on six entries.

The supplementary antisymmetric part of the gradient represents an in-
finitesimal rotation or the domain as a whole; such a motion which does
not affect the elastic energy.

3. When the external force f is zero, f = 0, the body is undeformed. The
strain in the undeformed body is identically zero, and energy is zero as
well, which implies

W (0) = 0,
∂W

∂ε

∣∣∣∣
ε=0

= 0

4. We want to derive equation for linear elasticity. This means that we
consider the displacement u and its gradient to be small and neglect higher
order terms in the equations. The linearity of the equations implies that
the energy can be expanded into Taylor series, and we keep only first terms
neglecting the terms higher in order than quadratic

W (ε) = W0 +

3∑
i,j=1

ψijεij +
1

2

3∑
i,j,k,l=1

εij : Cijkl : εkl + o(‖∇u‖2)
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Here, ψ is a symmetric tensor called the self-stress, C is the fourth-order
stiffness tensor: C = {cijkl}, and : means the contraction by two indices.
The previous assumption requires that ψ = 0 and W0 = 0 (we always can
put W0 = 0 because the energy is defined up to a constant).

Thus, we come to a energy of anisotropic linear elastic body

Wanis(ε) =
1

2

3∑
i,j,k,l=1

Cijklεijεkl

A quadratic form xTAx for a vector is defined by a symmetric matrix A;
similarly, the quadratic form for a symmetric matrix ε = {εij}, εij = εji is
defined by a four-indexed array Cijkl (fourth-rank tensor C) with special
symmetries:

Cijkl = Cklij = Cjikl = Cijlk

Remark 3.1 The three-dimensional stiffness tensor C is determined by 21
constants. Indeed, an arbitrary array Cijkl is defined by 34 = 81 constant
because each index can take one of three values. However, C defines a
quadratic form and therefore is symmetric Cijkl = Cjikl. The components εij
are also symmetric, εij = εji, which yields to the symmetries Cijkl = Cijlk
and Cijkl = Cijkl. These symmetries reduce the number of independent
components of ε to six. The quadratic form over six-dimensional vector is
defined by a 6 × 6 symmetric matrix is defined by 7 · 6/2 = 21 constants.
Out of these constants, three are the angles of orientation of the labor system
in space and eighteen are material characteristics that are invariant to the
orientation of the labor system.

A similar consideration for the two-dimensional stiffness tensor shows that the
two-dimensional strain corresponds to three components, C is a symmertic
3 × 3 matrix depending on six entries. One constant defines the angle of
orientation of the labor system and five others define the material properties.

Isotropy The coefficients Cijkl determine the material’s elastic properties.
Here we derive the energy of an isotropic material. It corresponds to the isotropic
(rotationally invariant) quadratic form W (ε) of ε. The rotationally invariant
energy is a function only of the eigenvalues of symmetric matrix ε or of its main
invariants: trace Tr ε, trace Tr (ε2) of ε2, and determinant det ε. An the same
time, the energy is a quadratic function of the entries of the matrix ε. Thus the
energy must linearly depend on ( Tr ε)2 and Tr (ε2) (the terms of det ε cubically
depend on the entries, therefore, energy of a linear material cannot depend on
det ε). We conclude that a general form of an isotropic quadratic function of a
symmetric matrix ε is

Wis = µ Tr (ε2) +
1

2
λ( Tr ε)2 (8)
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Here λ and µ are some real constants called elastic moduli of the material or
Lamé moduli. This derivation shows that the elastic properties of an arbitrary
isotropic elastic material are defined by only two constants.

The coordinate form of the energy is

Wis = µ

1

4

d∑
i,j

(
∂ui
∂xj

+
∂uj
∂xi

)2
+

1

2
λ

[
d∑
i

∂ui
∂xi

]2

(9)

Notice that natural assumptions on the energy form based on expected linearity
of the stationary condition and the symmetry principles, lead to a unique form
of the energy of a linear isotropic elastic material.

Remark 3.2 Two elastic constants correspond to two different response of an
isotropic material. The resistance to the volume change may be different than the
resistance to any deformation that leaves the volume constant. For example, a gas
has a finite resistance (pressure) to the volume change, but zero resistance to an
orthogonal deformation.

Notice, that a gradient ∇u of a scalar u has one rotational invariant, the Eu-
cledian norm of this vector |∇u|. Correspondingly, the Lagrangian for the con-
ductivity of any isotropic material depends only on |∇u| and u, F = F (x, u, |∇u|).

A symmetric 3×3 matrix ε has 3 invariants, the eigenvalues or the invariants

Tr ε, Tr ε2, Tr ε3,

therefore the Lagrangian for an isotropic material can depend on them. The
quadratic Lagrangian is independent of cubic term Tr ε3 and has the form (8).

3.2 Lamé equations

Let us find the stationarity conditions for the energy minimization. We con-
sider domain Ω filled with the linear isotropic elastic material. Assume again
that the displacements u are fixed on a component ∂Ω1 of the boundary, and
the boundary force f is applied on the other boundary component ∂Ω2. The
corresponding variational problem is

min
u∈U

∫
Ω

Wis(ε)dx+

∫
∂Ω2

f · u ds, U = {u : u|∂Ω1
= u0} (10)

Here, the second term represents the work of boundary force f(s) on the bound-
ary displacement u(s).

We introduce a matrix σ = ∂F
∂ε with the entries

σij =
∂Wis

∂εij

called the stress tensor. Notice that σ is a symmetric matrix

σ = σT
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because the energy depends only on the symmetric part ε of ∇u.
(CHECK COEFF 2µ is correct!) The Euler-Lagrange equation can be writ-

ten as a system

∇ · σ = 0, σ = σT (11)

σ =
∂W

∂ε
= 2µε+ λ Tr εI in Ω (12)

where I is the unit matrix. In elasticity, equations (10) are called equilibrium
conditions, and equations (12) – the generalized Hook’s law or the constitutive
relations. Their coordinate forms are, respectively,

d∑
i

∂σij
∂xj

= 0, j = 1, . . . d, σij = σji,

– equilibrium conditions, and

σij = 2µ εij , i 6= j, i, j = 1, . . . d,

σii = 2µ εii + λ
∑
k

εkk, i = 1, . . . d,

– Hooke’s law.
The elasticity equations can be rewritten as a system of second-order equa-

tions called Lamé equations

∂

∂xi

(λ+ 2µ)
∂ui
∂xi

+ 2µ

3∑
j 6=i

∂ui
∂xj

 = 0, i = 1, 2, 3.

for the displacement vector u.
The natural boundary conditions are

σ · n = f or σnn = fn, σnt = ft, on ∂Ω2 (13)

where the boundary force f = (fn, ft) is applied on the other boundary compo-
nent ∂Ω2, n and t is the normal and tangent, respectively.

Recall that by assumption, a main boundary condition is given on ∂Ω1,

u = u0 on ∂Ω1,

is prescribed on ∂Ω1, and the boundary value problem is complete. The main
boundary conditions prescribe the displacement on ∂Ω1. Generally, they have
the form u(x) = u0 if x ∈ ∂Ω1. The natural boundary conditions

(δ u)Tσ · n = f

define a column (and, by the symmetry of σ, the raw) of the stress tensor.

Problem 3.1 Derive the elasticity equations and natural boundary conditions for
a linear anisotropic elastic body.
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4 Complex conductivity

In this part, we describe an inverse problem: Finding a Lagrangian from the
given differential equations. We assume that the equations are Euler-Lagrange
equations for a variational problem and recover its form.

4.1 Equations of Complex Conductivity

The Process Consider conductivity in a dissipative medium with inductance
and capacity along with resistivity. The current j and the electric field e are
now functions of time and space coordinates. The current is divergencefree, and
the field is curlfree (see Chapter 2):

∇ · j = 0, ∇× e = 0. (14)

These constraints allow us to introduce a vector potential a of the current field
j and a scalar potential φ of the electrical field e through the relations

j = ∇× a, e = −∇φ. (15)

Consider a body Ω occupied by a conducting material and suppose that this
body is loaded on the boundary S = ∂Ω. The boundary conditions are similar
to those for a conducting material (see Chapter 4)

φ = φ0 on S1, n · j = j0 on S2, S1 ∪ S2 = S, (16)

where n is the normal.
Assume that the properties of the material are local in space and in time:

The current field and its derivatives at a point x ∈ Ω at the moment t depend
only on the electrical field and its derivatives at the same point at the same
moment of time. Assume that the material is linear in the following sense: A
linear combination of the current and its time derivatives linearly depends on a
linear combination of the field and its time derivatives:∑

k

ak
∂kj

∂tk
=
∑
k

bk
∂ke

∂tk
. (17)

Here ak = ak(x) and bk = bk(x) are some time-independent coefficients, which
are scalars (for the isotropic conductors) or symmetric matrices (for the anisotropic
ones). The properties of the material (i.e., the scalar or matrix parameters
ak, bk) do not depend on time.

Monochromatic Excitation Consider steady-state oscillations in a dissipa-
tive medium caused by a monochromatic excitation. The electrical field and
current in the material are also monochromatic, i.e.,

js(x, t) = (J(x)eiωt)′ = J ′(x) cosωt+ J ′′(x) sinωt,

es(x, t) = (E(x)eiωt)′ = E′(x) cosωt+E′′(x) sinωt,

11



where Φ0(s), J0(s), J(x), and E(x) are the complex-valued Fourier coefficients
of corresponding functions, and s is the coordinate along the boundary. Here,
the real and imaginary parts of variables are denoted by the superscripts ′ and
′′, i.e., c = c′ + ic′′.

The Complex-Valued Conductivity Equations The linearity of the con-
stitutive relations (17) leads to a linear relationship between the vectors J(x)
and E(x):

J = σE, (18)

where σ = σ(ω) = σ′(ω)+iσ′′(ω) is a complex conductivity tensor that depends
on the frequency of oscillations [?]. For an isotropic material with state law (17),
the tensor σ is defined by

σ =

∑
k(−iω)kak∑
k(−iω)kbk

I, (19)

where I is a unit matrix.
The divergencefree nature of the current field and the curlfree nature of the

electrical field means that the Fourier coefficients of these fields satisfy relations
similar to (14)

∇ · J = 0, ∇×E = 0. (20)

Therefore, they allow the representation (see (15))

J = ∇×A, E = −∇Φ, (21)

where A and Φ are the Fourier coefficients of the potentials a and φ.
The boundary conditions (16) lead to the relations

Φ = Φ0 on S1, n · J = J0 on S2, S1 ∪ S2 = S, (22)

where Φ0 and J0 are the Fourier coefficients of the functions φ0 and j0.
A harmonic oscillation in the conducting media is described by the constitu-

tive relations (18) and differential equations (20), (21) in conjunction with the
boundary conditions (22).

The System of Real First-Order Equations The complex-valued equa-
tions (18), (20), (21), and (22) describe the conductance of the medium. They
look exactly like the equations for the real conductivity; however, they corre-
spond to more complicated processes. Indeed, the complex-valued differential
equations (20) and (21) form a fourth-order system of differential equations for
the real and imaginary parts of the variables J ′ and E,

∇ · J ′ = 0, ∇ · J ′′ = 0, ∇×E′ = 0, ∇×E′′ = 0. (23)

These equations are identically satisfied if the following potentials are intro-
duced:

J ′ = ∇×A′, J ′′ = ∇×A′′, E′ = −∇Φ′, E′′ = −∇Φ′′. (24)

12



The currents and electrical fields are connected by the constitutive relations
(18)

−J ′ = −σ′E′ + σ′′E′′,
J ′′ = σ′′E′ + σ′E′′.

(25)

The vector form of the last equations is(
−J ′
J ′′

)
= DEE

(
E′

E′′

)
, (26)

where

DEE =

(
−σ′ σ′′

σ′′ σ′

)
(27)

is the conductivity matrix of the medium.
The boundary conditions (22) can be rewritten as

Φ′ = Φ′0 on S1, (28)

Φ′′ = Φ′′0 on S1, (29)

n · J ′ = J ′0 on S2, (30)

n · J ′′ = J ′′0 on S2. (31)

The formulated system of the real-valued differential equations and boundary
conditions describes the conductivity of the complex conducting medium. No-
tice that it has double dimensions compared to the real conductivity problem.

The conductivity is defined by two tensors σ′ and σ′. The real part σ′ is
nonnegative,

σ′ ≥ 0, (32)

because the dissipation rate is nonnegative. Indeed, the energy dissipation av-
eraged over the period of oscillations is equal to:

ω

2π

∫ t+ 2π
ω

t

js · esdt =
1

2
(J ′ ·E′ + J ′′ ·E′′) =

1

2
(E′ · σ′E′ +E′′ · σ′E′′) (33)

(see [?]). The condition (32) expresses the positiveness of the dissipation rate.

Real Second-Order Equations The system (24), (25) of four first-order dif-
ferential equations can be rewritten as a system of two second-order equations.
We do it in four different ways, and we end up with four equivalent systems.
Each of them turns out to be Euler–Lagrange equations for a variational prob-
lem.

First, we express the fields though scalar potentials Φ′ and Φ′′ and take the
divergence (∇·) of the right- and left-hand sides of (25). The left-hand-side
terms ∇ · j′,∇ · j′′ vanish and we obtain:

0 = ∇ · [−σ′∇Φ′ + σ′′∇Φ′′],
0 = ∇ · [σ′′∇Φ′ + σ′∇Φ′′].
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Thus we obtain two second-order equations for two potentials Φ′ and Φ′′. The
vector form of this system is(

0
0

)
=

(
∇· 0
0 ∇·

)
DEE

(
∇Φ′

∇Φ′′

)
. (34)

We may also rewrite this system of equations taking any other pair of four
scalar and vector potentials (24) and excluding the other two. For example, let
us exclude the fields E′ and E′′. First, we solve equations (25) for E′ and E′′:(

E′

E′′

)
= DJJ

(
−J ′
J ′′

)
, (35)

where

DJJ =

(
−(σ′ + σ′′σ′

−1
σ′′)−1 (σ′′ + σ′σ′′

−1
σ′)−1

(σ′′ + σ′σ′′
−1
σ′)−1 (σ′ + σ′′σ′

−1
σ′′)−1

)
. (36)

(Note that DEE = D−1
JJ .)

Take the curl (∇×) of the right- and left-hand sides of both equations (35).
The left-hand-side terms identically vanish, and we obtain two vector equations:(

0
0

)
=

(
∇× 0

0 ∇×

)
DJJ

(
−∇×A′
∇×A′′

)
. (37)

Here we use the representation (24) of current fields J ′ and J ′′ through the
vector potentials A′ and A′′.

We may as well solve (25) for the fields E′ and J ′′ and obtain(
E′

J ′

)
= DJE

(
J ′′

E′′

)
, (38)

where

DJE =

(
(σ′)−1 (σ′)−1σ′′

σ′′(σ′)−1 σ′ + σ′′(σ′)−1σ′′

)
. (39)

Recall that E′ is curlfree and J ′′ is divergencefree. Therefore, by using (23) and
(24) we arrive at the following system of second-order equations:(

0
0

)
=

(
∇× 0

0 ∇·

)
DJE

(
∇×A′
∇Φ′′

)
. (40)

Similarly, we solve (25) for J ′ and E′′ and obtain(
J ′

E′′

)
= DEJ

(
E′

J ′′

)
, (41)

where

DEJ =

(
σ′ + σ′′(σ′)−1σ′′ −(σ′)−1σ′′

−σ′′(σ′)−1 (σ′)−1

)
. (42)

(Note that D−1
JE = DEJ .)
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Again, the operations (∇·) and (∇×) eliminate the corresponding terms on
the left-hand side in equations (41). Applying these operators, we obtain the
second-order system(

0
0

)
=

(
∇· 0
0 ∇×

)
DJE

(
∇Φ′

∇×A′′
)
. (43)

We have written four different forms of the same equations. The systems
(34), (37), (40), and (43) are equivalent to each other and to the original system
(23). Each of them in conjunction with the boundary conditions (28)–(31)
allows us to find the solution that describes the processes in the conducting
medium. We now show that each of them represents the Euler equations for a
corresponding variational problem.

4.2 Quartet of variational principles

Let us establish variational principles for the problem of complex conductiv-
ity. There is no direct complex analogue to the variational principles for the
real-valued problem because the inequalities cannot be considered for complex
variables. However, the real-valued differential equations just described are the
stationary conditions for some real-valued functionals. These functionals lead
to variational principles that describe the complex conductivity processes.

First, we formulate two minimax variational principles. They follow natu-
rally from the equations in the form (34) and (37). Then we obtain two minimal
variational principles based on the equations of the problem in the form (40)
and (43). Finally, we discuss the relation between these four principles, referring
to the procedure of Legendre transform.

The Minimax Variational Principle for the Fields Consider the follow-
ing variational minimax problem:

min
E′′

max
E′

UEE , (44)

where the fields E′, E′′ are subject to the constraints

E′′ = −∇Φ′′, Φ′′ = Φ′′0 on S1,
E′ = −∇Φ′, Φ′ = Φ′0 on S1;

the functional UEE is

UEE =

∫
Ω

WEE(E′,E′′) +

∫
S2

[Φ′′J ′′0 − Φ′J ′0]; (45)

and

WEE(E′,E′′) =
1

2

(
E′

E′′

)T
DEE

(
E′

E′′

)
. (46)

The matrix DEE is defined in (27).
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The vanishing of the first variation with respect to E′, E′′ of the functional
UEE (see (45)) leads to two Euler–Lagrange equations that coincide with (25).
One can check that they coincide with the original system of equations in the
form (34) and with the boundary conditions (30), (31). The boundary conditions
(28), (29) must be assumed at all admissible fields.

To check the sense of optimality of the stationary solution we examine the
sign of the second variation of the functional; see, for example, [?]. The second
variation is the main term of the increment of the functional at the perturbed
solution of the Euler–Lagrange equation. Whereas the first variation is zero at
the solution, the second variation of the cost is proportional to the quadratic
form

(δE , δE′′)TDEE(δE , δE′′).

The functional has a local minimum at the stationary solution if the second
variation is positive, and it has a local maximum at the stationary solution if
the second variation is negative. The sign of the variation is determined by the
matrix DEE .

Here the second variation is neither positive nor negative, because the ma-
trix DEE is neither positive nor negative definite. The stationary solution
corresponds to the saddle point of the functional. The variational problem is of
the minimax type.

The Minimax Variational Principle for the Currents Similarly, one can
derive the Euler–Lagrange equations of the variational problem

max
J ′

min
J ′′

UJJ , (47)

where the fields J ′,J ′′ are

{J ′ : J ′ = ∇×A′, n · J ′ = J ′0 on S2},
{J ′′ : J ′′ = ∇×A, n · J ′′ = J ′′0 on S2};

the functional UJJ is

UJJ =

∫
Ω

WJJ(J ′, J ′′) +

∫
S1

[Φ′′0 n · J
′′ − Φ′0 n · J

′]; (48)

and

WJJ(J ′, J ′′) =
1

2

(
−J ′
J ′′

)T
DJJ

(
−J ′
J ′′

)
. (49)

The matrix DJJ is defined by (36).
We check that the Euler equations for the functional (48) coincide with

equations (35) that describe the same problem in different notation.
The matrix DJJ is neither positive nor negative definite, hence the sec-

ond variation of the functional UJJ is again neither positive nor negative. We
conclude that the variational problem (48) is of the minimax type.
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Remark 4.1 The minimax nature of the variational principles (44) and (47) does
not allow us to apply the technique developed to the bounds. This technique uses
the fact that the energy (i.e., the value of the functional) on any trial field should
exceed the actual energy stored in the material. Therefore the energy on any trial
field provides an upper bound on the actual energy. For the minimax principles
(44), (47), however, the situation is different. Consider, for example, the problem
(44) and let us calculate the energy on trial fields of two potentials Φ′ and Φ′′. The
actual energy is increased if the trial field ∇Φ′′ differs from the optimal one and is
decreased if the other trial field ∇Φ′ is not optimal. The value of the functional
(45) on the trial fields can be lower or higher than the actual energy and cannot
bound the functional (45) from either side.

The First Minimal Variational Principle Consider the following varia-
tional problem for the variables J ′ and E′′:

min
J ′

min
E′′

UJE , (50)

where the fields J ′,E′′ are

{J ′ : J ′ = ∇×A′, n · J ′ = J ′0 on S2},
{E′′ : E′′ = −∇Φ′′, Φ′′ = Φ′′0 on S1};

the functional UJE is

UJE =

∫
Ω

WJE(J ′,E′′)−
∫
S1

n · J ′Φ′0 +

∫
S2

Φ′′J ′′0 ; (51)

and

WJE(J ′,E′′) =
1

2

(
J ′

E′′

)T
DJE

(
J ′

E′′

)
. (52)

The matrix DJE is defined in (55). The first variation of (50) with respect to
J ′ and E′′ coincides with the system of original equations in the form (40) and
the boundary conditions (29), (31).

Note that this time the quadratic form (52) is positive. This follows from the
physically clear condition (32). As we see, this functional is equal to the whole
energy dissipated in the body Ω during one period of oscillation (see (33)).

The second variation δ2UJE of the functional (51) is positive due to the
positivity of the matrix DJE (for physical reasons we always suppose that σ′ ≥
0 or the dissipation rate is positive). For the quadratic functional (51) the
positivity of the second variation is sufficient to guarantee the global minimum
at a stationary point [?].

The Second Minimal Variational Principle Similarly, we consider the
variational problem

min
J ′′

min
E′

UEJ , (53)
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where the fields J ′′,E′ are

{J ′′ : J ′′ = ∇×A′′, n · J ′′ = J ′′0 on S2},
{E′ : E′ = −∇Φ′, Φ′ = Φ′0 on S1};

the functional UEJ is:

UEJ =

∫
Ω

WEJ(E′,J ′′) +

∫
S1

n · J ′′Φ′′0 −
∫
S2

Φ′J ′0; (54)

and

WEJ(E′,J ′′) =
1

2

(
E′

J ′′

)T
DEJ

(
E′

J ′′

)
. (55)

The matrix DEJ is defined in (??).
In considering the first variation of the functional (53), we conclude again

that the Euler equations for the functional (54) coincide with the system of
original equations in the form (43) and the boundary conditions (28), (30).

One could also see that the second variation of this functional is positive if
σ′ ≥ 0.

Remark 4.2 Note that the two variational principles are equivalent:

WJE(J ,E) = WEJ(E,J), (56)

This feature is specific for this problem; usually we meet two different variational
principles of minimization of the potential energy and the complementary energy
(for example, the Dirichlet and Thomson principles).

5 Variational principles for nonconservative sys-
tems
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