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1 Euler equation

Consider the simplest problem of multivariable calculus of variation: Mini-
mize an integral of a twice differentiable Lagrangian F (x, u,∇u) over a regular
bounded domain Ω with a smooth boundary ∂Ω. The Lagrangian F depends
on the minimizer u and its gradient ∇u with the function u taking prescribed
values u0 on the boundary ∂Ω,

min
u:u|∂Ω=u0

I(u), I(u) =

∫
Ω

F (x, u,∇u)dx (1)

As in the one-variable version (see Chapter 2), the Euler equation expresses the
stationarity of the functional I with respect to the variation of u. To derive
the Euler equation, we consider the variation δu of the minimizer u and the
difference δI = I(u + δu) − I(u). We assume that for any x, the variation δu
is localized in an ε-neighborhood of point x, twice differentiable, and small: the
norm of its gradient goes to zero if ε→ 0,

δu(x+ z) = 0, ∀z : |z| > ε, |∇(δu)| < Cε, ∀x (2)

For any minimizer u, the difference δI must be nonnegative, δI(u, δu) ≥ 0 ∀δu.

Increment When the variation δu and its gradient are both infinitesimal and
F is twice differentiable, we can linearize the perturbed Lagrangian:

F (x, u+ δu,∇(u+ δu)) = F (x, u,∇u) +
∂F (x, u,∇u)

∂u
δu

+
∂F (x, u,∇u)

∂∇u
δ∇u+ o(||δu||, ||∇δu||)

Here, the term ∂F (x,u,∇u)
∂∇u denotes the vector of the partial derivatives of F with

respect to partial derivatives of u,

∂F (x, u,∇u)

∂∇u
=

∂F (x, u,∇u)

∂
(
∂u
∂x1

) , . . . ,
∂F (x, u,∇u)

∂
(
∂u
∂xn

)
 .

Substitution of the linearized Lagrangian into the expression for δI results in
the following expression:

δI =

∫
Ω

(
∂F

∂u
δu+

∂F

∂∇u
· δ∇u

)
dx+ o(||δu||, ||∇δu||).

Next, we transform the underlined term. Interchanging two linear operators of
variation and differentiation, δ∇u = ∇δu, and performing integration by parts
(see (??)), we obtain∫

Ω

(
∂F

∂∇u
· ∇(δu)

)
dx = −

∫
Ω

δu

(
∇ · ∂F

∂∇u

)
dx+

∫
∂Ω

δu

(
∂F

∂∇u
· n
)
ds
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so that

δI =

∫
Ω

(
∂F

∂u
−∇ · ∂F

∂∇u

)
δu dx+

∫
∂Ω

δu

(
∂F

∂∇u
· n
)
ds

The coefficient by δu in the first integral is called the variational derivative in
Ω or the sensitivity function:

SF (u) =
∂F

∂u
−∇ ·

(
∂F

∂∇u

)
(3)

The coefficient by δu in the boundary integral is called the variational derivative
on the boundary ∂Ω:

S∂F (u, n) =
∂F

∂∇u
· n =

∂F

∂
(
∂u
∂n

) (4)

Hence, we represent the linearized increment δI as a sum of two terms:

δI =

∫
Ω

SF (u)δu dx+

∫
∂Ω

S∂F (u, n)δu ds. (5)

Stationarity The condition δI ≥ 0 and the arbitrariness of variation δu in the
domain Ω and possibly on its boundary ∂Ω leads to the stationarity condition
in a form of differential equation:

SF (u) = 0 or −∇ · ∂F
∂∇u

+
∂F

∂u
= 0 in Ω (6)

with the boundary condition

S∂F (u, n) δu = 0 on ∂Ω (7)

Equation (6) with the boundary condition (7) is the Euler-Lagrange equation
for variational problems dealing with multiple integrals. Notice that we keep
δu in the expression for the boundary condition. This allows us to either assign
u on the boundary or leave it free, which corresponds to two different types of
boundary condition.

The main boundary condition In the considered simplest problem, the
partial differential equation (6) is given in Ω with the boundary conditions
u = u0. The boundary term (7) of the increment vanishes because the value of
u on the boundary is prescribed, hence the variation δu is zero. This condition
is called the main boundary condition. It is assigned independently of any
variational requirements. When u is prescribed on some component of the
boundary, we say that the main boundary condition is posed; in this case the
variation of u on this part of the boundary is zero, δu = 0, and (7) is satisfied.
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Natural boundary condition If the value of u on the boundary is not spec-
ified, the term (7) supplies additional boundary condition. If no condition is
prescribed on a boundary component, δu is an arbitrary function, and the nat-
ural condition

S∂F (u, n) =
∂F

∂(∇u)
· n = 0 or

∂F

∂un
= 0 (8)

(see (??)) must be satisfied. Notice, that the natural boundary condition fol-
lows from the minimization requirement; it must be satisfied to minimize the
functional in (1).

Thus the boundary value problem in the domain Ω has one condition, main
or natural, on each component of the boundary.

Remark 1.1 Notice that the stationarity and the natural boundary conditions
are analogous to corresponding conditions for a one-variable Euler equation. The
derivative d

dx with respect to the independent variable is replaced by ∇ or by ∇·.
At the boundary, the derivative du

dx is replaced by ∂u
∂n = ∂

∂∇u · n. In the last case,
the derivative with respect to x becomes the directional derivative along the normal
to the boundary.

Remark 1.2 The existence of a solution to the boundary value problem (6), (7) in
a bounded domain Ω requires ellipticity of the Euler equation. In turn, the ellipticity
imposes some requirements on properties of the Lagrangian; this will be discussed
later.

2 Examples of Euler-Lagrange equations

Here, we give several examples of Lagrangians, the corresponding Euler equa-
tions, and natural boundary conditions. We do not discuss the physics and do
not derive the Lagrangians from general principles of symmetry; this will be
done later. Here, we formally derive the stationary equations.

Example 2.1 (Laplace’s equation) Consider a Lagrangian quadratically de-
pending on ∇u:

F =
1

2
∇u · ∇u

This Lagrangian corresponds to the energy of a linear conducting medium of unit
conductivity. We compute the variational derivative of F :

∂F

∂∇u
= ∇u, SF (u) = −∇ · ∂F

∂∇u
= −∇ · ∇u.

The stationarity condition or the Euler equation, SF (u) = 0, is Laplace’s equation:

−∇ · ∇u = −∆u = 0
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where (-∆) is the Laplace operator, or the Laplacian. In the coordinate notation,
Laplace’s equation has the form:

SF (u) = −
d∑
i=1

∂2u

∂x2
i

= 0.

The natural boundary condition is

S∂F (u, n) = ∇u · n =
∂u

∂n
= 0

Notice, that if no values of function u is prescribed on the boundary, so that the
natural boundary condition is posed on whole boundary ∂Ω, then identically zero
solution, u = 0, is the only solution of the variational problem. To get a non-trivial
solution, the main boundary condition should be given on a part of the boundary.

Example 2.2 (Linear elliptic equation) We consider a more general Lagrangian
corresponding to the energy density of a linear conducting heterogeneous anisotropic
material:

F =
1

2
∇u ·A(x)∇u

Here A(x) = {Aij(x)} is a symmetric positively defined conductivity tensor that
represents the material properties, and u is the potential such as temperature,
electric potential, or concentration of particles. The steady state distribution of
the potential minimizes the total energy or solves the variational problem (1) with
the Lagrangian F . We comment on the derivation of this energy below in Section
??. Here, we are concerned with the form of the stationarity condition for this
Lagrangian. The variational derivative is the following:

∂F

∂∇u
= A∇u, SF (u) = −∇ · ∂F

∂∇u
= −∇ ·A∇u.

The stationarity condition (Euler equation) is the second-order elliptic equation:

SF (u) = −∇ ·A(x)∇u = 0

which in the coordinate notation, has the form:

SF (u) = −
d∑
i=1

d∑
j=1

∂

∂xi
Aij

∂u

∂xj
= 0.

The natural boundary condition is S∂F (u, n) = A∇u · n = 0.
When A is proportional to the unit matrix I, A = κ(x)I, where κ > 0 is the

scalar conductivity, the Lagrangian becomes

F =
κ(x)

2
∇u · ∇u
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The corresponding Euler equation

∇ · κ(x)∇u = 0

describes conduction process in a inhomogeneous isotropic medium with a spatially
varying scalar conductivity function κ(x) > 0. Using coordinate notation, the
equation is written as:

d∑
i=1

∂

∂xi
k(x)

∂u

∂xi
= 0

The natural boundary condition is called the homogeneous Neumann condition:

k(x)
∂u

∂n
= 0 on ∂Ω

it can be simplified to ∂u
∂n = 0 if k(x)) > 0 .

In the general case of anisotropic conductivity given by a tensor A, the natural
boundary condition corresponding to the homogeneous Neumann condition is:

A(x)
∂u

∂n
= 0 on ∂Ω

Notice that in this case, the directional derivative, not the normal derivative, is zero
on the boundary.

The main boundary condition is called the Dirichlet boundary condition:

u = u0 on ∂Ω

Example 2.3 (Poisson and Helmholtz equations) These classical linear el-
liptic equations of mathematical physics originate from a variational problem of
minimization of a quadratic Lagrangian. The Lagrangian of a form:

F =
1

2
|∇u|2 − 1

2
au2 − bu (9)

corresponds to the Euler equation SF (u) = 0:

∆u+ au+ b = 0

which is called the inhomogeneous Helmholtz equation. The natural boundary
condition ∂u

∂n = 0 is independent of a and b. If a = 0, the inhomogeneous Helmholtz
equation degenerates into Poisson equation. If b = 0, it becomes homogeneous
Helmholtz equation, and if a = b = 0 it degenerates into Laplace equation.

Example 2.4 (Nonlinear elliptic equation) Assume that the Lagrangian de-
pends only on magnitude of the gradient:

F = φ(|∇u|) (10)
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where φ is a monotonically increasing convex function, φ′(z) > 0, ∀z ∈ [0,∞).
Such Lagrangians describe the steady state conductivity or diffusion process in an
isotropic nonlinear medium; u is the potential or concentration of diffusing particles.

Let us assume that |∇u| does not turn to zero. The Euler equation is computed
as

∇ · (κ(|∇u|)∇u) = 0, κ(z) =
φ′(z)

|z|
Since φ′ > 0, the equation is elliptic. It also can be rewritten as two first-order
equations

∇ · j = 0, j = φ′(|∇u|) ∇u
|∇u|

where j is a divergencefree current vector. The first equation express the equilibrium
of the current density. The second equation is called the constitutive relation. It
demonstrates the property of the material and characterizes the dependence of the

current on the field ∇u. The coefficient φ′(|∇u|)
|∇u| is the conductivity of a nonlinear

material; it depends on the magnitude of the field.
The natural boundary condition is

φ′(|∇u|)
|∇u|

∂u

∂n
= 0

Because φ′ > 0, it simplifies to ∂u
∂n = 0 and again expresses the vanishing of the

normal derivative of u on the boundary.

In the next examples, we specify the function φ and obtain the variational
form of well-studied nonlinear equations.

Example 2.5 (Nonlinear elliptic equation) The previous problem simplifies
if the Lagrangian depends on the squared magnitude of the gradient:

F = ψ(|∇u|2) (11)

we assume again here that ψ is a monotonically increasing convex function. Differ-
entiating F , we have:

∂F

∂∇u
= 2ψ′(|∇u|2)∇u

So that the Euler equation is

∇ ·
(
ψ′(|∇u|2)∇u

)
= 0

The conductivity of the nonlinear medium in this case, is ψ′(|∇u|2); as in the
previous case, it depends on the magnitude of the field. Special case, when ψ(z) = z
results in Laplace equation.

Example 2.6 (p-Laplacian) Consider the Lagrangian that corresponds to spe-
cial nonlinearity φ(z) = 1

pz
p in (10)

F =
1

p
|∇u|p (12)
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The Euler equation is:
∇ ·
(
|∇u|p−2∇u

)
= 0

The equation is called p-Laplacian. It degenerates into Laplace equation when
p = 2.

Example 2.7 (p = 1) Another interesting case p = 1. The Lagrangian becomes
the norm of the gradient,

F = |∇u| =

√(
∂u

∂x1

)2

+

(
∂u

∂x2

)2

(13)

(here, we consider for the definiteness the two-dimensional case). The corresponding
Euler equation is:

∇ ·
(
∇u
|∇u|

)
= 0 in Ω

In this case, the isotropic nonlinear conductivity function is |∇u|−1. Here again, we
assume that |∇u| 6= 0, otherwise |∇u| can be approximated as |∇u| =

√
|∇u|2 + β

for some small parameter β.
Similar to the general case, the Euler equation can be written as a system of

two first-order partial differential equations

j =
∇u
|∇u|

, ∇ · j = 0.

Observe that in this case |j| = 1 Here, the current j is codirected with ∇u and
has the unit magnitude. In 2D case, any unit vector admits the representation

j = (j1, j2), j1 = cos θ, j2 = sin θ

where θ(x) is an unknown scalar function, that is defined by the first-order equation
∇ · j = 0 or

− sin θ
∂θ

∂x1
+ cos θ

∂θ

∂x2
= 0

Potential u is found from another first-order equation that states that j is parallel
to ∇u, or j ×∇u=0. In the coordinate form, the equation becomes

∂u

∂x1
j2 −

∂u

∂x2
j1 = 0 or

∂u

∂x1
+ (cot θ)

∂u

∂x2
= 0

Notice Lagrangian is not strongly convex function of ∇u and Euler equation is split
into two first order equations.
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3 Smooth approximation and continuation

As a first application of the multivariable extremal theory, consider a problem
of approximation of a given scalar function f of several variables by a function
u with assumed smoothness. The problem of approximation of a bounded, inte-
grable, but may be discontinuous function f(x), with x being in some subdomain
of R3, by a smooth function u(x) results in the variational problem

min
u

1

2

∫
R3

(
(u− f)2 + ε2|∇u|2

)
dx

where the term ε2|∇u|2 represents penalization. If ε � 1, the first term of
the integrand prevails, and u accurately approximates f . As the parameter ε
grows, the approximation becomes less accurate but the function u becomes
more smooth. When ε � 1, the approximation u tends to a constant function
equal to the mean value of f .

The Euler equation for the approximation u is the inhomogeneous Helmholtz
equation:

ε2∇2u− u = −f, lim
|x|→∞

u(x) = 0

This inhomogeneous Helmholtz problem can be explicitly solved using Green’s
function representation. In 3D case, we have:

u(x) =

∫
R3

f(y)K(x− y)dy

Here K(x− y) is the Green’s function which satisfies the equation:

(ε2∇2 − 1)K(r) = −δ(r), lim
|r|→∞

u(r) = 0

The Green’s function for this Helmholtz problem for the whole R3 is

K(r) =
1

4ε2π|r|
exp

(
−|r|
ε

)
, |r| =

√
x2

1 + x2
2 + x2

3

Using this representation, we obtain expression for u

u(x) =
1

4ε2π

∫
R3

exp

(
−|x− y|

ε

)
f(y)

|x− y|
dy

One observes that the smoothness of u is controlled by ε. When ε → 0, the
kernel K(r) tends to the delta-function, and u(x)→ f(x).

Remark 3.1 Similar explicit solutions can be derived for R2 and for some bounded
domains, such as rectangles or circles (spheres). Considering the approximation
problem on a bounded domain, a more efficient way to construct solution is to use
the eigenfunction expansion, as it was explained in Section ??.
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Example 3.1 (Analytic continuation) A close problem is the analytic con-
tinuation. Let Ω ⊂ R2 be a domain in a plane with a differentiable boundary ∂Ω.
Let φ(s) be a differentiable function of the point s of ∂Ω. Consider the following
problem of analytic continuation: Find a function u(x) in Ω such that it coincides
with φ on the boundary, u(s) = φ(s), ∀s ∈ ∂Ω and minimizes the integral of (∇u)2

over Ω. Thus, we formulate a variational problem:

min

∫
Ω

(∇u)2dx in Ω, subject to u|∂Ω = φ

Compute the stationarity conditions. We have

∂(∇u)2

∂∇u
= 2∇u, ∇ · ∂(∇u)2

∂∇u
= 2∇ · ∇u = 2∆u = 0

which demonstrates that the minimizer must be harmonic in Ω or be a real part of
an analytic function. This explains the name “analytic continuation”.

Remark 3.2 Notice that the one-dimensional case is trivial: Ω is an interval,
the boundary consists of two points, the minimizer is a straight line between
these points. In this sense, harmonic functions are two-dimensional (or higher-
dimensional) generalization of linear functions.

4 Change of coordinates

In order to transform the variational conditions to polar, spherical, or other
coordinates, consider the transformation of the independent variables x = w(ξ)
in a multivariable variational problem. Consider the Jacobian of the transfor-
mation J , J being the matrix with the elements Jij = {∂wi∂ξj

}, and assume that

det(J) is not zero in all points of Ω. In the new variables, the domain Ω becomes
Ωξ, the differential dx is transformed as

dx = det(J)dξ

. By the chain rule, gradient ∇xu in x coordinates becomes

∇xu = ∇ξu
∂ξ

∂x
= J−1∇ξu

where ∇ξ is the gradient in ξ-coordinates.
The integral

R =

∫
Ω

F (x, u,∇u)dx

becomes

R =

∫
Ωξ

Fξ(ξ, u,∇ξu)dξ

where Fξ is defined as follows

Fξ(ξ, u,∇ξu) = F (w(ξ), u, J−1(ξ)∇ξu) detJ(ξ) (14)
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The Euler equation in the w-coordinates becomes SFξ(u) = 0, where

SFξ(u) =
∂Fξ
∂u
−∇ξ ·

∂Fξ
∂∇ξu

(15)

and the derivatives are related as

∂Fξ
∂u

= (det J)
∂F

∂u
and

∂Fξ
∂∇ξu

= (det J)J−1 ∂F

∂∇u

Example 4.1 (Helmholtz equation in polar coordinates) Let F be the La-
grangian corresponding to the Helmholtz equation on the plane with Cartesian co-
ordinates (x, y):

F = |∇u|2 + αu2 = u2
x + u2

y + αu2

We transform it to the polar coordinates (r, θ) using x = r cos θ, y = r sin(θ) and
compute the Euler equation for F . We have

J =

(
cos θ −r sin θ
sin θ r cos θ

)
, det J = r

Then

Fξ = Fξ(r, θ, u,∇ξu) = r

[(
∂u

∂r

)2

+
1

r2

(
∂u

∂θ

)2

+ αu2

]
and the Euler equation becomes

∂

∂r
r
∂u

∂r
+

1

r

∂2u

∂θ2
− αru = 0

5 First integrals

Independence of the gradient of minimizer If the Lagrangian is inde-
pendent of ∇u, F = F (x, u), the Euler equation becomes an algebraic relation

∂F

∂u
= 0.

As in one-dimensional case, the minimizer u that solves this equation does not
need to be differentiable, even continuous function of x.

Independence of the minimizer If the Lagrangian is independent of u,
F = F (x,∇u) then Euler equation becomes

∇ ·
(
∂F

∂∇u

)
= 0.

Instead of the constancy of ∂F
∂u′ in one-dimensional case, here we state only the

divergencefree nature of ∂F
∂∇u . Any divergencefree vector admit the following

representation through a vector potential.

∂F

∂∇u
= ∇× ψ (16)
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In the one-variable case, ∇×ψ is replaced by a constant and we obtain the first
integral; in multivariable case, no additional first integrals exist.

Example 5.1 The Lagrangian F1 =
(
du
dt

)2
, t ∈ R1 is a one-dimensional analog

of the two-dimensional Lagrangian F2 = |∇u|2. The Euler equation for the one-
dimensional problem with this Lagrangian d

dt
∂L
∂u′ − ∂L

∂u , where u′ = du
dt , has the first

integral

C1 =
∂F1

∂u′
=
du

dt

followed by a solution u = C1t+ C2.
In multivariable case, for F2 = |∇u|2 we compute ∂F

∂∇u = 2∇u = V . Here, we
denote the gradient by V = (v1, v2), V = ∇u. The stationarity condition ∇·V = 0
or

∂

∂x1
v1 +

∂

∂x2
v2 = 0

are identically satisfied if v admits the representation

v1 =
∂ψ

∂x2
and v2 = − ∂ψ

∂x1

where ψ is an arbitrary potential, that is if (16) holds. The function ψ is called
the adjoint potential, see below, Section ??. Instead of being a linear function as
in one-dimensional case, the minimizer u is harmonic – a solution to the Laplace
equation ∆u = 0. Potential ψ is a conjugate harmonic function.
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