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Abstract. The paper addresses a problem of robust optimal design of elastic
structures when the loading is unknown, and only an integral constraint for the
loading is given. We suggest to minimize the principal compliance of the domain
equal to the maximumof the stored energy over all admissible loadings. The principal
compliance is the maximal compliance under the extreme, worst possible loading.
The robust optimal design is formulated as a min-max problem for the energy stored
in the structure. The maximum of the energy is chosen over the constrained class of
loadings, while the minimum is taken over the design parameters. It is shown that
the problem for the extreme loading can be reduced to an elasticity problem with
mixed nonlinear boundary condition; the last problem may have multiple solutions.
The optimization with respect to the designed structure takes into account the
possible multiplicity of extreme loadings and divides resources (reinforced material)
to equally resist all of them. Continuous change of the loading constraint causes
bifurcation of the solution of the optimization problem. It is shown that an invari-
ance of the constraints under a symmetry transformation leads to a symmetry of
the optimal design. Examples of optimal design are investigated; symmetries and
bifurcations of the solutions are revealed.
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1. Introduction

A typical structural optimization problem asks for a material layout
in the sti�est design. The sti�ness is de�ned as an elastic energy of a
domain loaded by external boundary forces (loading). If the loading is
�xed and known, an optimal structure adapts itself to resist the loading.
However, the optimal designs are usually unstable to variations of the
forces. This instability is a direct result of optimization: To best resist
the given loading, all the resistivity of the structure is concentrated
against a certain direction thus decreasing its ability to sustain loadings
in other directions [7, 8, 17]. For example, consider a problem of optimal
design of a structure of a cube of maximal sti�ness made from an elastic
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material and void; assume that the cube is supported on its lower side
and loaded by a homogeneous vertical force on its upper side. It is
easy to demonstrate, that the optimal structure is a periodic array of
unconnected in�nitely thin cylindrical rods. Obviously, this design does
not resist any other but the vertical loading.

The instability to variations of the loading is not a defect of an
optimization procedure - the structure does exactly what it is asked
to do; it is a defect of the modeling. In order to �nd a more stable
robust solution, one needs to optimize a more general robust sti�ness-
like functional that characterizes an elastic body loaded by unspeci�ed
(or partly unspeci�ed) forces on its boundary, as it happens with most
engineering constructions. To avoid this vulnerability of the optimally
designed structures to variations of loading, we suggest to minimize
the principal compliance of the domain equal to the maximum of the
stored energy over all admissible loadings. The principal compliance is
the maximal compliance under the extreme, worst possible loading. We
formulate the robust optimal design problem as a min-max problem for
the energy stored in the domain, where the inner maximum is taken
over the set of admissible loadings and the minimum is chosen over
the design parameters characterizing the structure. This formulation
corresponds to physical situations when biological materials are created
and engineering constructions are designed to withstand loadings that
are not known in advance.

This approach to the structural optimization was discussed in our
papers [11, 10] and (for the �nite-dimensional model) in the papers
[19, 20]. Various aspects of the optimal design against partly unknown
loadings were studied in [32, 21, 31, 27, 26, 37, 5, 7, 25, 1], see also
references therein. In some cases, the minimax design problem, where
the designed structure is chosen to minimize maximal compliance of the
domain, can be formulated as minimization of the largest eigenvalue of
an operator. The minimization of dominant eigenvalues was considered
in a setting of inverse conductivity problem in [12, 13]. The multiplicity
of optimal design that we �nd in the minimax loading-versus-design
problem is similar to multiplicity of stationary solutions investigated in
the engineering problems of the optimal design against buckling [34, 14]
and vibration [30, 33, 22, 28].

The structure of this paper is as follows. In Section 2, we introduce
an integral quantity of an elastic domain, the principal compliance,
equal to the response of the domain to the worst (extremal) boundary
loading from the given class of loadings; this quantity is a basic integral
characteristic of the domain similar to the The principal compliance is a
solution of a variational problem, which can be reduced to an eigenvalue
problem, or to a bifurcation problem.
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Examples of various constraints for admissible loadings and resulted
variational problems are considered in Section 3. Particularly, the vari-
ational problem for the principal compliance with a quadratically con-
strained class of loadings is reduced to the Steklov eigenvalue problem.
The principal compliance of the domain in this case is a reciprocal of
the principal Steklov eigenvalue. We also consider the constraints of
the Lp norm, p > 1, of the loading and inhomogeneous constraints and
show that the Lp norm constraints result in a nonlinear boundary value
problem. The constraint of L1 norm of the loading yields to a variational
problem which does not have a classical solution, but a distribution: the
optimal loading turns out to be a �-function or, physically speaking, a
concentrated loading (if such a loading does not lead to in�nite energy).

Section 4 considers robust structural optimization which is formu-
lated as a problem of minimization of the principal compliance. The
optimal design takes into account the multiplicity of stationary so-
lutions for extreme (most dangerous) loadings; typically, the optimal
structure equally resists several extreme loadings. The set of the ex-
treme loadings depends on the constraints of the problem. Continuous
change of the constraints leads to modi�cation of the set of extreme
loadings; the optimal structure is changing in response. This corre-
sponds to bifurcation of the solution of the optimization problem.
Another characteristic feature of the discussed optimization problem is
symmetry of its solution. We show that the invariance of the set of the
constraints for the admissible loadings together with the correspond-
ing symmetry of the domain, leads to the symmetry of the optimally
designed structure.

Section 5 contains two examples of problems of structural design
for uncertain loadings. One example is provided by the problem of
designing the optimally supported beam loaded by an unknown loading
with �xed mean value. The second considered example is a problem of
determining the optimal structure of a composite strip loaded by a
force deviated from the normal in an unknown direction. The force
is assumed to have a prescribed normal component and an additional
component which is arbitrarily directed and is unknown.

2. The principal compliance of a domain
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2.1. Problem, Equations, Constraints

2.1.1. Equations
Consider a domain 
 with the boundary @
 = @0 [ @ �lled with a
linear anisotropic elastic material, loaded from its boundary component
@ by a force f , and �xed on the boundary component @0. The elastic
equilibrium of such a body is described by a system (see for instance,
[35]):

r � � = 0 in 
; � = C : �; (1)

� = �T ; �(w) =
1

2

�
rw + (rw)T

�
:

Here C = C(x) is the fourth-order sti�ness tensor of an anisotropic
inhomogeneous material, w = w(x) is the displacement vector, � is the
strain tensor, � is the stress tensor, and (:) is convolution of two indices.
The above convolutions read:

� : � =
X
i;j

�ij�ji; (C : �)ij =
X
k;l

Cijkl�lk:

The equation (1) is supplemented with the boundary conditions

� � n = f on @; w = 0 on @0; (2)

where n is the normal to the boundary @
. These equations are the
stationary solution of a variational problem,

J (C; f) = � min
w:wj@0=0

�Z


�(C; �(w)) dx �

Z
@
w � f ds

�
;

= max
w:wj@0=0

�Z
@
w � f ds�

Z


�(C; �(w)) dx

�
; (3)

where � is the density of the elastic energy:

�(C; �(w)) =
1

2
� : � =

1

2
� : C : �: (4)

The nonnegative functional J is called the compliance of the domain;
(3) states that it is maximal at the elastic equilibrium. At the equi-
librium, the energy stored in the body equals the work of the applied
external forces f ,

J0(C; f) = 1

2

Z
@
w � f ds =

Z


�(C; �(w)) dx: (5)

Simultaneously with the elasticity problem, we consider also a close
problem of bending of a Kirchho� plate (see for example, [35]). The
equilibrium of the plate is described by the fourth order equation

rr : Cpl : rrw = f (6)

paper_kluwer.tex; 5/02/2004; 13:01; p.4



Principal compliance and robust optimal design 5

with homogeneous boundary conditions

w = 0 on @
;
@w

@n
= 0 on @
; (7)

corresponding to a clamped plate, or

w = 0 on @
; nT (Cpl : rrw)n = 0 on @
; (8)

for simply supported plate. Here, w is the de
ection orthogonal to the
plane of the plate, Cpl is the fourth-order tensor of bending sti�ness of
the elastic material, rrw is the Hessian of w, and f is the external
loading. Notice that the force f enters the equation as a right-hand-
side term. The equation of the plate corresponds to maximization of
the functional:

Jpl(C; f) = �
Z



�
1

2
rrw : Cpl : rrw � wf

�
dx (9)

The results that we develop further in the paper apply to both the
elasticity (1) and the bending problem (6); therefore, we will drop the
subscript in Jpl(C; f), and keep notation J (C; f) for both compliance
functionals. If this does not cause a confusion, we use the same notation
w to denote both the displacement in the elasticity problem (1) and
the de
ection in the bending problem (6), inspite of the �rst one being
a vector function, whereas the second one is a scalar function.

2.1.2. Admissible loadings
Let F be a set of admissible loadings f . The elastic energy over a �nite
domain is assumed to be �nite. We consider integral constraints to
describe the set of loadings F :

F =

(
f :

Z
Df

�(f) ds = 1

)
; Df =

�
@; for problem (1)

; for problem (6)

; (10)

Here Df is a domain of application of the forces: In the elasticity
problem (1), Df concides with the part of the boundary @, whereas
for the bending plate problem (6), Df is the domain 
 or a part of
it. We assume that � is a convex function of f , with the derivative
 : R3 ! R3:

 (f) =
@�

@f
=

�
@�

@f1
;
@�

@f2
;
@�

@f3

�
;

which has an inverse � =  �1.

2.1.3. Principal compliance
We de�ne the principal compliance of an elastic domain in a class of
loadings as a compliance in the worst possible loading scenario.
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De�nition. The principal compliance � of the domain is

� = max
f2F

J (C; f): (11)

The loadings that correspond to the principal compliance � are extreme
or the most dangerous loadings; we denote them as fD.

�(C) = J (C; fD) � J (C; f) 8f 2 F (12)

The most dangerous loadings exist if the set F is closed and convex,
see [15].

2.2. Calculation of the principal compliance

The concept of the principal compliance is useful if there are e�cient
algorithms of computing the extreme loadings. We show here that the
problem of computation of the principal compliance and the extreme
loadings can be formulated as a boundary value problem.

Consider the problem (11) and assume that the loadings are con-
strained as in (10). The augmented functional J for the problem is:

J = J (C; f)� �

 Z
Df

�(f) ds� 1

!
;

where � is the Lagrange multiplier. Clearly, maxf2F J = maxf J . Vari-
ation of the augmented functional with respect to f gives the optimality
condition for the extreme loading(s):

�fJ =

Z
Df

@

@f
(�f � w + ��(f)) �f = 0

or, since �f is arbitrary,

w � �
@�

@f
= 0 on Df :

Solving for the extreme loading(s) fD = f we arrive at the condition

fD = �

�
w

�

�
(13)

which links the loading fD to the displacement w at the same bound-
ary point for the elasticity problem (1) or at the same point in the
domain for the bending problem. Condition (13) together with the �rst
boundary condition in (2) allows us to exclude f from the boundary
conditions, leading to the boundary value problem for the displacement
w. We arrive at
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THEOREM 1. The principal compliance � of the elasticity problem
(1-2 ) with the constraints for the class of loadings (10) equals

� =
1

2

Z
@
w�

�
w

�

�
ds (14)

where w satis�es the elasticity equations (1) in 
 with the boundary
conditions

� � n = �

�
1

�
w

�
on @; w = 0 on @0; (15)

The Lagrange multiplier � is determined from the integral conditionZ
@
�

�
�

�
w

�

��
ds = 1; (16)

and the function �(�) is an inverse of  = @�
@f

.

Indeed, the displacement w, whose energy is the principal compliance,
satis�es the elasticity equations (1) in 
 with the boundary conditions
obtained from (2) and (13). The �rst condition in (15) relates the
normal stress at a point on the boundary @ to the displacement in
this point. The boundary value problem (1), (15), (16) allows us to
compute w and �, fD, and �.

For the bending problem (6), the calculation is similar. The principal
compliance is the maximum of the functional (9) upon all loadings
bounded by the constraint (10), its value is the following.

THEOREM 2. The principal compliance � for the bending problem
(6-8 ) with the constraint for the class of loadings (10) equals

� =
1

2

Z


w�

�
w

�

�
dx (17)

where w satis�es the equation

rr : Cpl : rrw = �

�
w

�

�
(18)

with the corresponding homogeneous boundary conditions (7) or (8),

and the function �(�) being an inverse of  = @�
@f

. The Lagrange multi-
plier � is determined fromZ



�

�
�

�
w

�

��
ds = 1: (19)
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Indeed, the extreme loading f is related to the displacement w by a
scalar relation w = ��0(f) or f = �(w=�), and the plate equlibrium is
described by the equation (18).

3. Examples of constraints

3.1. Homogeneous quadratic constraint

Assume that the constraint (10) restricts a weighted L2 norm of f :

1

2

Z
@
fT	fds = 1 or �(f) =

1

2
fT	f (20)

where 	(s) is a symmetric positive matrix. In this case, � is a linear
mapping: �(f) = 	�1f , and the �rst of the boundary conditions (15)
for the extremal loading becomes linear:

1

�
	�1w � � � n = 0 on @ (21)

The optimality condition states that w and � � n are proportional to
each other everywhere on the boundary @ with the same tensor of
proportionality �	.

REMARK 1.
The stationary condition (21) allows for the following physical in-

terpretation: The boundary @ is equipped with distributed springs with
negative sti�ness: The forces in them are proportional but opposite to
the forces in conventional linear springs.

The elasticity equations (1) with boundary conditions (21) form a
linear eigenvalue problem that has a nonzero solution w only if 1

�
is

one of its discrete eigenvalues. Eigenvalue 1
�
relates the displacement

on the boundary and the normal stress.
As all eigenvalue problems, the problem (1), (21) is an Euler-Lagrange

equation of a variational functional:

1

�
= min

w:wj@=0

R

 �(w) : C : �(w)dsR

@ w �	�1wds

or �Z


�(w) : C : �(w)dx� 1

�

Z
@
w �	�1wds

�
! min

w:wj@=0
: (22)

The eigenvalue problem that contains the eigenvalue in the boundary
condition is Steklov eigenvalue problem, and � is a reciprocal to the
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Steklov eigenvalue, see [4]. The eigenfunctions are normalized by the
condition (20).

Using (20) and (21) in the form w = �	f , we observe that the
second term in (22) is equal to �, thereafter � = �. Steklov problem has
in�nitely many real positive eigenvalues (see [4, 23]), but the principal
compliance of the domain corresponds to the dominant eigenvalue, � =
�max. The dominant eigenfunction is not necessarily unique; we will
demonstrate below that the existence of many stationary solutions is
typical for the problems of minimization of the principal compliance
with respect to the structure. The dominant eigenfunctions are the
extreme loadings. The results are formulated as

THEOREM 3. If the L2-norm of admissible loadings is bounded, the
principal compliance � is a solution of the eigenvalue problem:

r � � = 0 in 
; w = �	� � n on @: (23)

� is a reciprocal to the principal eigenvalue 1
�
of the problem (1), (21).

REMARK 2. The spectrum of the problem (1), (21) has one conden-
sation point, zero. Positive eigenvalues �k tend to zero but never reach
it. This implies that the dual problem of minimal compliance does not
have a solution: the compliance can be made arbitrary small by choosing
a fast alternating loading.

REMARK 3. The problem becomes isomorphic to the problem of the
principal eigenfrequency of the domain, if the kinetic energy (and the
inertia) are concentrated on the boundary: T = �(x � xb)w	w, where
xb 2 @.

In the bending problem (6), the analogy between the principal com-
pliance and the principal eigenfrequency of vibrations is complete. The
equilibrium (18) of the optimally loaded plate coincides with the equa-
tion for the magnitude of the de
ection of the oscillating plate,

rr : Cpl : rrw =
1

�
w:

3.2. L1� norm constraint

Consider L1�norm constraint for the class of admissible loadings as-
suming that the mean value of loading's magnitude is �xed:Z

@
jf jds =

Z
@

p
f � fds = 1 (24)
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From engineering viewpoint, this case is probably the most interesting
one: it models the situation when the total weight applied to the struc-
ture is known but the distribution of the loading over the boundary is
uncertain.

This time, the functional of the variational problem grows linearly as
jf j ! 1 which leads to a signi�cantly di�erent analysis. The straight-
forward variational technique does not provide the correct answer.
Indeed, the variation with respect to f returns the vector condition

�f : w � �
1p
f � f f = 0 on @;

which says that

jwj = constant and w k f on @:

The last condition, together with the condition � � n = f (see (2)),
allows us to exclude f and end up with a pair of conditions on w:

(� � n)� w = 0; jwj = constant on @:

Generally, these conditions cannot be satis�ed if the @� component
of the boundary is adjacent to the component @0 where w = 0 since
w is continuous. This contradiction shows that the naive variational
solution does not exist.

REMARK 4. The appearance of discontinuous solutions in the varia-
tional problems of linear growth is well-known [36]. The famous clas-
sical example is the existence of a non-smooth solution in the minimal
surface problem.

To solve the contradiction, we need to assume that the optimal load-
ing f is a distribution. Indeed, the distribution does not have to satisfy
the Euler equations of the variational problem because this equation
was derived in the assumption that the optimal solution f is �nite and
smooth.

Dealing with distributions in the L1-constrained set of loadings may
cause di�culties because the distributions �(x � x0) may or may not
correspond to the �nite energy of the elastic system, as is stated in the
Sobolev embedding theorem, see for example [24]. For the compliance
of the bending plate (9), the energy of the concentrated loading and the
Green's function of the corresponding operator are �nite. We illustrate
this case below considering a one-dimensional example of a beam; the
concentrated loadings of the type �(x� x0) are acceptable because the
corresponding energy stored in the elastic beam is �nite.
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However, the linear elasticity problem does not allow a concentrated
loading because the corresponding energy is in�nite; the Green's func-
tion g(x; y) has a singularity, g(x; x) =1. In this case, the restriction
on the class of admissible f can be slightly tighten. We may assume, for
example, that the force is piece-wise constant within small domains of
area �. Alternatively, we may constrain the L1+�-norm of the loading,Z

@
jf j1+�ds = 1 (25)

where � > 0 is a �xed parameter. This loading can be supported by
a linear elastic material, although the displacement w can inde�nitely
grow when � ! 0. The analysis of this case yields to the optimality
condition

f =

����w�
����
1

� w

jwj
that shows that magnitude of an optimal loading either stays arbitrary
close to zero or is very large (of the order of 1=�). The integral constraint
(25) guarantees that the measure of the set of large values of f(s) goes
to zero when �! 0.

With this warnings, we proceed with the formal analysis of the
problem with L1 constraint assuming that either the limit exists or
that � can be chosen arbitrary close to zero to preserve the qualitative
properties of the solution.

The extremal loading is concentrated in several points,

f =
X
i

ci�i�(x� xi);

where fxig is the set of points where the (concentrated) loading is

applied, xi 2 @, �i : �i = (�
(1)
i ; �

(2)
i ; �

(3)
i ); j�ij = 1, are directional vectors

of the concentrated loadings, and ci are their intensities; due to (24),
ci belong to the simplex

ci :
X
i

ci = 1; ci � 0: (26)

Further, we show that the extreme loading is always applied to a single
point. The displacements wk = w(xk) are:

wk =
X
i

g(xk; xi)ci�i

where g(xk; xi) is the Green's function which relates the �-function
loading in the point xi to the generated displacement w in the point
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xk. The compliance becomes

J =
X
i

X
k

cick
�
�Ti g(xi; xk)�k

�

The principal compliance corresponds to the maximum of J with re-
spect to ci, �i and the points xi.

As a function of ci, J is a nonnegative quadratic form, because the
work J is always nonnegative. Therefore, J is a convex function of
ci and its maximum is reached in a corner of the simplex (26): The
maximum Jc of J corresponds to a single concentrated loading c1 =
1; c2 = : : : = cp = 0. Next, we maximize this maximum Jc with respect
to the direction �1 =

�
�
(1)
1 ; �

(2)
1 ; �

(3)
1

�
of the single applied loading. The

resulting compliance J�;c is equal to the maximal eigenvalue �gmax(x1)
of the Green's function g(x1; x1) at the point x = x1:

J�;c = max
�1

�
�T1 g(x1; x1)�1

�
= �gmax(x1)

This implies that the applied loading f(x) must be parallel to the
displacement w(x). Finally, we choose the point x1 2 @ of application of
the extreme concentrated loading and obtain the principal compliance
�. Summarizing, we obtain

THEOREM 4. The L1�principal compliance is

� = max
x2@

f�gmax(x)g :

where �gmax(x) is the maximal eigenvalue of the 3 � 3 tensor Green's
function g(x; x) of the problem (1) in the point x 2 @.

We stress that the point x1 may be not unique although the ex-
treme loading is always concentrated at one point. For example, there
may be two symmetric extreme loadings if 
 is a symmetric domain.
An example in Section 5.1 below shows that there are several equally
dangerous loadings in an optimal solution: �gmax(x1) = : : : = �gmax(xq);
number q depends on the structure.

3.3. Other special cases

3.3.1. Constrained Lp�norm of the loading
If the constraint is imposed on the Lp�norm of the loading

1

p

Z
@
jf jp = 1; p > 1
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the problem has the form (1) but the boundary conditions (21) are
replaced by

� � n = �(w); �(w) =

� jwj
�

� 1

p�1 w

jwj (27)

and the normalization (16) for � becomes

� =

�
1

p

Z
@
jwjqds

� 1

q

where
1

q
+
1

p
= 1 (28)

In this case, the relation between the stress and displacement is non-
linear. Again, the multiplicity of stationary solutions that satisfy (27) -
(28) is expected; this time the solutions correspond to bifurcation points
instead of spectrum points. The physical interpretation is similar the
one given in Remark 1, but the springs attached to the boundary @ are
nonlinear.

3.3.2. Nonhomogeneous constraint
Let the loading f consist of some known component f0 and an unknown
deviation with a constrained Lp�norm:

kf0 � fkLp � 1 (29)

Applying the previous variational analysis, we conclude that an ex-
tremal loading can be found from the elasticity problem with inhomo-
geneous mixed boundary condition:

� � n = f0 + �(w) on @:

Since the boundary condition is inhomogeneous, w = 0 is not a solution.
Still, the problem may have several stationary solutions. An example
of this constraint is discussed later in Section 5.2.

4. Robust optimal design

4.1. Multiplicity of extreme loadings

Consider an optimal design problem: Find a layout of elastic materials
over the domain 
 that minimizes the principal compliance �. Such
a structure (sti�ness C(x)) corresponds to a solution of the extremal
problem

Pminmax = min
C2C

�(C) (30)
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where C is a class of admissible layouts. We rewrite the problem using
the de�nition of �(C):

Pminmax = min
C2C

max
f2F

J (C; f) (31)

where the compliance J = J (C; f) is de�ned in (3). Minimization over
w in (3) is performed �rst so that w satisfy the elasticity equations
while the interchanging the order of the following extremal operations,
minC2C and maxf2F correspond to two physically di�erent situations.
Minimax problem (31) is a problem of optimization of materials' layout
when the applied loading is unknown, while in the maximin problem

Pmaxmin = max
f2F

min
C2C

J (C; f) (32)

the loading is chosen to maximize the stored energy and is known to
the designer; so the design resists this particular loading. If J is a
saddle-point functional, the solutions to these two problems coincide,
and

Pmaxmin = Pminmax:

Saddle point solutions are typical for `weak' control as we will demon-
strate below. The general case

Pmaxmin < Pminmax

corresponds to a situation when several loadings are `equally danger-
ous.' The sti�ness of the structure Copt should be fairly distributed
to resist equally well each of these extreme loadings leading to the
condition

J (Copt; fi) = J (Copt; fj); fi; fj 2 �;

where � is a set of extreme loadings.
Generally, the set of stationary loadings may consist of any number

of elements. They can be found from the following equations, see [16].
Consider a design Copt and the functional J (Copt; f). The extremal
loadings that solve the variational problem

�

�f
J (Copt; f) = 0;

�2

�f2
J (Copt; f) � 0

are denoted by f̂i, i = 1; : : : p where p � 1; we assume that there are p
stationary loadings that can become extreme. The optimized principal
compliance Pminmax is determined from the problem

min
C

max
�i�0

 
Pminmax +

X
i

�iJ (Copt; f̂i)

!
(33)
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where �i � 0 are the Lagrange multipliers by the constraints

J (Copt; f̂i)� Pminmax � 0;
X
i

�i = 1:

Optimal design Copt is found from the following conditions that refor-
mulate the minimax problem as the problem of minimization of sum of
energies corresponding to extreme loadings.

THEOREM 5. The optimal principal compliance Pminmax equals

Pminmax = min
C2C

max
f�ig:�i>0

qX
i=1

�iJ (C; f̂i);
X
i

�i = 1; (34)

where q is the number of active extreme loadings.

The nonzero Lagrange multipliers correspond to the equalities

J0 = J (Copt; f̂i) i = 1; : : : q; ) �i > 0;

the multipliers equal zero if the stationary loading leads to a smaller
value of the functional,

J0 > J (Copt; f̂k); k = q + 1; : : : p ) �k = 0

This last conditions should be checked in the optimization procedure;
that is, minimizingJ0 we check if the value of the functional for the next
loading fq+1 (not the most dangerous one) is still less than J0. When
this inequality becomes equality, the set of extreme loadings should be
enlarged to include f̂q+1, the corresponding Lagrange multiplier �q+1
becomes positive.

The described multiplicity of equally dangerous loadings closely re-
minds the multiplicity of optimal solutions in a well studied problem of
maximization of the minimal eigenfrequency. First, the multiplicity of
optimal eigenvalues in that problem was observed in a pioneering paper
of Olho� and Rasmussen [30], then it was investigated in [14, 33, 34].

REMARK 5. The optimization problem (34) also admits a probabilistic
interpretation. Namely, assume that the optimal loading is a random
variable which takes q stationary values with some probability �1; :::; �q.
Then the sum

P
�iJ (C; fi) in (34) is the expectation of the energy.

The optimal design minimizes the expectation of the energy, meanwhile
the loading chooses probabilities �1; :::; �q to maximize it.
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4.2. Symmetries

Symmetries are typical for designs that minimize the principal com-
pliance. Namely, if the domain and the class of loadings are invariant
under a symmetry transformation (translation, re
ection, or rotation),
then the set of extreme loadings � and the optimal design are invariant
under this transformation as well. We state the following:

THEOREM 6. If the domain 
, the boundary component @, and the
set F of admissible loadings are invariant under a symmetry transfor-
mation R:


 = R
; @ = R@; and F = RF ;
then the set of extreme loadings � and the optimal materials' layout C
are invariant under this transformation:

� = R�; C = RC: (35)

Indeed, applying the above consideration we can see that if f0 2 � is
an extreme loading, then Rf0 is also an extreme loading. The com-
pliance of the structure should be the same for both loadings, which
implies invariance of the design parameters to the transformation R.
Particularly, when the loaded domain is rotationally symmetric, and
the loading can be applied from any direction, the optimal layout is
axisymmetric.

REMARK 6. Notice the symmetry of many natural 'designs' that are
perfected by evolution: The rotationally symmetric shape of trees allows
them to sustain wind from all directions; our natural \protective shell"
{ the skull provides the best protection for the brain against hits from
any direction.

The conditions of the theorem do not require the symmetry of the
extreme loading, only a possibility to apply a loading symmetric to any
given one. In contrast, the design must be symmetric.

5. Examples of optimal designs

The following examples highlight the discussed multiplicity of extreme
loadings and bifurcation of the optimal solution.
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Figure 1. The force could be applied in arbitrary points along the elastically
supported beam. The mean value of the magnitude of the force is constrained.

5.1. Optimal design of a supported beam

5.1.1. Formulation
Consider a homogeneous elastic beam of the unit length simply sup-
ported at both ends, elastically supported from below by a distributed
system of elastic vertical springs with the speci�c sti�ness q(x) � 0,
and loaded by a distributed nonnegative force f(x) � 0. The elastic
equilibrium of the displacement w is described by a one-dimensional
version of (6):

(Ew00)00 + qw = f; w(0) = w(1) = 0; w00(0) = w00(1) = 0; (36)

where E is the Young's modulus. The compliance is equal to

J =

Z 1

0

�
fw � E

2
(w00)2 � q

2
w2
�
dx (37)

where w is a solution to (36). Assume that the mean value of the
magnitude of the loading (L1-norm constraint) is equal to one, and the
integral sti�ness of the supporting springs is constrained by a constant
�.

F =

�
f 2 H�1(0; 1) :

Z 1

0
f dx = 1

�
;

Q =

�
q 2 H�1(0; 1) :

Z 1

0
q dx = �

�
:

The optimal design problem of minimization of the principal compli-
ance by distributing the springs sti�ness becomes:

Pminmax = min
q2Q

�
max
f :2F

J
�

Applying the above analysis, we conclude:

1. The domain, class of loadings and the boundary conditions are
invariant to the translation x ! 1 � x, therefore the design (the
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springs sti�ness) is symmetric with respect to the center of the
beam, see Section 4.2,

q(x) = q (1� x)

2. Necessary conditions in Section 3.2 show, that the extreme loading
is a delta-function f(x) = �(x � xj) applied at one of the points
fx1; x2; :::; xpg where

w0(xj) = 0; w00(xj) � 0: (38)

The extreme loading may be applied to di�erent points symmetric
with respect to the center of the beam; the resulting sti�ness must
be equal.

3. The sti�ness of an optimal spring is a distribution

q(x) =
X
i

�i�(x� yi);
X
i

�i = �; �i � 0:

Indeed, the assumption that q(x) satis�es variational stationary
conditions leads to a contradiction similar to the contradiction
discussed in Section 3.2. Particularly, the optimal positions of the
springs satisfy the necessary conditions (38), and therefore the set
of the reinforcement points coincides with the set fx1; x2; :::; xpg.
The number p of the critical points depends on the relative sti�ness
of the springs �=E.

Accounting for the loading and springs being concentrated, we refor-
mulate the problem (37) for the optimal principal compliance:

Pminmax = min
�1;:::;�p

max
xk

(
pX

i=1

�
�ikwk � �i

2
w2
i

�
�
Z 1

0

E

2
(w00)2 dx

)
(39)

where �ik is Dirac function.
The response of a supported beam can be characterized by a function

v(x) = max
�2(0;1)

g(�; x) (40)

where g is the Green's function of the boundary value problem (36):
g(�; x) is the displacement w(�) at the point � corresponding to a delta-
function loading applied at the point x, f(�) = �(� � x), and v(x)
is the maximal displacement under the concentrated force applied at
the point x. Figure 2 shows the response v(x) of the beam supported
by two symmetric springs. The family of the thin curves shows the
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Figure 2. Thin curves: The displacement functions generated by concentrated
loadings applied at various points along the beam. The thick curve: Maximal dis-
placement v(x) generated by a force applied at x 2 (0; 1) as a function of the position
of the force. The displacement corresponding to the force applied at x = 0:15, has a
maximum at x = 0:25. Figure shows the responses of the beam optimally reinforced
by two symmetric springs.

displacements wk(x) under several concentrated loadings applied at
di�erent points along the beam. The thick curve shows the maximal
displacement, v(x). Notice that the point of application of the concen-
trated force is generally di�erent from the point of maximum of the
displacement curve, see the caption to Figure 2. However, the optimal
springs are located at points xiopt; i = 1; 2; of the maximum of v(x),
and the extreme loading is the one applied at one of the same points,
fD = �(x � x1opt) or fD = �(x� x2opt) .

The numerical results demonstrate the following: If the springs are
weak, �=E � �1, they are concentrated in the center of the beam. We
are dealing with the saddle-point case: The most dangerous loading is a
concentrated loading applied also in the center. The maximal displace-
ment v(x) is a unimodal function of the position of the loading, with
the maximum in the center, (v0(1=2) = 0; v00(1=2) < 0). There is only
one solution for the optimal applied force and the optimal position of
the spring:

f(x) = �(x � 1=2); q(x) = ��(x � 1=2)

The top plot in Figure (3) shows v(x) for the beam supported by a weak
spring in the center of the beam. One can see that v(x) is unimodal. If
the spring becomes stronger, �1 < �=E � �2, but is still located in the
center, the maximum of v(x) corresponds to a noncentral applied force.
The equally dangerous loadings could be applied in two symmetric
eccentric points. The maximum displacement v(x), shown in Figure
3 (center), is not a unimodal function of the position of the moving
applied force; the design is not optimal. The optimal design for this
case (Figure 3, bottom) corresponds to two equally sti� springs located
symmetrically with respect to the center; the design experiences a bi-
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Figure 3. Maximal displacement v(x) as a function of the position of the applied
loading. Top �gure corresponds to a saddle point case, �=E < �1: The function v(x)
is unimodal, the optimal spring and the extreme loading are both located in the
middle of the beam. Center �gure shows v(x) corresponding to �=E in the interval
�1 < �=E < �2 when the strong spring is located in the center of the beam. Maximal
displacement v(x) is not unimodal; design is not optimal. Bottom �gure corresponds
to �=E in the same interval �1 < �=E < �2, the maximal displacement v(x) is shown
for optimally designed beam which is supported by two symmetric springs.

furcation at the critical value of �=E = �1 . Optimally supported beam
is shown in Figure 3 (bottom), where two strong springs are located
symmetric to the center of the beam. The maximal displacement curve
becomes unimodal again, with a large interval of almost constant values
in the middle. Next bifurcation occurs when � further increases, at the
point �=E = �2. Three springs appear after the next bifurcation. The
number of optimal supporting points increases and tends to in�nity
when the springs are much stronger than the beam, �=E � 1. The
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optimality conditions

w0(xi) = 0; w(xi)jf=fi = constant(i)

give the optimal position of the supporting springs xi and requirement
to their sti�nesses �i.

5.2. Composite strip with constrained deviation of the

loading

This example shows design of an optimal structure for the worst possible
loading. Consider an in�nite strip 
 = f�1 < x <1; � 1 � y � 1g;
made from a two-component elastic composite with arbitrary structure
but with �xed fractions mA and mB = 1�mA of the isotropic compo-
nents. The sti�ness of the composite C(x; y) is an anisotropic elasticity
tensor; it is assumed that the sti�ness can vary only along the strip,
C =constant(y).

Assume that the upper boundary is loaded by some unknown but
uniform loading f ,

�(x; 1) �N = f 8x
where N = (0; 1) is the normal vector. Loading f consists of the
�xed component f0 = (0; 1) directed along the normal and a vari-
able component (deviation) (fN ; fT ), the magnitude of the deviation is
constrained:

f = (f0 + fN)N + fTT; f2N + f2T = 
2: (41)

Here T = (1; 0) is the tangent vector and 
 is the intensity of the
deviation. The constraint (41) can be rewritten as

f = (f0 + 
 cos �)N + (
 sin �)T for y = 1;

where � is the angle of inclination of the deviation of the loading, see
Figure 4. The lower boundary of the strip is assumed to be loaded by
a symmetrically deviated force

f� = �f = �(f0 + 
 cos �)N + (
 sin(��))T for y = �1:
The symmetry of the loadings results in the horizontal strain being
zero,

�xx(x; y) = 0; �1 � y � 1; (42)

so that the strain tensor has only two, vertical and shear, nonzero
components. The sti�ness of the composite C(x) is an anisotropic ten-
sor that is assumed to vary only along x coordinate. We consider the
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θ

γ

φ−φ

Figure 4. An in�nite composite strip loaded by a force f that could deviate from
the normal direction. If the norm 
 of the deviation is smaller than a critical value

1, the optimal composite is a laminate with layers directed across the strip. If 
 is
greater than 
1, the optimal composite is second rank laminate with layers oriented
along directions � and ��.

problem of optimization of the principal compliance of the described
domain.

5.2.1. Design parameters
Applying the symmetry theorem, we conclude that

1. The elastic properties of the optimally designed structure do not
vary along the strip, since the design is invariant to the translation
x ! x+ �. Together with the assumption that the material prop-
erties do not vary with the thickness, this leads to the conclusion
that the elastic properties are uniform: the tensor C is constant of
x and y. This implies that the stress �eld � is constant inside an
optimal strip and

�yy = 1 + 
 cos �; �xy = 
 sin �: (43)

2. The material in the optimal strip is orthotropic with main axes
directed along x and y axes since the design is invariant to the
re
ection x! �x:

C :

�
0 �xy
�xy �yy

�
= C :

�
0 ��xy

��xy �yy

�
:

This implies orthotropy with the main axes codirected along x; y
axes.
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For the following calculations, we introduce an orthonormal (ai :
aj = �ij) tensor basis

a1 =

�
0 0
0 1

�
; a2 =

�
1 0
0 0

�
; a3 =

1p
2

�
0 1
1 0

�
: (44)

In this basis, the stress tensor �,

� =

�
�2 �3
�3 �1

�
;

is represented as a vector

� = �1a1 + �2a2 +
p
2�3a3:

Compliance tensor S and sti�ness tensor C = S�1 are presented as
matrices with the components fSijg and fCijg, their orthotropy implies
the representation

S =

0
@S11 S12 0
S12 S22 0
0 0 S33

1
A

and a similar one for C.

5.2.2. The optimization problem
The energy � of an orthotropic material is computed either as a func-
tion of stresses and compliance tensor S = fSijg, (stress energy):

��(S; �) =
1

2

�
S11�

2
1 + S22�

2
2 + 2S12�1�2 + 2S33�

2
3

�
; (45)

or as a function of strain � and sti�ness tensor C = fCijg,

��(C; �) =
1

2

�
C11�

2
1 +C22�

2
2 + 2C12�1�2 + 2C33�

2
3

�
: (46)

Recall (see (43)) that two components �1 = �yy and �3 = �xy of the
stress �eld � are known, and the strain in the xx direction is zero, (42):

�2 = S12�1 + S22�2 = 0;

therefore, �2 can be excluded. The elastic energy (46) becomes

��(C; �) =
1

2

�
C11�

2
1 + 2C33�

2
3

�
or, in terms of stress (see (45)),

��(S; �) =
1

2

  
S11 � S2

12

S22

!
�21 + 2S33�

2
3

!
:
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Figure 5. The schematic picture of the composite of the third rank.

The problem of robust optimal design becomes

Pstrip = min
C2Gmclosure

max
f2F

�(S; �) (47)

where Gmclosure is the set of all possible e�ective compliance tensors of
a microstructure formed from the two given materials with the compli-
ance tensors SA and SB, taken in the proportionmA andmB = 1�mA,
respectively, see [7, 27]. We reformulate the problem using a sum of
weighted energies formulation, where the minimized functional is taken
as a sum of the energies due to the extreme loadings.

5.2.3. Laminates of third rank: Symmetry
The description of the strongest structures, that minimize the sum of
the energies due to several loadings, is known, (see the original papers
[2, 3, 18] and the books [7, 29]); the best structures in 2D are so-called
\laminates of the third rank" shown in Figure 5. In 3D, they are the
sixth rank laminates [18]. Structural optimization based on using the
third rank composites was e�ectively developed for multi-loadings case
in [6, 9, 25]. The e�ective compliance tensor S = C�1 of a third rank
composite { the symmetric fourth-order tensor of elasticity { has the
representation

S = SA +mB

�
(SB � SA)

�1 +mAN
��1

(48)

where SA is the compliance of an enveloping (reinforcing) material, SB
is the compliance of the material in the nucleus, N is the matrix of
structural parameters that depends on the structure of the composite,
see [7, 29],

N = EA

3X
i=1

�iP (�i);
3X

i=1

�i = 1; �i � 0:
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Here EA is the Young's modulus of the A-material, angles �i are the an-
gles that de�ne the directions of laminates (directions of reinforcement),
P is a tensor product of four directional vectors zi = (cos�i; sin�i):

P (�i) = zi 
 zi 
 zi 
 zi (49)

�i are corresponding relative thicknesses of the reinforcing layers in the
ith direction.

The mentioned symmetry of an optimal composite requires the or-
thotropy of the optimal structure. Since the original materials are
isotropic, the structure is orthotropic if the matrix N is orthotropic.
This can be achieved by setting

�2 = ��3 = �; �2 = �3 = �:

Generally, the optimal strip is reinforced by three layers of strong ma-
terial; one layer (with relative volume fraction 1 � 2�) is directed in
y-direction and two other layers (with equal relative volume fractions �)
are symmetrically inclined to the angles ��. In addition, the structure
may degenerate into a single layer (when � = 0) or two symmetric
layers (when � = 1

2 ) with angles � and ��. Because of this symmetry,
matrix N for an optimal composite becomes

N = (1� 2�)P (0) + �P (�) + �P (��) (50)

Let us compute the compliance of a third-rank composite in the basis
(44). Compliance SA of an isotropic material A is given by a matrix

SA =
1 + �A
EA

0
@ 1� �A ��A 0

��A 1� �A 0
0 0 1

1
A :

and similarly for the material B. To compute the e�ective compliance
of a third-rank laminate, we �rst represent the matrix P (�) (49) in the
basis (44),

P (�) =

0
@ cos4 � sin2 � cos2 �

p
2 sin� cos3 �

sin2 � cos2 � sin4 �
p
2 sin3 � cos�p

2 sin� cos3 �
p
2 sin3 � cos� 2 sin2 � cos2 �

1
A

and obtain from (50):

N =

0
@ 1� 2�+ 2� cos4 � 2� sin2 � cos2 � 0

2� sin2 � cos2 � 2� sin4 � 0
0 0 4� sin2 � cos2 �

1
A :

Matrix N is the variable part of the compliance matrix, (see (48)); it
depends on only two scalar parameters, � and �.
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The structural optimization problem (47) �nally becomes an alge-
braic problem

Jstrip = min
�;�

max
�

��(S(�; �); �(�)); (51)

the expressions for the involved quantities are described above. The
angle � is the angle of deviation of the loading from the normal, and �
and � are structural parameters.

5.2.4. Second rank structure is optimal
Though in general case of minimization of sum of energies correspond-
ing to multiple loadings, the third-rank laminates are optimal, here the
optimal structures are the second- not the third-rank laminates. To
prove this statement we could �nd derivative of �� in the algebraic
minimization problem (51), and demonstrate that it does not turn into
zero; this would give the optimal value of � on the boundary of the
constraint. However, we skip this bulky calculation giving a physical
argument supported by results of numerical optimization. Because of
absence of a displacement in the x-direction, there is no need to rein-
force this direction. Even more, the stress in the composite does not
change if a layer with in�nite sti�ness oriented along x-axes, is added
to the composition. If this in�nitely sti� layer is counted, then the
structure would be reinforced by three layers of sti� material. Since
the sti�ness of a structure with an in�nitely sti� layer is not smaller
than the sti�ness of a structure without such a layer, the optimality of
the second-rank laminates follows.

This conclusion is supported by results of numerical optimization,
which gives �opt = 1=2 for all settings. Physically, this means that
the optimal structure is reinforced by either single laminates oriented
across the strip (case when � = 0) or by second-rank laminate with
two symmetric reinforcement directions � and ��, see Figure 4. This
degeneration of the third-rank laminates can be explained by special
geometry of the strip and the loading, which do not allow for any
strain �xx along the strip, and assumed independence of the design on
y-coordinate. The formulas for the e�ective properties of a symmet-
ric second-rank composite are simpli�ed: They are still given by the
expression (48) but the structural matrix N is

N =
1

2
(P (�) + P (��))

instead of (50); in the basis (44) it has the form

N =

0
@ cos4 � sin2 � cos2 � 0
sin2 � cos2 � sin4 � 0

0 0 2 sin2 � cos2 �

1
A :
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We notice that the symmetry in this example e�ciently reduces the
dimension of the computational problem, but the general method works
with or without symmetry.

5.2.5. Numerical example
For the �rst example, the following values of parameters were chosen

mA = 1�mB = 0:2; EA = 1; EB = 5; �1 = �2 = 0:3; f0 = 1:

The relative magnitude 
 of the variable part of the loading is the
parameter of the problem; the angle � of the optimal deviation of the
extreme loading and the structural parameters � and � are determined
from the solution of the min-max optimization problem. We detect
three regimes:

1. When 
 < 
0 = :31, the extreme loading is vertical, �opt = 0, and
the optimal structure is a laminate with vertical layers directed
across the strip, �opt = 0, see Figure 6.

2. At the critical value 
0 of the parameter 
, the direction of the
extreme deviation undergoes a bifurcation, �opt = ��̂(
), shown
by the curve 1 in Figure 6. But while 
 < 
1 = :46, the optimal
structure remains the same: A laminate with layers directed across
the strip, �opt = 0 (curve 2 in Figure 6).

3. When the magnitude 
 further increases, 
 � 
1, the optimal struc-
ture bifurcates as well; it becomes a second-rank matrix laminate
with the angle �opt = ��̂(
) (curve 2 in Figure 6).

Although the problem has two solutions for the extreme loading,
the dependence of the compliance on the parameters � and � is a
saddle-point surface, it is shown in Figure 7. Indeed, the problem is
reformulated (relaxed) accounting for non-uniqueness of the loading
and for the symmetry in the design.

Following examples demonstrate the dependence of the optimal so-
lution on the ratio of Young's module of the materials in the composite.
Figure 8 shows the bifurcation diagrams for di�erent ratios of the
Young's moduli. Qualitatively, the picture remains the same, but the
critical values of the bifurcation parameter 
 are di�erent: The larger
is the ratio, the smaller the critical value of 
0 and 
1 at which the
bifurcation occurs. An interval (
0; 
1) decreases with the increase of
the ratio of Young's moduli.
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Figure 6. Bifurcation diagram shows (1) the angle of deviation �̂(
) of the extreme,
most dangerous loading and (2) the angle �̂(
) of optimal reinforcement of the second
rank laminated composite. Notice that the bifurcation parameter 
 has di�erent
critical values for deviation of the loading � and for the angle of reinforcement �.

5.3. Discussion

The principal compliance is a basic characteristic of an elastic body
which depends only on the shape of the domain and on the sti�ness of
the material. By the proper normalization of � by jj
jj and jjCjj, this

0
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Figure 7. Energy stored in the composite is a saddle point function of the angle of
deviation of the loading � and of the direction of reinforcement �.
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Figure 8. Bifurcation diagram for di�erent ratios of Young's moduli of materials
in the composite ranging from 1:2 to 1:25. Top: Bifurcation of the angle �̂(
) of
the deviation of the extreme loading from the normal. Bottom: Bifurcation of the
angle �̂(
) of direction of the optimal reinforcement for the second rank laminated
composite.

quantity is reduced to dimensionless parameter � :

� =
�

jj
jj jjCjj ;

and can be treated as a basic integral characteristic of the �lled domain
alongside with such properties as main eigenfrequency, the capacity, etc.

The optimal design aimed to decrease the principal compliance is a
minimax problem; typically, the problem does not have a saddle point
and the optimal design provides equal minimal compliance for several
extreme loadings. Symmetries and relaxation bring the problem to a
saddle-point type. Depending on the type of constraints, the extreme
loading can be a principal eigenfunction of an eigenvalue problem, a
concentrated loading, or a solution of a bifurcation problem.
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