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Why grain in tree’s trunks spiral: mechanical perspective

Seubpong Leelavanichkul and Andrej Cherkaev

Abstract In the present work, the specific question as
to whether the optimization of the spiral grain of trees
can be described from the mechanical point of view is
addressed. Computations of stresses and the optimized
grain angle using the theory of anisotropic elasticity are
reported, along with the comparison to the actual data
of Ponderosa pine. The results show good agreement be-
tween the computed and the measured grain angle. If the
structure of the tree is optimized for the strength, spiral-
ing of the grain does not lower this requirement. At the
same time, fluid is allowed to be transported across the
circumference of the trunk. To have a clear understand
why the tree spirals, other factors and approaches should
supplement the present analysis.

Key words Spiral grain, Anisotropic elasticity, Wood
failure, Biomimetics

1
Introduction

The paper concerns with explanation of morphology of
tree’s trunk from structural optimization viewpoint. Specif-
ically, we investigate reasons behind spiral grows of tree’s
trunk in Ponderosa Pine in South Utah. These trees de-
velop helicoidal wood fibers that wiggle around the trunk
as spirals. Spiral grain can be seen on many trees; they
are visible when the bark is removed from the trunk; the
angle is about 30◦ − 50◦. The questions that have often
been asked are why do they twist, what direction do they
twist, and how much do they twist? (Figure 1). The pa-
per performs stress analysis to answer the question: Why
the grain in the trunks of many trees twists.

Many different reasons and hypotheses have been made
and primarily among them are the earth rotation, the
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Fig. 1 Ponderosa pine (photo by Cherkaev).

wind, and even the gravitational effect of the moon (Ged-
ney (1986)). According to the work done by Kubler (1991),
the spiral growth allows water from each individual root
to reach every branch on the tree. In addition, trees be-
come less stiff and bend more easily because of the spi-
ral grain. This bending allows trees to become more ef-
fective at discarding excessive snow from their branches
and more resistant to breakage from heavy winds. Kubler
(1991) also found that spiral grain is often seen on trees
at the dry rocky site. In theory, tree branches with straight
grain are fed only by those roots directly below them. If
the roots on either side of the tree are cut, then straight
grain branches on that side will die. In comparison, each
root of a spiral grain tree feeds nearly the whole tree.
If all the roots on one side die, that side of the tree will
still be healthy. The reason for this is the xylem. Xylem is
the tissue in a vascular plant, consisting of woody fibers,
tracheid, and parenchymatous cells, through which wa-
ter passed upward from roots, and which provides sup-
port for the plant. The xylem spirals less around the
stem as the tree grows and the stem diameter increases.
When the tree grows each year, the growth is slightly
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offset from previous years. Hence, the flow from one root
is distributed almost completely around the tree bole.
This has been proven by injecting conifers with dye at
the base. As conditions get harsher, the grain tends to
spiral at a more extreme angle around the stem. This
qualitative analysis, however, does not answer the ques-
tion: how large is the angle?

There may be also a good mechanical reason behind
this development of the trunk. Studying morphologies
like bones or trunks which are critical for the survival
of a species, we may postulate that they are optimally
adapted to the environment. We should agree that trunks
of trees should stay unbroken and they should be able to
sustain extreme dynamic loads applied from all direc-
tions when a strong wind bends a tree.

We suppose that spiraling grains around a trunk is a
more complicated structure than a structure of straight
vertical grains. If a natural ’design’ becomes more com-
plex, there must be a reason for this. Understanding the
nature of optimality helps to incorporate the same con-
cept into the design of a similar engineering structure
(biomimetics). We use methods of structural optimiza-
tion to discuss the spiral in the tree. The selected biolog-
ical structure performs a clearly defined mechanical task,
the acting forces are known, the model is relatively sim-
ple, and the data on the morphology is available. A sys-
tematic mathematical technique is needed for the search
of a goal functional of an optimization problem with a
known solution; this technique could be called ”reverse
optimization:” it is aimed to explain the adaptation of
bio-structures. Here we use a simplified approach to the
problem: Choosing the goal functional from several of
independently guessed hypotheses.

Notice that the optimization problems in engineering
and in biology are mutually reciprocal. The biological
structure is known, but it is not clear in what sense the
structure is optimal. In contrast, the goal of the engi-
neering is the minimization of a given functional that is
not the subject of a search; the problem is to find an un-
known optimal structure. This observation reflects the
principal difference between biology that seeks an an-
swer to the question: ”Why are the bio-materials and
the morphology of living organisms the way they are?”
and engineering that wants to know ”How to make an
optimal structure?” by using the biomimetics of these
trees.

The structure of the paper is as follows. In the next
section, we analyze the stresses in an anisotropic cylinder
that models the trunk. This stress analysis considers the
structure under axial loading with a bending moment.
The stresses are computed as a function of the grain
angle. Finally, the maximum grain angle is determined
subjected to Tsai-Hill failure criteria. The objective is to
determine the influence of the grain angle on the strength
of the structure. The results will be applied to explain the
twisting of the Ponderosa pine for verification purposes
since its grain angle can easily be measured .

 

� �

� �

θ�

M 

y  

x 
φ�

z 

�θ

3 P 

2 

φ �

z 

b

Fig. 2 Schematics of the tree trunk.

2

Analysis

Before solving for the stress fields of this structure, we
give a brief overview of equations required for the com-
putation. Consider an infinite cylinder of the radius R,
fulfilled by an orthotropic linear elastic material with
the compliance S, and loaded by bending moment M
and the axial load P . We want to compute the stresses
and further the strength of the cylinder and trace their
dependence on the angle of twist of the anisotropic ful-
fillment . Assume that stresses inside the cylinder satisfy
equations of linear elasticity:

0 = ∇ · σ
σ = σT

ε = S · σ
ε =

1
2

[
∇u + (∇u)T

]

Consider differential element of the structure, the com-
pliance of an orthotropic material can be expressed in
terms of the engineering elastic parameters. In the co-
ordinates that coincide with principle axes of anisotropy
tensor (direction of the grain), the Hooke’s law takes the
form:

ε∗ij = S∗ijklσ
∗
ij

where: ε∗ij are strain components, including both normal
and shear, σ∗ij are stress components, including both nor-
mal and shear, and S∗ijkl is the compliance matrix, or in
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the matrix form:





ε∗11
ε∗22
ε∗33
ε∗23
ε∗13
ε∗12





=




1
E11

− ν21
E22

− ν31
E33

0 0 0
−nu21

E11

1
E22

ν32
E33

0 0 0
−nu31

E11

ν23
E22

1
E33

0 0 0
0 0 0 1

G23
0 0

0 0 0 0 1
G13

0
0 0 0 0 0 1

G12








σ∗11
σ∗22
σ∗33
σ∗23
σ∗13
σ∗12





(1)

The subscript 1 represents the radial direction. Direc-
tions perpendicular and parallel to the grain are denoted
by subscripts 2 and 3, respectively (see Figure 2).

2.1

Transformation of S∗

The structure possesses cylindrical anisotropy. Hence,
the analysis is conducted in cylindrical coordinates. It is
needed to compute the components of (1) in the cylindri-
cal system. The main coordinate axes of the compliance
S∗ are directed as follows:

er = e1

eθ = cos φe2 + sin φe3

ez = − sin φe2 + cos φe3

The new matrix can be written as:

S =
(
K−1

)T
S∗K−1

where S is compliance matrix in cylindrical coordinates
and K is a rotation matrix. It has a block form (Ting
(1996)):

K =
[
K1 2K2

K3 K4

]
(2)

where

K1 =




Ω2
11 Ω2

12 Ω2
13

Ω2
21 Ω2

22 Ω2
23

Ω2
31 Ω2

32 Ω2
33




K2 =




Ω12Ω13 Ω13Ω11 Ω11Ω12

Ω22Ω23 Ω23Ω21 Ω21Ω22

Ω32Ω33 Ω33Ω31 Ω31Ω32




K3 =




Ω21Ω31 Ω22Ω32 Ω23Ω33

Ω31Ω11 Ω32Ω12 Ω33Ω13

Ω11Ω21 Ω12Ω22 Ω13Ω23




K4 =




L1 L2 L3

L4 L5 L6

L7 L8 L9




and

L1 = Ω22Ω33 + Ω23Ω32

L2 = Ω23Ω31 + Ω21Ω33

L3 = Ω21Ω32 + Ω22Ω31

L4 = Ω32Ω13 + Ω33Ω12

L5 = Ω33Ω11 + Ω31Ω13

L6 = Ω31Ω12 + Ω32Ω11

L7 = Ω12Ω23 + Ω13Ω22

L8 = Ω13Ω21 + Ω11Ω23

L9 = Ω11Ω22 + Ω12Ω21

Here Ωij are the elements of the matrix:

Ω =




1 0 0
0 cos φ sin φ
0 − sinφ cosφ


 (3)

After the transformation, the matrix S takes the follow-
ing form:

S =




a11 a12 a13 a14 0 0
a21 a22 a23 a24 0 0
a31 a32 a33 a34 0 0
a41 a42 a43 a44 0 0
0 0 0 0 a55 a56

0 0 0 0 a65 a66




where aij are the non-zero rotated elements that are de-
termined from (2) and (3). Stresses and strains are trans-
formed as following:

σ = Kσ∗ and ε =
(
K−1

)T
ε∗

where: σ and ε are the stress and strain in the cylindrical
coordinates.

Below, stresses are analyzed for two loading cases:
axial loading and bending. Due to linearity of the model,
the stresses are the sum of the results from these two
loadings.

2.2
Stress functions

In this analysis, the body force is neglected; the cylinder
is loaded from its ends. The cylindrical coordinate system
as shown previously in Figure 2 is used. It is independent
of z, Thus, the equilibrium equations in cylindrical coor-
dinates become:

∂σr

∂r
+

1
r

∂τrθ

∂θ
+

σr − σθ

r
= 0

∂τrθ

∂r
+

1
r

∂σθ

∂θ
+

2τrθ

r
= 0

∂τrz

∂r
+

1
r

∂τθz

∂θ
+

τrz

r
= 0
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σr

σθ

σθ

σrθ

σrz
σθz

σz

Fig. 3 Stress components in cylindrical coordinate

and

σz =
1

a33
(D − a13σr − a23σθ − a34τθz − a35τrz

− a36τrθ) (4)

where (see Lekhnitskii (1981)) D = Br sin θ + C. These
four equations are bound together six components of the
stress tensor σr, σθ, σz, τθz, τrz, and τrθ (see Figure 3).
The other coefficients, B and C are the constants that
are formed from the boundary conditions. To solve for
the stress fields satisfying the equilibrium equations, two
stress functions Φ(r, θ) and Ψ(r, θ) are introduced as it
is common in the theory of elasticity, (see for example
Lekhnitskii (1981)). The stress components are expressed
through Φ and Ψ as:

σr =
1
r

∂Φ

∂r
+

1
r2

∂2Φ

∂θ2

τrθ = − ∂2

∂r∂θ

(
Φ

r

)
σθ =

∂2Φ

∂r2
(5)

τθz = −∂Ψ

∂r
τrz =

1
r

∂Ψ

∂θ

Notice that σz is expressed through the other compo-
nents by (4). According to Lekhnitskii (1981), the stress
functions must satisfy the following equations:

L′4Φ + L′3Ψ =
2

a33
(a13 − a33)

B sin θ

r
(6)

L′′3Φ + L′2Ψ =
2a34B sin θ

a33
+

a34C

r
− 2ξ (7)

where L′4, L
′
3, L

′′
3 , and L′2 are differential operators of the

fourth, third, and second orders, respectively:

L′4 = β22
∂4

∂r4
+ (2β12 + β66)

1
r2

∂4

∂r2∂θ2
+ β11

1
r4

∂4

∂θ4

+ 2β22
1
r

∂3

∂r3
− (2β12 + β66)

1
r3

∂3

∂r∂θ2
− β11

1
r2

∂2

∂r2

+ (2β11 + 2β12 + β66)
1
r4

∂2

∂θ2
+ β11

1
r3

∂

∂r

L′3 = −β24
∂3

∂r3
− (β14 + β56)

1
r2

∂3

∂r∂θ2

+ (β14 − 2β24)
1
r

∂2

∂r2

L′′3 = −β24
1
r

∂3

∂r3
− (β14 + β56)

1
r2

∂3

∂r∂θ2

− (β14 + β24)
1
r

∂2

∂r2
+ (β14 + β56)

1
r3

∂2

∂θ2

L′2 = β44
∂2

∂r2
+ β55

1
r2

∂2

∂θ2
+ β44

1
r

∂

∂r

and

βij = aij − ai3aj3

a33

is the reducing strain coefficient. The derivations of these
differential operators and their explicit forms are given
in Lekhnitskii (1981).

2.3
Stresses due to axial loading

In the case of axial loading, the stress functions and the
components of stress depend only on r. Thus, the solu-
tion to (6) and (7) are sought in the forms:

Φ = f(r) Ψ = g(r) (8)

Therefore, parameter in the right-hand side of (6) and (7)
is zero. Substituting (8) into (6) and (7), the following
system of differential equations are obtained:

0 = β22f
IV +

2β22

r
f ′′′

− β11

r2
f ′′ +

β11

r3
f ′ − β24g

′′′ +
(β14 − 2β24)

r
g′′ (9)

a34C

r
− 2ξ =

β24f
′′′ +

(β14 + β56)
r2

f ′ + β44g
′′ +

β44

r2
g′ (10)

We look for the solutions to the homogeneous part of (9)
and (10) in the form:

fh = Frα gh = Grα−1 (11)

The subscript h denotes a homogenous solution. By sub-
stituting (11) into (9) and (10), r is eliminated, and we
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obtain a system:
[
H1(α) H2(α)
H3(α) H4(α)

]

︸ ︷︷ ︸
H

[
F
G

]
=

[
0
0

]
(12)

The homogeneous system has nontrivial solution F and
G only if det(H) = 0, Solving this relation, we obtain 6
parameters for α : 0, 0, 1, 2, α5, and α6. The stress func-
tions can now be expressed as:

Φ =
(
m1 + m2 ln r + m3r + m4r

2 + m5r
α5 + m6r

α6
)

+ Φp (13)
Ψ =

(
p1r

−1 + p2r
−1 ln r + p3 + p4r + p5r

α5−1 + p6r
α6−1

)

+ Ψp (14)

where m1...m6, p1...p6 are the constants. Φp and Ψp are
the particular solutions: Φp = a1r

3 and Ψp = b1r
2 + c1r.

Consider the condition at point r = 0, one can see
that m2 = m3 = m4 = p1 = p2 = p4 = 0 in order
to avoid the singularity at this location. Moreover, any
value of αi that has a negative sign is discarded because
stresses have to be finite. In this case, either α5 or α6

has a negative value. Let us assign these values to α5, so
that m5 = p5 = 0. The stress functions now become:

Φ = m6r
α6 + Φp Ψ = p6r

α6−1 + Ψp

The unknown constants are determined from the bound-
ary conditions:

σr = τrθ = τθz = τrz = 0 at r = b. (15)

Utilizing (15), we have two equations with two unknowns.
The constants in the particular solutions are determined
from the end conditions:
∫ b

0

σzrdr =
P

πb2

∫ b

0

τθzr
2dr = 0

where P is the axial loading and b is the radius of the
cylinder. Once all the constants are determined, stress
components can then be evaluated according to (5). Be-
cause of the spiral anisotropy, the axial loading causes the
cylinder to twist. The displacements are not computed
in this analysis, since the main objective is to determine
the stresses.

2.4
Stresses due to bending

Let us analyze the case where the structure is in pure
bending. A bending moment M is applied at each end
(Figure 2). The analysis still follows the same procedures
as in axial loading case with the different stress functions:

Φ = f(r) sin θ Ψ = g(r) sin θ

In the pure bending case C and ξ in (6) and (7) are
zero. Substituting the above stress functions into (6) and
(7), the following systems of differential equations are
obtained:

2 (a13 − a33)B

a33r
=

β22f
IV − (2β12 + β66)

r2
f ′′ +

β11

r4
f +

2β22

r
(16)

+
(2β12 + β66)

r3
f ′ − β11

r2
f ′′ − (2β11 + 2β12 + β66)

r4
f

+
β11

r3
f ′ − β24g

′′′ +
(β14 + β56)

r2
g +

(β14 − 2β24)
r

g′′

2a34B

a33
=

− β24f
′′′ +

(β14 + β56)
r2

f ′ − (β14 + β24)
r

f ′′ (17)

− (β14 + β56)
r3

f + β44g
′′ +

β55

r2
g +

β55

r2
g′

Similar to the axial loading case, the solutions to the
homogeneous part of (16) and (17) assume the forms of
(11), and α is solved as described in the axial loading case
using (12). Solving (12) yields six values 1, 1, α3, α3, α4,
α5, and α6. Their expressions are shown in Appendix.
The stress functions can now be expressed as

Φ =
(m1r + m2r ln r + m3r

α3 + m4r
α4 + m5r

α5+
m6r

α6) sin θ + Φp

Ψ =(
p1 + p2 ln r + p3r

α3−1 + p4r
α4−1 + p5r

α5−1+

p6r
α6−1

)
sin θ + Ψp

where Φp = a1r
3 sin θ and Ψp = b1r

2 sin θ. Once again,
by setting the condition at r = 0, one can see that m2

and p2 are zero, and as in the axial loading case, any
value of αi that has a negative sign is omitted. Now, the
stress functions become:

Φ = (m3r
α3 + m4r

α4) sin θ + Φp

Ψ =
(
p3r

α3−1 + p4r
α4−1

)
sin θ + Ψp.

The unknown constants m3, m4, p3, and p4 are deter-
mined from the boundary conditions:

σr = τrθ = τθz = τrz = 0 at r = b. (18)

Utilizing (18), a system of four equations and four un-
knowns is obtained. The constants in the particular so-
lutions are determined from the end conditions:

∫ 2π

0

∫ b

0

σzr
2 sin θdrdθ = M

∫ 2π

0

∫ b

0

σzr
2 cos θdrdθ = 0.
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Finally, stress components can then be evaluated ac-
cording to (5). This computation was carried out using
Maple V. This analysis enables us to compute stresses
in an anisotropic elastic cylinder with rotated axes of
anisotropy. Although the calculations are analytic, the
resulting formulas (obtained by Maple V) are bulky and
we do not display them here.

2.5
Failure criteria

Due to the nature of the anisotropy, the conventional
maximum strength criterion for isotropic materials gives
a poor prediction of failure (Swanson (1997)). For wood,
we use Tsai-Hill failure criterion:
(

σ1

σ1u

)2

+
(

σ2

σ2u

)2

− σ1σ2

σ2
1u

+
(

τ12

τ12u

)2

< 1 (19)

When the left hand side of (19) is greater than or equal to
1, the failure is predicted. No distinction is made between
compressive and tensile stresses.

Another criterion that is often used for wood struc-
ture is Hankison’s formula (Gedney (1986)):

σu =
σ1uσ2u

σ1u sin2 φ + σ2u cos2 φ

Hankinson’s formula approximates the ultimate axial strength
as a function of the grain angle.

3
Analysis of Ponderosa pine

Based on the pure mechanical model presented in the
previous section, the stresses were determined for Pon-
derosa pine. First, the stresses were computed for the
case of axial loading and then the case of a bending mo-
ment. The computation of stresses demonstrates whether
spiraling is related to the elastic properties of the tree.
If nature has already optimized the structure of living
organisms, one expects the structure of the tree be opti-
mized for the environment surrounding it. For instance,
the structure of the tree should be in the configura-
tions that maximize its strength to support the weight of
branches, leaves, snow, and also resistance to the wind.

3.1
Setting of the parameters

We assumed that the trunk of the Ponderosa pine is
cylindrical with radius r = 10 in. In addition, the axial
loading is only a result of the weight and has the magni-
tude P = 1500 lb. The bending moment is approximated
to be 10000 lb·in from the wind force. All the parame-
ters are approximated in English unit in order to apply

Table 1 Elastic moduli of Ponderosa pine with 12 % mois-
ture content, 106 psi.

E1 E2 E3 G12 G13 G23

0.1236 0.0743 1.423 0.00994 0.1035 0.0978

directly to the data that were obtained for Ponderosa
pine. Table 1 shows the properties of the Ponderosa pine
(Bodig and Jayne (1996)). Material strengths are (The
Forest Products Laboratory (1955)): σ33t = 6300 psi,
σ33c = −5270 psi, σ22t = 400 psi, σ22c = −740 psi,
τ23ul = 1160 psi.

Utilizing this information, the calculation of stresses
was performed. In this case, if the spiral angle is less than
21.2◦, some α’s in (13) and (14) become negative. This
leads to singularity at the center of the trunk at which
r = 0. As a result, we only look at the grain angle φ that
varies from 21.2◦ to 90◦. Applying (19), we can predict
when the structure fails.

3.2
Results

Figure 4 shows the total stresses resulting from bending
and axial loading. Here, we look at the stresses and the
maximal grain angle of Ponderosa pine using data and
criteria given in Section 3.1 and Section 2.5. In addition,
stresses are only investigated on the surface at θ = 90◦

and θ = −90◦ because maximum compressive and tensile
stresses are expected at these locations. Only the plots
of the stress fields are illustrated due to the size of the
stress equations. Since P and M were arbitrary chosen,
it is interesting to see how the failure prediction would
vary if P or M changes. It is appropriate to vary M since
the speed of the wind varies more than the weight on top
of the tree. The grain angle and the Tsai-Hill minimum
failure values are shown in Figure 5.

As the magnitude of the bending moment increases,
the maximal grain angle becomes smaller in order to re-
duce the bending stress. Maximal grain angle is approxi-
mately 37◦ (Figure 5). At this grain angle, the Ponderosa
pine fails when the magnitude of the bending moment in-
creases to 800 kip·in. Naturally, trees are uprooted when
wind load is high. The stresses produced by the wind
load in nature are not typically high enough to exceed
the strength of this tree. The ultimate strength of the
Ponderosa pine is shown in Figure 6 using Hankinson’s
formula and Tsai-Hill failure criterion.

4
Structural optimization

In the beginning, we mentioned that the spiraling al-
lows the fluid to be transferred throughout the whole
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Fig. 4 Total stresses on the surface of the tree.

tree even though if the roots on one side has died. How-
ever, the presence of the spiraling also causes the tree to
become less stiff. Hence, we need to determine the maxi-
mum grain angle that does not affect the strength of the
tree significantly.

Having obtained the results of the failure predictions,
one may use them to gain the benefits of the biomimetics
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Fig. 5 Failure prediction using Tsai-Hill criterion at θ = π
2
.

of these trees. From Figure 5, we can see that the curves
from these plots have the same shape but with the dif-
ferent in magnitudes. These curves show that there is a
sharp increase in magnitude beyond 37◦. From this ob-
servation, one could set up the problem of finding maxi-
mum angle as a problem of optimization with constraints
as following:
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Ultimate strength vs grain angle
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Fig. 6 Ultimate strength of Ponderosa pine at various spiral
angles.

Maximize the angle φ (0 ≤ φ ≤ π
2 ) subject to the

conditions

1. Failure criterion is satisfied (19)
2. Parameters of materials and loadings are as described

in Section 3.1
3. The angle φ is within the range preceding the point

where the sharp increase of the slope in Figure 5 takes
place.

5
Discussion and conclusions

From this analysis, one cannot fully explain the relation-
ship between the spiral twist and the mechanical proper-
ties of the tree; it is more reasonable to assume that the
spiraling has to deal with fluid transportation that we
mention in the introduction. Instead, it might be more
appropriate to ask how big the angle could be in order
for the tree to still remain strong. Excessive spiraling not
only reduces the stiffness of the tree but also weakens the
strength of the tree. Hence, there ought to be a limiting
point on how much the stiffness can be reduced in or-
der for a tree to stand up straight. Its chance against
breaking would increase if the tree does not bend much.

The result from Figure 5 shows that the failure pre-
diction value increases slowly to about 37◦, and then
the slope increases dramatically beyond this point. The
tree strength is not sacrificed considerably, as long as
the grain angle remains below 37◦. The grain angle of
the Ponderosa tree obtained using theory of anisotropic
elasticity is slightly different from the angle measured in
the Figure 7. However, this was expected since many as-
sumptions were made during the analysis. The permitted
interval according to this analysis is between 21.2◦ and
37◦.

30

40

Fig. 7 Angle measurements at the lower and upper portion
of the trunk.

Another observation that was made was the differ-
ences between the lower and the upper portion of the
tree (Figure 7). The grain angle is a little bigger toward
the bottom. When the tree is small, it requires more dis-
tribution of fluid to ensure proper growth. Having the
fiber spiral at a bigger angle allows the tree to receive
more fluid along its circumference. As the tree grows
taller, the angle becomes smaller, which allows the fluid
to be transported to the higher portion faster by reduc-
ing the coverage area. This could be another reason why
the grain angle varies this way. Details about the fluid
transportation are not discussed here since it is beyond
the scope of this analysis.

We did not consider the cracking of the trunk in this
analysis. Meanwhile, this may be an important factor.
Looking at the elastic constants of this tree, one finds
that E2 is approximately 5% of E3, which is almost
as there is a crack. With this in mind, Leonid Slepyan
(via private communication) has pointed out that, as the
crack wiggles around the tree, it is less prone to fracture
than when the crack is vertically straight.

Due to lack of information and actual data, average
wind load and the load that can uproot the Ponderosa
tree, it is not possible to give a solid conclusion regarding
relationships between the magnitude of the twist and
the elastic properties of trees. In addition, the results
presented in this analysis only reflect the Ponderosa pine.
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Our analysis shows that the problem of adaptation of
a tree’ trunk can be viewed as a problem of constrained
minimization. The spirals in the grain are developed for
the non-mechanical reason (transport of the water to
branches) and the strength analysis provides a constraint
that limits the angle of these spirals. Namely, we observe
that the strength is practically the same for the angles
that do not surpass the critical value, and this critical
value is what we see in Nature. In short, a structure
can be more flexible by having the fibers spiral along its
circumference. However, depending on the elastic prop-
erties of the material, the angle of the spiral can vary.
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