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Abstract

This paper discusses a design concept of a protective structure with a special morphology
that improves the impact resistance capability. We present a “bistable” structure concept: The
bistable structure is designed so that the stress-strain relation is not unique. When the strain
reaches a threshold, that part of the structure yields and subsequently fails. The remaining parts
then carry the loads and maintain the structural integrity. The redistribution of the loads allows
more energy of the collision to be absorbed.

We describe the response of bistable structures in macro- and microscale, introduce a mesoscale
damage tensor that measures the degree of damage in a small region, and numerically investigate
a problem of projectile impacting a protective net. This paper introduces several effectiveness
criteria of the protective bistable structure, and compares the structural responses of the bistable
and conventional structure. The bistable structure dissipates more energy by creating a partial
damage in a large area. Damage is understood as a process of irreversible phase transition from
the initial to disintegrated state. Damage of the bistable structure is more stable; the cracks do
not develop due to yielding of structural elements and damage delocalization.
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1. Introduction

An unstructured material can absorb energy until it melts. However, a tiny portion
of this energy yields to a construction’s disintegration due to instabilities of the damage
propagation that leads to energy concentration and failure. Appearance of concentrated
damage zones, such as cracks or delaminating, destroys the construction, while the re-
mains of the disintegrated construction still is able absorb a lot of energy.
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We investigate a propagation of structural damage, and present models of a protective
structure with improved characteristics. The designed structures must sustain a sudden
impact: they absorb the energy while maintaining their structural integrity [1]. Com-
monly used protective devices include car bumpers, helmets, tempered glass, climbing
“screamer,” and woven baskets of hot balloons. These very different constructions are all
designed to be damaged or destroyed in a collision saving the protected object - main
vehicle or its passengers. In a collision, a properly designed bumper will be badly dam-
aged, thereby absorbing the energy of impact, and saving the vehicle and its passengers.
A strong and stiff bumper that stays undamaged while the car is ruined does not fit its
purpose. Likewise, a fragile bumper does not fit because it is easily destroyed and does not
absorb enough energy to protect the vehicle. The optimally designed structure realizes
the known recommendation of defensive driving instructions ”Choose to hit something
that will give way (such as bushes or shrubs) rather than something hard.” The principle
of design of protective structure is in contrast with the conventional optimal design of
constructions of maximal stiffness, which should stay undamaged under a given static
load.

Since damage to personnel or equipment is minimized by maximizing the energy ab-
sorbed by the protective structure, these devices are most effective when they are com-
pletely damaged or destroyed everywhere. Naturally, a concentrated impact load tends
to produce concentrated zones of damage, which is contrary to the goal of maximizing
damage throughout the structure. The design concept presented here leads to a special
construction that creates an optimal distribution of damage throughout the structure.
To spatially distribute damage, a first-stage sacrificial microstructure is used to radiate
a large portion of the initial impact energy away from the impact point. After the sacrifi-
cial structure breaks, a backup “waiting element” structure provides continued resistance
to catastrophic localized failure. Much like organic super-resistive structures, a waiting
element structure provides a secondary resistance that is not present in conventional
protective devices.

The total fracture energy is an important factor when determining the capability of
a structure to withstand a dynamical loading. In most structures, however, the energy
density is uneven. Localized yielding occurs at a particular location while the total energy
associated with fracture in the structure is relatively small. To increase the total fracture
energy, the concept of a bistability has been introduced [2]. In bistable structures, yielding
is produced in a larger volume, thus increasing the total fracture energy. A bistable
structure is designed with localized redundant load paths. When one load path yields
and subsequently fails, the remaining load path can carry the load and retain structural
integrity. A bistable structure may be developed by forming a chain or lattice of bistable
structural links [3–5]. Multiple regions of such structure exhibit yielding prior to ultimate
failure. Thus, the bistable structures allow for the delocalization of yielding in a structure.
In this paper, we emphasize their design principles via the assembly of “sacrificial” and
“waiting” elements, and advantages in comparison to conventional structures.

2. Elements of an impact resistive bistable structure

In all unstructured material, stress rate decreases when strain increases, due to de-
velopment of imperfection, micro-cracks opening, dislocation concentration, and similar
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Fig. 1. Structures that absorb energy and become partially damaged, but maintain structural integrity.

(a) Lattice with redundant load paths. (b) Tube and cylinder. (c) Tube and cone. (d) Multilayer structure.
(e) Structure with helices that mimics protein.
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Fig. 2. A bistable link assembly and its force-displacement response

mechanisms. This phenomenon leads to stress concentration and instabilities that eventu-
ally destroy the structure. To increase the resistance capability, we suggest structures that
become stiffer and stronger when damaged, thanks to their morphology. Such structures
distribute the stress more evenly and are stable even when they are partially destroyed
(Fig. 1). These structures can experience multiple inner breakages and they can sustain
large deformations without destruction, a wave transports the damage away from the
impacted region [4,5].

In two-dimensional lattice, strong elastic waves and waves of damage propagate through-
out the construction, reflecting from its boundaries and interfering with each other. This
process leads to a high concentration of stresses that damage the construction.

2.1. Impact-resistant bistable structure

A desired distribution of a moderate damage, initiation and redirection of damage
waves can be effectively achieved by using bistable structures. Bistable structure is an
assembly of roughly parallel two brittle-elastic or elastic-plastic rods [6], one of which
is longer than the other, see Fig. 2. When the shorter (sacrificial) element fails, the
load is assumed by the second (waiting) element that was initially inactive. Bistable
links lead to large but stable pseudo-plastic strains and thus increase the resistivity.
Notice the difference between the plastic response and the one shown in Fig. 2. For
large deformations, the bistable link regains stability while the plastic link would remain
unstable.

Because of these local instabilities, the multiscale bistable structures excite intensive
waves of partial damage and relaxes the structure by allowing for large local deforma-
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Fig. 3. (a) The lattice consists of three families of parallel links α, β, and γ. (b) Example of lattice with

damaged links (dashed lines). In this illustration, bα = 1, bβ = 2, and bγ = 3. (c) Tangent vectors to the

links’ families.

tions of the damaged links. The bistable cellular structures (lattices) containing waiting
elements naturally excite and transmit waves of damage, acting as a domino train. The
structure with bistable links transforms the energy of an impact into fast traveling waves
that distribute energy throughout a larger area where it dissipates.

2.2. Criteria of damage and tensor of damage

In a chain, it is natural to count the number of partially damaged links to access the
absorbed energy. Any completely broken link means that the whole chain is destroyed.
To the contrary, the triangular lattice can still resist projectiles even if some of the links
are completely broken. We use two basic criteria that compare the state of the structure
before and after the collision:

(i) The percentage of partially damaged links
(ii) The percentage of destroyed links

The first number shows how effectively the damage is spread, and the second one shows
how badly the structure is damaged. Ideally, we wish to have a structure in which all
links are partially damaged, but none is completely destroyed.

The number of destroyed links is a rough quality criterion. It ignores a significant
factor – the positions of the destroyed links. while the effect of the damage depends on
the distribution and orientation of the broken links. To describe various configurations
of broken links, we introduce a damage tensor that can distinguish partial damage de-
pending on which links are broken. The consideration is similar for the sacrificial and the
waiting elements.

The lattice consists of three families of parallel links α, β, and γ see Fig. 3a. The
angle between the tangent vectors to the links’ families is 60◦. They are characterized by
tangent vectors tα, tβ , tγ , Figure 3c;

tα · tβ = tβ · tγ = tγ · tα = −1
2
. (1)

This tensor is introduced as follows. In a reference configuration, select a domain Ω
that is larger than distance between nodes, count all links that contain at least one node
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in Ω, and call them a set ΩL. Set ΩL is divided into three subsets lα, lβ , lγ of differently
oriented links.

Now count the number bα, bβ , bγ of broken links in each family and introduce the
relative directional damage,

pα =
bα
lα
, pβ =

bβ
lβ
, pγ =

bγ
lγ
, pi ∈ [0, 1] (2)

Damage tensor D is introduced as a symmetric tensor:

D(Ω) = pαtα ⊗ tα + pβtβ ⊗ tβ + pγtγ ⊗ tγ . (3)

Its eigenvalues and equal to

d1 =
1
2

(
pα + pβ + pγ −

√
p2
α + p2

β + p2
γ − pαpβ − pβpγ − pαpγ

)
, (4)

d2 =
1
2

(
pα + pβ + pγ +

√
p2
α + p2

β + p2
γ − pαpβ − pβpγ − pαpγ

)
, (5)

One can see that the eigenvalues are nonnegative, d1 is zero if only one family is damaged
(crack-like directional damage) and d2 is zero if and only if there is no damage at all,
pα = pβ = pγ = 0. If all links are damaged, pα = pβ = pγ = 1, then d1 = d2 = 3

2 .
If the basis is chosen so that

tα =

0

1

 , tβ =
1
2


√

3

1

 , tγ =
1
2


√

3

−1

 , (6)

then the damage tensor assumes a form

D =
1
4

 3pβ + 3pγ
√

3(pβ − pγ)
√

3(pβ − pγ) 4pα + pβ + pγ

 . (7)

Dimensionless damage tensor D allows the characterization of an average damage in
a region Ω and hence the average irreversible deformation in that region. It can be used
for an intermediate scale description of the damage. This tensor can be defined for all
lattices, but in the bistable links, there are two damage tensors, one for the sacrificial
elements and one for the waiting elements. For example, the damage tensor D shown in
Fig. 3b can be expressed as

D =
1
4

 15
16

−
√

3
16

−
√

3
16

9
16

 , and d1,2 =
3
4
±
√

3
8
. (8)

2.3. Effectiveness Criterion based on the projectile

An integral criterion that is not sensitive to the details of the damage is suggested by
[7] where the variation of the impulse of the projectile is measured. It is assume that the
projectile hits the structure flying into it vertically down. To evaluate the effectiveness,
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the ratio R in the vertical component Λv : Λp = [Λn,Λv]T of the impulse Λp of the
projectile before and after the impact:

R =
Λv (Tfinal)
|Λv (T0)|

, (9)

where T0 and Tfinal are the initial and the final moments of the observation, respectively.
The variation of impulse of the projectile R shows how much of it is transformed to the
motion of structural elements. Parameter R evaluates the structure’s performance using
the projectile as the measuring device without considering the energy dissipated in each
element of the structure; it does not vary when the projectile is not in contact with the
structure.

3. Elastic-brittle waiting elements

Consider structural waiting elements that significantly increase the resistivity of the
structure due to their morphology. These elements and their quasistatic behavior are
described in [8]. Following [8], consider the link as an assembly of two elastic-brittle rods,
lengths L and ∆(∆ > L) joined by their ends. The longer bar is initially slightly curved
to fit. When an increasing external elongation stretches the link, only the shortest rod
resists in the beginning. If the elongation exceeds the critical value, this rod breaks and
the next (longer) rod then assumes the load replacing the broken one as previous shown
in Fig. 2.

Assume that a unit amount of material is used for both rods. This amount is divided
between the shorter and longer rod: The amount α is used for the shorter (first) rod and
the amount 1 − α is used for the longer (second) one. The cross-sections s1 and s2 of
rods are

s1(α) =
α

L
and s2(α) =

1− α
∆

. (10)

The force-displacement relationship in the shorter rod is

F1(z) = ks1(α)
( z
L
− 1
)

(1− c1), (11)

where c1 = c1(z, t) is the damage parameter for this rod; it satisfies the following equation

dc1(z, t)
dt

=

{
vd if z ≥ zf1 and c1(z, t) < 1
0 otherwise

, (12)

where zf1 = L(1 + εf ), c1(z, 0) = 0, and vd is the speed of damage. The longer rod starts
to resist when the elongation z is large enough to straighten this rod. After the rod is
straight, the force-displacement relationship is similar to that for the shorter rod:

F2(z) =

{
ks2(α)

( z
∆
− 1
)

(1− c2) if z ≥ ∆

0 if z < ∆
. (13)

Here F2 is the resistance force and c2 = c2(z, t) is the damage parameter for the second
rod:
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dc2(z, t)
dt

=

{
vd if z ≥ zf2 and c2(z, t) < 1
0 otherwise

, (14)

where c2(z, 0) = 0. These equations are similar to Eqs. (11) and (12), where the cross-
section s1(α) is replaced by s2(α) and the critical elongation zf1 by zf2 = ∆(1+εf ). The
difference between the two rods is that the longer (slack) rod starts to resist only when
the elongation is large enough. The total resistance force F (z) in the waiting element is
the sum of F1(z) and F2(z):

F (z) = F1(z) + F2(z) (15)

The graph of this force-displacement response for the monotonic external elongation is
shown in Fig. 2 where the damage parameters jump from zero to one at the critical point
zf1.

3.1. Kinematic of the waiting elements

In the current research, the Finite Element Method (FEM) is chosen as the numerical
tool. The numerical formulation can typically be founds in many FEM literatures, such
as [9,10]. A brief overview of the technique is discussed in this section. The kinematic of
the system can be described by the momentum equation

σij,j + ρfi = ρẍi, (16)

satisfying the following boundary conditions
– Traction boundary conditions
– Displacement boundary conditions
– Contact discontinuity
where σij is the Cauchy stress, ρ is density, fi is the body force density, ẍi is acceleration,
and nj is a unit normal to the element boundary. Using the principle of minimal virtual
work π, the variation δπ can be expressed as

δπ =
∫
V

ρẍiδxidV +
∫
V

σijδxi,jdV −
∫
V

ρfiδxidV −
∫
S

tiδxidS = 0. (17)

The considered body is then discretized into finite elements defined by their nodal points

n∑
e=1

(∫
V e

ρẍiδxidV +
∫
V e

σijδxi,jdV −
∫
V e

ρfiδxidV −
∫
Se

tiδxidS

)
= 0, (18)

Here, n is the number of the nodal points defining element e. The variation δxi, or the
weight function, is defined as

δxi = wi(Xα, t) = Nj(Xα)wei (t) and xi(Xα, t) = Nj(Xα)xei (t), (19)

where Nj is the element shape function (or interpolating function), xei is the element
nodal coordinate, and wei is the element weight function.

The model studied in this work is constructed using truss elements. The truss element
carries an axial force and has three degree of freedom at each node. The displacement
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and velocity within the truss are interpolated in the local system x̂ along the element’s
axis as follow [11]:

u = Njui and u̇ = Nj u̇i, (20)

where N1 = 1− x̂/L and x̂/L, and L is the element length.

3.2. Constitutive model

Consider a 1D-spar (truss) element, an elastic-brittle bistable behavior can be devel-
oped based on the formulation presented in the previous section. Stresses at time step
n+ 1 are computed through stresses σn of time step n
sacrificial element:

σn+1
11 =

[
σn11 +

Estr∆ε

3(1− 2ν)
+ 2Gs

(
∆ε11 −

1
3

tr∆ε

)]
(1− cn1 ), (21)

waiting element:

σn+1
11 =


[
σn11 +

Ewtr∆ε

3(1− 2ν)
+ 2Gw

(
∆ε11 −

1
3

tr∆ε

)]
(1− cn2 ) if cn1 ≥ 1

0 if cn1 < 1
, (22)

where σ11 is the axial stress, ∆ε is the strain increment tensor, E is Young modulus, ν is
Poisson’s ratio, G is the shear modulus, and c1 is the damage parameter. The subscript
s and w in moduli denote sacrificial and waiting element, respectively. The parameter
ci controls the status of the links; 0 = undamaged, 1 = broken, and 0 < ci < 1 implies
partially damaged. It also must satisfy the following

cn1 =


0 if εtotal ≤ εc and cn−1

1 6= 1
cn−1
1 + ċ1∆t if εtotal ≥ εc and cn−1

1 < 1
1 otherwise,

(23)

where εc is the critical strain. When failure of the sacrificial element occurs, Eq. (21)
sets stress to be zero, and the waiting element picks up the load after that as shown in
Eq. (22).

3.3. A two-dimensional assembly of the waiting elements

Consider a unilateral triangular grid: each inner point has six equally distant neighbors,
see Fig. 4. The distance between neighboring knots is equal to L. The knots in the
boundary (including corners) have lower number of neighbors. The waiting elements
connect the neighboring knots. Initially, the system is in equilibrium and does not have
any inner stress. If the strain is small everywhere and each link is strained less than
the critical value zf , the system is linear and it models a linear elastic material. After
the first rod in a link breaks and is replaced with a longer one, the net experiences an
“irreversible phase transition.”
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Fig. 4. The waiting element mechanism and its the force-displacement response

Table 1
sacrificial element’s parameters

Parameter Value

Young modulus, E 120 GPa

Poisson’s ratio, ν12 0.36

Length, L 1.0 m

Cross-sectional area, As 0.01 m2

Critical strain, εc 0.008

Table 2
waiting element’s parameters

Parameter Value

Young modulus, E 120 GPa

Poisson’s ratio, ν12 0.36

Length, L 1.008 m

Cross-sectional area, As 0.0198 m2

Critical strain (after fully stretched), εc 0.008

After each break, the network changes its elastic properties and its equilibrium position.
The dynamics of the damage and failure of the net can be viewed as a series of these
transitions. In contrast with the conventional structure, the waiting elements structure
may become stronger after sacrificial elements break. Another advantage is that the
additional slackness that is added after the break helps to spread the damage across the
structure. A partially destroyed structure may have inner stresses.

4. Numerical examples

Example 1: Single element test

A single element test is performed to verify that the constitutive model is correctly
implemented. The model parameters are given in Table 1 and 2. The force-displacement
relationship of a single-element test under uniaxial strain loading is shown in Fig. 6.
Scale and rate effects are not considered, and all the parameters are tuned to the specific
geometry chosen for this example in order to obtain the desired bistable response to be
used in the next example.

Figure 5 illustrates that the amount of the energy dissipated also depends highly on
the speed, ċ, at which the link becomes fully damaged. The updated damaged parameter
at each time step is computed using Eq. (23), hence, the size of the time step also greatly
influences how fast the damage parameters changes from zero to one. For demonstration
purposes, we have picked ċ to be 106 m/s for this particular example to mimic the elastic-
brittle response and also to ensure that the sacrificial element is fully damaged before
the waiting element becomes active.
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Fig. 6. Schematic sketch of the

ball impacting net

Example 2: A rigid ball impacting a net

This example illustrates the performance of a bistable net-like structure under impact
loading. Using the properties given in Table 1 and 2, a 100x100m net constructed with
bistable links is impacted by a rigid body as shown in Fig. 6. The net is constrained
in all direction along the edge. The net is constructed using 23539 truss elements, and
contains 8404 nodes. It should be noted that the parameters in this example are tuned
for demonstration of concepts so that the differences of the outcome can significantly be
seen between the net made from conventional links and bistable links.

The ball final velocity (t = 0.5 s in this study), are given in Fig. 7. For the chosen
configuration, at lower mass (2500 kg), the ball is rejected and neither type of the nets
are damaged. As the mass is increased to 7500 kg, the ball penetrates both nets and have
similar exit velocity. The bistable net has the most advantage over the conventional net
when the initial velocity of the ball is 150 m/s and the mass of the ball is 5000 kg. At
this combination, the ball is bounced off the bistable net, while the conventional net is
penetrated, see Fig. 8a. In addition, Fig. 8b shows that more energy is dissipated by the
bistable net than the conventional net. These plots illustrate the range at which the the
nets can effectively resist the impact.

The stress distribution comparison of the bistable net and the conventional net are
shown in Fig. 9 and Fig. 10. In conventional net, the stress is uniformly and heteroge-
neously scattered when some neighboring links are destroyed. Similar pattern is observed
for the bistable net once the waiting element are destroyed. However, when the sacrificial
elements but not the waiting elements are destroyed, the stress distribution is more ho-
mogeneous. The conventional net is destroyed sooner than the one with waiting elements,
and requires less energy to be penetrated.

The improved energy dissipation is achieved through the delocalization of damage. As
can be seen from Fig. 11, damage in the bistable net is distributed throughout the net
by completely destroying the sacrificial elements. The damage in the conventional net,
on the other hand, concentrates in the impact area.

Another phenomenon observed from these simulations is the crack propagation. Illus-

10



100 125 150 175 200
0

20

40

60

80

100

120

impact velocity (m/s)

ex
it 

ve
lo

ci
ty

 (
m

/s
)

 m = 2500 kg

 

 

bistable
conventional

(a)

100 125 150 175 200
−140

−120

−100

−80

−60

−40

−20

0

20

40

60

impact velocity (m/s)

ex
it 

ve
lo

ci
ty

 (
m

/s
)

 m = 5000 kg

 

 

bistable
conventional

(b)

100 125 150 175 200
−160

−140

−120

−100

−80

−60

−40

−20

0

20

40

impact velocity (m/s)

ex
it 

ve
lo

ci
ty

 (
m

/s
)

 m = 7500 kg

 

 

bistable
conventional

(c)

100 125 150 175 200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

impact velocity (m/s)

ef
fe

ct
iv

en
es

s 
ra

tio
  R

 

 

2500 kg
5000 kg
7500 kg

(d)
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that it is fired off. (d) Effectiveness ratio of the bistable net under an impact of various masses. The net
is effective against impact when the m ≤ 5000 kg and vimpact ≤ 150 m/s.

0 0.1 0.2 0.3 0.4 0.5
−25

−20

−15

−10

−5

0

5

time (s)

 z
−

di
sp

la
ce

m
en

t (
m

)

 

 

bistable net
conventional net

(a)

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8
x 107

time (s)

ki
ne

tic
 e

ne
rg

y 
(J

)

 

 

bistable net
conventional net

(b)

Fig. 8. (a) Kinetic energy. Mass = 5000 kg and impact velocity = 150 m/s. (b) Displacement along the
z-direction; mass = 5000 kg and impact velocity = 150 m/s.
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t = 0.014 s t = 0.019 s

t = 0.022 s t = 0.026 s

t = 0.030 s t = 0.034 s

Fig. 9. Snapshots of axial stress in the net with bistable links

trated in Fig. 12, as the ball penetrates through the net, cracks are formed in the con-
ventional net, while no crack formation is observed in the bistable net. Crack is stopped
in the bistable because the delocalization via the waiting element. This illustrates that
a waiting elements design prevents stress concentration that is the main cause of the
construction failure, and therefore is preferable as a protective device. The bistable links,
made from an elastic-brittle material, show the plastic-type behavior, see Fig. 2. Bistable
links lead to large but stable pseudo-plastic strains and thus increase the resistivity.
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t = 0.014 s t = 0.018 s

t = 0.022 s t = 0.026 s

t = 0.030 s t = 0.034 s

Fig. 10. Snapshots of axial stress in the net with regular links

5. Conclusion

The bistable structure can absorb more energy in comparison to the conventional
structure by distributing the damage along its length. This behavior is due to special
morphology of “waiting elements.” The damage spread through created local instabilities
in bistable structures can be implemented at all scales, from molecular to materials to
large construction. The multiscale design forces more structural damage at each level
and thus increases resistance of the structure. Correspondingly, the implementation is
to be done by chemical and material design methods, by structural optimization and by
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(a) Bistable net (b) Conventional net

Fig. 11. Damage at t = 0.5 s.: (a) The complete destroyed sacrificial elements are shown in red (2435

damaged links), while the completely damaged waiting element are hidden from view. There are no
partially damaged links in this example because the damage speed ċ is set to the same value as the time

step size used in the simulation. (b) The completely destroyed links (284 links) are hidden from view.

(a) Bistable net (b) Conventional net

Fig. 12. Penetration of a 7500 kg rigid ball with initial velocity of 175 m/s, t = 0.3s. The phase transition

leads to a pseudo-plastic response of the net.

design principles that should be embedded into CAD system. The design of structures
with bistable elements requires advanced numerical simulation and structural optimiza-
tion, because the advantages of a bistable structure appear only if it is properly designed.
The suggested bistable structures can protect against blasts and collisions. The immedi-
ate applications include helmets, safety nets, light weight armor, bunkers, bumpers and
collision-protective devices for vessels.
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