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The elasticity equations are derived for a helicoidally symmetric cylinder. An isotropic cyl-
inder in the center is wrapped by a thick layer of a material with helicoidal anisotropy
formed by spiraling of fibers around the core. Such structures are seen in springs, armored
cables, trusses, composites, and biostructures. Structure under axial loading and pure
bending are considered. The analytical expressions for displacements are obtained from
equations of three-dimensional elasticity. The results are verified numerically via the finite
element method. The stiffness matrix for an equivalent simplified model that links the dis-
placements of the ends with the applied force and momentum is formulated. A coupling
effect is revealed: the bar twists and elongates when axially loaded.
The developed technique is used to explain an evolution of structure in nature. A pine trunk
with spiralling grain is investigated from an optimization of a mechanical construction
viewpoint. We model the trunk as an anisotropic cylinder with helicoidal symmetry and
compute the displacements and stresses using nonlinear finite element model. An opti-
mized spiralling angle of the grains accounts for a composite failure, transverse deflection,
and fluid transportation. We suggest a combined criterion that could explain this spiralling
morphology.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

We study a long elastic cylinder that consist of isotropic core and a cylindrical layer. The layer has a helicoidal symmetry:
The orthotropic material in the shell spirals around a core. Solving the problem we quantitatively describe the coupling of
elongation and twisting due to the helicoidal anisotropy. The structure can be used as a mechanism that transforms these
types of motion between one another. This effect is emphasized in a simplified link model that we present.

Helicoidal structures are met in armored cables, trusses, ropes, composites (Fig. 1). Fiber-reinforced composite materials
with helicoidal symmetry (laminated cylinders) are also often seen in aircraft landing gear, a bridge column, or a bicycle
frame. In composites, the more rigid filaments in a bundle can be achieved by the use of the spiralling reinforced filling com-
pound. In cables, the spiraling allows for a combination of strength and flexibility in bending. The interest in helixes has
grown in the recent years after the discovery of nanocoils [1] that are promising components of designs.

Furthermore, a special area of applications of helicoidal cylinders are biostructures, where the spiralling geometry is
widely observed. A micro level, protein structures form helixes. At macro level, these are found in bones, sea sponges, nar-
whal tooth, among other examples, (Fig. 2). The spiralling of the fiber in a tree’s trunk was investigated earlier in our paper
[2]. One wonders what the evolutionary significance of such design is. We expect that there must be a good evolutionary
reason for a natural design to becomes more complex.
. All rights reserved.
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Fig. 1. Examples of structures with spirals in engineering design.

Fig. 2. Ponderosa Pine (left); Narwhal whale (center); Sea sponge (right).
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Given the broad region of applications of helicoidal structures, it is surprising that we were not able to find papers that
explicitly solve the elasticity problem for a cylinder with helicoidal symmetry. This paper aims to work out the solution to it
by revisiting the classical work of Lekhnitskii [3,4]. The theory of laminated shells [5] gives a satisfactory approximation for a
thin-walled cylinder, but not for a thick helicoidal orthotropic layer. Particularly, our approach, based on three-dimensional
elasticity, allows for calculation of radial stress component, and the dependence of the stress tensor on the radius can be
tracked. Here, we generalize the classical approach of Lekhnitskii [3,4] and Pagano [6] which analyze the three-dimensional
elasticity equations. Lekhnitskii’s solution describes the stress potential for a cylinder with cylindrical anisotropy (/ = 0).
Here, we consider a general case and we find the formulas for the displacement vector. The exposition generally follows [7].

The structure of the paper is as following. In Section 2, the problem is stated. The elasticity equations, structural boundary
conditions, and the transformation of the coordinates systems according to the spiralling angle of orthotropy are discussed.
Section 3 presents the general solution for the cylinder under axial loading and pure bending. The closed-form analytical
solution is obtained by using the displacement potentials approach. Section 4 illustrates a computational example of a cyl-
inder made of aluminum 6061-T6 wrapped by T300/862 graphite/epoxy. In Sections 5 and 6, the developments of the equiv-
alent one-dimensional link model and its application in finite element formulation are discussed, respectively.

The developed technique is used to investigate the significances of the spiraling grains of trees. In Section 7 we explain the
rationale of the modelling. Assumptions, design criteria, and numerical setup are given in Sections 8 and 9. We consider mul-
tiple criteria in order to determine advantages and disadvantages of spiraling morphologies and quantitatively justify the
‘‘optimal pitch angle” of the helix. Our analysis is an example of ‘‘inverse optimization”, which defines optimality criteria
that match the observed structure. In Section 10 we describe the findings.

2. Modelling

2.1. Elasticity equations

We consider a three-dimensional axisymmetric model of the cylinder, assuming that the angle / of spiraling is constant.
The cylinder is either elongated, twisted, or bent. The effective stiffness of the structure, the pointwise stress tensor and the
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Fig. 3. A cylindrical isotropic object that is wrapped with a single layer of thick shell having its fiber oriented at an arbitrary angle.
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displacement vector, are determined using three-dimensional elasticity coupled with assumptions based on helicoidal sym-
metry. Our goal is to find an analytic solution to the problem or direct calculation of the equivalent stiffness and the displace-
ment components.

The system of differential equations of helicoidally symmetric elasticity permits the separation of variables and leads to
differential equations for radius-dependent displacement components. They are derived similarly to Lekhnitskii [3,4]. The
presented results allows for explicit calculation of the effective elastic moduli and local stresses for all angles of the spiral-
ling. This technique is conveniently used for the optimization of the spiralling angle.

The solution to the displacement field also allows us to formulate an equivalent one-dimensional model of a cylinder with
an inner helix. The cylinder shows a coupling effect, twisting and elongating when axially loaded.

Consider an infinite cylinder of the radius R made of an orthotropic linear elastic material with the compliance S loaded by
bending moment M, and the axial load P. We want to compute the stress tensor r and trace its dependence on the orienta-
tion of the orthotropy. Assume that stresses inside the cylinder satisfy equations of linear elasticity. In the absence of body
forces, the equilibrium equations,
r � r ¼ 0; ð1Þ
in cylindrical coordinates (r,h,z) have the form
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where rrr, rhh, rzz, rhz, rzr, and rrh are the components of the stress tensor.
The strain–displacement relations in cylindrical coordinates are
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Here, err, ehh, ezz, ehz, ezr, and erh are the components of the strain tensor e. The relationship between stresses and strains in an
anisotropic material is expressed through generalized Hooke’s law:
e ¼ S : r or r ¼ C : e; ð4Þ
where S and C = (S)�1 are the fourth order tensors of compliance and its inverse, stiffness, respectively. The component form
of this relation is eij = Sijklrkl and rij = Cijkl: ekl.
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2.2. Boundary conditions

The boundary conditions are prescribed such that the outer surface of the shell is free of stresses. It is assumed that there
is no slip at the interface between the core and the shell:
rrjr1
¼ rr jr2

; shzjr1
¼ shzjr2

;

srzjr1
¼ srzjr2

; srhjr1
¼ srhjr2

;

uðr; hÞjr1
¼ uðr; hÞjr2

; vðr; hÞjr1
¼ vðr; hÞjr2

; wðr; hÞjr1
¼ wðr; hÞjr2

ð5Þ
Here r1 is the inner radius and r2 is the outer radius of the shell. The end conditions are solved separately for each loading
scenarios.

Axial loading:

Z r2

0

Z 2p

0
rzziso
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rdr ¼P; ð6Þ
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Pure bending:
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where r1 and r2 are the inner and outer radius of the anisotropic shell, respectively. The only nonhomogeneous boundary
condition Eqs. (6) and (8) provide the scaling of the loads.

2.3. Coordinates transformation

Assume that the material is orthotropic and consider a differential element of a helicoidally anisotropic cylinder. Tensor S
of the compliance is characterized by an orthogonal triplet of material coordinates (e1, e2, e3). In these coordinates, the gen-
eralized Hooke’s law has the form:
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The considered bar possesses cylindrical anisotropy as shown in Fig. 4. Hence, it is desirable that the analysis is carried out in
cylindrical coordinates.

We need to transform the Hooke’s law from the material coordinates (e1, e2, e3) to cylindrical coordinates (er, eh, ez). The
material coordinates are related to cylindrical coordinates through a rotation of angle / about the radial axis. The transfor-
mation of coordinate is as follows:
er ¼e1; ð11Þ
eh ¼ cos /e2 þ sin /e3;

ez ¼� sin /e2 þ cos /e3: ð12Þ
The rotation matrix X is written according to (12) as
X ¼
1 0 0

0 cos / sin /

0 � sin / cos /

2
64

3
75: ð13Þ



Fig. 4. Coordinate systems.
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The stress and strain tensors are transformed according to
r ¼ Kr� and e ¼ ðK�1ÞTe�; ð14Þ

where tensor product K = X �X is the fourth order rotation tensor (Kijkl = XijXkl). The transformed compliance matrix can
be written as
S ¼ K�1
� �T

S�K�1; ð15Þ
where S* is the compliance matrix in the material coordinates. The compliance and stiffness matrices, S and C, have the fol-
lowing forms:
S ¼

a11 a12 a13 a14 0 0
a21 a22 a23 a24 0 0
a31 a32 a33 a34 0 0
a41 a42 a43 a44 0 0
0 0 0 0 a55 a56

0 0 0 0 a65 a66

2
666666664

3
777777775

and C ¼

c11 c12 c13 c14 0 0
c21 c22 c23 c24 0 0
c31 c32 c33 c34 0 0
c41 c42 c43 c44 0 0
0 0 0 0 c55 c56

0 0 0 0 c65 c66;

2
666666664

3
777777775
:

where aij and cij are the non-zero rotated elements. After the coordinates transformation, the compliance and stiffness matri-
ces have 20 non-zero components. They are computed through the material properties (12 components) and an angle /.

3. Solution by displacement potentials

Consider an elastic equilibrium of a loaded homogeneous cylinder having a cylindrical anisotropy. Because the quantities
ai4 and ci4 (i = 1,2,3,4) are not zero, there are no planes of elastic symmetry normal to the generators of the cylinder. There-
fore, the cross sections do not remain plane after deformation.

Here we neglect rigid body motion, and assume that the cylinder is infinitely long. These assumptions imply that the
strain components are independent of z and can be expressed as
eðr; hÞ ¼ e0ðrÞ þ e1ðrÞ cos hþ e2ðrÞ sin h: ð16Þ
Following Lekhnitskii [4], we introduce a relation D as
D ¼ a13rrr þ a23rhh þ a33rzz þ a34rhz; ð17Þ

and express stress along the generator, rzz,
rzz ¼
D

a33
� 1

a33
ða13rrr þ a23rhh þ a34rhzÞ: ð18Þ
From Eq. (16), Hooke’s law becomes
our

or
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a33
D; ð20Þ
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where bij ¼ aij �
ai3aj3

a33
are the reduced strain coefficients [4]. Integration of Eqs. (21)–(23) leads to
uz ¼ DzþWðr; hÞ;

uh ¼ z b41rrr þ b42rhh þ b44rrh þ
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a33
D
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2
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2
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� �
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ð25Þ
Substituting these displacements into Eqs. (19)–(24), and equating the coefficients of z and z2 on the left and right, D is com-
puted as
D ¼ Ar cos hþ Br sin hþ C: ð26Þ
The independent of z terms are expressed as
oUðr; hÞ
or

¼ b11rrr þ b12rhh þ b14rhz þ
a13

a33
D; ð27Þ

1
r

oVðr; hÞ
oh

þ Uðr; hÞ
r
¼ b21rrr þ b22rhh þ b24rhz þ

a23

a33
D; ð28Þ

1
r
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oh

þ oVðr; hÞ
or

� Uðr; hÞ
r
¼ a65rrz þ a66rrh; ð29Þ

1
r

oWðr; hÞ
oh

¼ b41rrr þ b42rhh þ b44rhz þ
a43

a33
Dþ #r; ð30Þ

oWðr; hÞ
or

¼ a55rrz þ a56rrh: ð31Þ
Utilizing Eqs. (31) and (30), Eq. (25) is rewritten as
u ¼ Uðr; hÞ � z2

2
ðA cos hþ B sin hÞ; ð32Þ

v ¼ Vðr; hÞ � z2

2
ðB cos h� A sin hÞ þ #rz; ð33Þ

w ¼Wðr; hÞ � zðAr cos hþ Br sin hþ CÞ: ð34Þ
Next, the solution to U(r,h), V(r,h), and W(r,h) are sought in the form of:
Uðr; hÞ ¼ raðUA sin nhþ UB cos nhÞ ð35Þ
Vðr; hÞ ¼ raðVA sin nhþ VB cos nhÞ ð36Þ
Wðr; hÞ ¼ raðWA sin nhþWB cos nhÞ: ð37Þ
Here, UA, VA, WA, UB, VB and WB are constants and a is the root of the characteristic equation of the corresponding system of
ordinary differential equations. For our goals, only two terms n = 0,n = 1 are relevant. The first term, n = 0, corresponds to the
axial loading. In this case, the displacement is independent of h and z. The second term, n = 1, corresponds to the bending. We
treat these two cases separately. The unknown constants are determined from the boundary conditions shown in Section 2.2.

Next, we look at two separate load cases, axial loading, and pure bending. The objective is to determine the displacement
potential, U(r, h), V(r, h), W(r, h), for each case.

3.1. Displacements under axial loading

Recall that the model consists of an isotropic core and helicoidal anisotropic shell. For the solid isotropic core, the dis-
placements are uncoupled and can be solved independently from the differential equations. In the case of an axial loading,
Eqs. (32)–(34) become
u ¼ UðrÞ; v ¼ VðrÞ þ #rz; w ¼WðrÞ þ Cz: ð38Þ
Substituting the above expression into the equilibrium equations, the following are found
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UðrÞ ¼ C2
1r þ C2

r
; VðrÞ ¼ C2

3r þ C4

r
; WðrÞ ¼ C5 þ C6 ln r: ð39Þ
The solution is regular at the center (r1 = 0), therefore, C2 = C4 = C6 = 0. Because there is no rigid body movement, we found
also that C3 = C5 = 0. Thus, the displacement field in the central isotropic cylinder is
u ¼ C1r; v ¼ #rz; w ¼ Cz: ð40Þ
as expected.
For the anisotropic shell, only the displacement U(r) is uncoupled. The components of V(r) and W(r) are computed using

Eq. (37). Substituting Eq. (37) into Eq. (2), we obtain the characteristic equation.
ðc66a2 � c66ÞV þ ðc56a2 þ c56aÞW ¼ 0; ð41Þ
ðc56a2 � c56aÞV þ c55a2W ¼ 0: ð42Þ
Solving for a, we find the roots a = 0,0,1, �1. The solution to V(r) and W(r) becomes
VðrÞ ¼ V1 þ V2 ln r þ V3r þ V4

r
; ð43Þ

WðrÞ ¼W1 þW2 ln r þW3r þW4

r
; ð44Þ
where V1, V2, V3, V4, W1, W2, W3 and W4 are constant so far undefined.
With no rigid body movement, V1 = W1 = 0. To match the stresses srz and srh of the isotropic part at r = r1, which are equal

to zero, constants V4 and W2 must be zero as well. Since V2 and W4 are linearly dependent to W2 and V4, they also must be
zero. Hence, the displacements of the anisotropic part is
Uðr; hÞ ¼ C1rk þ C�k
2 � c11m1r2 � 4c11m2r þm1c22r2 þm2c22r;

Vðr; hÞ ¼ #rz; W ðr; hÞ ¼ zC;
where
k ¼
ffiffiffiffiffiffiffi
c22

c11

r
; m1 ¼

2# c14 � 1
2 c24

� �
ðc22 � c11Þðc22 � 4c11Þ

; ð45Þ

m2 ¼
C c13 � c23ð Þ

ðc22 � c11Þðc22 � 4c11Þ
: ð46Þ
The remaining unknown constants are found using the boundary conditions in Eqs. (5) and (7).

3.2. Displacements under pure bending

Under the bending moment M, the assumed solution is:
Uðr; hÞ ¼ Ura sin h; Vðr; hÞ ¼ Vra cos h; Wðr; hÞ ¼Wra cos h:
Substituting Eq. (47) into the equilibrium equation Eq. (2), we obtain the characteristic system
ðc11a2 � c66 � c22ÞU � ðc12aþ c66a� c66 � c22ÞV � ðc14aþ c56a� c24ÞW ¼ 0;

ðc66aþ c66 þ c12aþ c22ÞU þ ðc66a2 � c66 � c22ÞV þ ðc56a2 þ c56a� c24ÞW ¼ 0;

ðc56aþ c14aþ c24ÞU þ ðc56a2 � c56a� c24ÞVðc55a2 � c44ÞW ¼ 0;
where cij are the components from the stiffness matrix C in Eq. (16).
The quantities c14, c24, c34 and c56 are zero in the case of the isotropic material. For anisotropic shell, the system of equa-

tions can be rewritten in the matrix form:
H11ðaÞ H12ðaÞ H13ðaÞ
H21ðaÞ H22ðaÞ H23ðaÞ
H31ðaÞ H32ðaÞ H33ðaÞ

2
64

3
75

U

V

W

2
64

3
75 ¼

0
0
0

2
64
3
75: ð47Þ
where Hij are the coefficients of U, V , and W shown in Eq. (47). Setting det H = 0 and solving for a, we find that a has six roots:
a double root at zero and two mutually opposite real pairs ±a1 and ±a2. The exponent a in Eq. (50) are expressed as
a ¼ 0; 0;�2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 4a1a3

qr
;�2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 � 4a1a3

qr
; ð48Þ
where
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a1 ¼ c11 c55c66 � c2
56

� �
;

a2 ¼ c11 c2
56 � c44c66 þ 2c56c24

� �
� c11c55 þ c55c66 � c2

56

� �
b1þ

þ b2
2c55 þ b2

3c66 � 2b2b3c56;

a3 ¼ b1 c11c44 þ c44c66 � c2
56 � b2

3 þ 2b3c56

� �
�

� b2 b2c44 � 2b3c24 þ 2c24c56ð Þ � c2
24ðc11 � c66Þ;

b1 ¼ c22 þ c66; b2 ¼ c12 þ c66; b3 ¼ c14 þ c56:
Finally, the displacements are expressed as

Isotropic solid cylinder:
Uðr; hÞ ¼ UIra � Bmr2

2

� �
sin h; Vðr; hÞ ¼ VIra þ Bmr2

2

� �
cos h;

Wðr; hÞ ¼WIr cos h;

ð49Þ

Anisotropic helicoidal layer:

Uðr; hÞ ¼ U1ra1 þ U2r�a1 þ U3ra2 þ U4r�a2 þ Upr2� �
sin h;

Vðr; hÞ ¼ V1ra1 þ V2r�a1 þ V3ra2 þ V4r�a2 þ Vpr2� �
cos h;

Wðr; hÞ ¼ ðW1ra1 þW2r�a1 þW3ra2 þW4r�a2 þWpr2Þ cos h;

ð50Þ

The unknown constants, Ui, Vi, and Wi (i = 1..4), which are linearly dependent to each other, are determined from the
boundary conditions Eqs. (5) and (7). The constants Up, Vp, Wp are found from the loading conditions Eq. (9).

Having obtained the displacements U(r,h), V(r,h), and W(r,h), stresses could be found by substituting Eq. (3) into Eq. (4).

4. Numerical simulations: stress fields computation and finite element method

Consider a cylinder made of aluminum 6061-T6 enveloped by a T300/862 graphite/epoxy shell having a fiber oriented an
angle /. The data used in the current numerical example are shown in Tables 1–3 [8].

The comparison of stresses between the elasticity and finite element analysis are shown in Figs. 5 and 6. The results are
taken at a distance z = lo from the fixed end so that the Saint–Venant’s principle is valid. The value l0 = 0.1 L is used in this
analysis since it is the closest location to the fixed end where the surface of the structure is free of stresses rrr and rrh. Figs. 5,
6 show that the analytical solution and finite element solution converge to each other both for axial loading and for the pure
bending case. For axial loading case, rzz has the highest value when spiral angle is zero and decreases as the spiral angle
increases. When the spiral angle is 90�, the tangential stress shows the highest value. Similar behavior can also be found
in the bending case. For both cases, the stress rhh changes sign at 60�, while the stress rhz changes sign at approximately
63�. Between the spiral angle of 20–50�, the order of magnitude of stresses in the axial loading case is relatively close to
one another. On the other hand, the same is not observed for the bending case. It should be noted that these results are valid
only for the case of small deformations.

5. Equivalent link model

It is convenient to replace the three-dimensional cylinder with a link. The helicoidal symmetry results in a coupling be-
tween a rotation about the axis and the elongation as shown in Fig. 7. Linkages are useful for describing the physics of a lar-
ger structure that is assembled from multiple links where the displacement and reactions at their ends are of major interests.
ters for the geometry and the applied load

ter Value

U.S. customary units SI units

adius of the cylinder (r1) 0.25 in. 6.35 mm
dius of the shell (r2) 0.25 in. 6.35 mm

adius of the shell (r3) 0.3125 in. 7.94 mm
(L) 5 in. 127 mm
ad (P) 1000 lb. 4448 N

g moment (M) 500 lb.in. 56.5 N �m



Table 2
Aluminum 6061-T6 properties

Parameter Value

US customary units SI units

E 10 Msi 68.95 GPa
G 3.7 Msi 25.5115 Gpa
m 0.35 0.35

Table 3
T300/862 material properties

Parameter Value

US customary units SI units

E11 = E22 1.101 Msi 7.591 GPa
E33 20.21 Msi 139.348 GPa
G23 = G13 0.5495 Msi 3.789 GPa
G12 0.4035 Msi 2.782 GPa
m23 = m13 0.0178 0.0178
m12 0.3642 0.3642

S. Leelavanichkul, A. Cherkaev / International Journal of Engineering Science 47 (2009) 1–20 9
We obtain the stiffness matrix k that links the force P and the moment M at the element ends to the elongation u and the
rotation about the axis h,
f ¼ ku or
P

M

	 

¼

k1 k2

k4 k3

� �
u

h

	 

: ð51Þ
The quantities of interest are the stiffness constants, k1, k2, k3 and k4. However, it can be shown that the stiffness matrix is
symmetric using the minimum potential energy principle. The total potential energy of the structure shown in Fig. 7 is ex-
pressed as
pp ¼
1
2

uTku� fu ¼ 1
2

u h½ �
k1 k2

k4 k3

� �
u

h

	 

� P M½ �

u

h

	 

¼ 1

2
k1u2 þ ðk2 þ k4Þuhþ k3h

2� �
� Pu�Mh: ð52Þ
Without losing the generality, one can assume that k4 = k2, and the stiffness matrix k can be rewritten as
k ¼
k1 k2

k2 k3

� �
: ð53Þ
These stiffness values can also be found analytically, using the formulas obtained in Sections 3.1 and 3.2. However, we show
another way to obtain them here. By taking two measures of P (P1 and P2) and M (M1 and M2), and rearranging Eq. (51), the
system f = uk that has four equations and three unknowns (k1, k2, and k3) is obtained:
P1

M1

P2

M2

8>>><
>>>:

9>>>=
>>>;
¼

u1 h1 0
0 u1 h1

u2 h2 0
0 u2 h2

2
6664

3
7775

k1

k2

k3

8><
>:

9>=
>;; ð54Þ
where u1, u2, h1 and h2 are the displacements corresponding to the loads P1, P2, M1 and M2, and are computed from the elas-
ticity solution discussed in the earlier sections. The expression Eq. (54) is overdetermined because it gives four equations in
three unknowns, and thus may have no solution. However, we can multiply the system by uT and solve for the unknown k,
which leads to the expression of the least square solution,
uTf ¼ uTuk

ðuTuÞ�1uTf ¼ ðuTuÞ�1uTuk

k ¼ ðuTuÞ�1uTf:

ð55Þ
Eq. (55) minimizes the error e = f � uk that is produced by the solution to this overdetermined system.
Taking the displacements u and h that correspond to the loads P and M from the closed-form analytical solution (obtained

in Section 3.1) and substituting them into Eq. (55), the stiffness k1, k2, and k3 can be determined. The one-dimensional equiv-
alent results based on the geometries and the materials discussed in previous section are shown below as an example (Fig. 8).
These plots demonstrate how the stiffness values vary with the spiral angle. The values of the stiffness also vary linearly with
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Fig. 5. Comparison of stresses under axial loading.
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the load P and the length L of the three-dimensional model. Despite having only an axial load applied, the stiffness k2 and k3

generate rotation as the structure is stretched.
We realize that the effect of coupling increases the energy release capability while the elongation can remain the same.

The additional twisting degrees of freedom correspond to additional energy released in the process of elongation.
6. Application of a link model: 1-D finite element formulation

Consider a one-dimensional structural element shown in Fig. 9 where axial deformation is coupled with the rotation
about the generator. The deformations are represented by
d ¼ d̂2x � d̂1x and c ¼ /̂2x � /̂1x; ð56Þ
where d and c are elongation and rotation, respectively. The local axial displacement is represented by d̂ while the nodal
rotation is represented by /̂. The force-displacement relationship is expressed as
P ¼ k1dþ k2c; and M ¼ k2dþ k3c; ð57Þ
where P and M are axial and torsional loads, respectively. The quantities k1, k2, and k3 are the stiffness constants. Substituting
Eq. (56) into Eq. (57), we have
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Fig. 7. One-dimensional structural model.
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P ¼ k1ðd̂2x � d̂1xÞ þ k2ð/̂2x � /̂1xÞ; ð58Þ
M ¼ k2ðd̂2x � d̂1xÞ þ k3ð/̂2x � /̂1xÞ: ð59Þ
By the sign convention for the nodal forces and equilibrium,
f̂ 1x ¼ �P; f̂ 2x ¼ P; m̂1x ¼ M; m̂2x ¼ �M: ð60Þ
Rewriting Eq. (59) and expressing it in the matrix form
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Fig. 9. One-dimensional structural element.
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f̂ 1x

m̂1x

f̂ 2x

m̂2x

8>>>><
>>>>:

9>>>>=
>>>>;
¼

k1 k2 �k1 �k2

k2 k3 �k2 �k3

�k1 �k2 k1 k2

�k2 �k3 k2 k3

2
6664

3
7775

d̂1x

/̂1x

d̂2x

/̂2x

8>>>><
>>>>:

9>>>>=
>>>>;
: ð61Þ
Hence, the element stiffness matrix is defined as
k̂ ¼

k1 k2 �k1 �k2

k2 k3 �k2 �k3

�k1 �k2 k1 k2

�k2 �k3 k2 k3

2
6664

3
7775; ð62Þ
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where k1, k2 and k3 are the values calculated from the one-dimension structural model. The nodal displacements are then
determined by solving the system f̂ ¼ k̂û.
7. Significance of spiralling grain in a tree’s trunk

We observe spirals in many structures in nature. Some examples are grains of pine trees that wind around its body, the
horn-like tooth of narwhal whale, or a sea sponge skeleton, (Fig. 2). One wonders what the evolutionary significance of such
design is. We expect that there must be a good evolutionary reason for a natural design to becomes more complex.

Studying morphology of bones or trees’trunks that are critical for the survival of the species, we may postulate that they
are optimally adapted to the environment and treat the evolutionary development as a minimizing sequence of an optimi-
zation problem with unknown objective [9]. The optimization problems in engineering and in biology are mutually recipro-
cal. The biological structure is known, but it is not clear in what sense the structure is optimal. By contrast, the goal of the
engineering is the minimization of a given functional that is not the subject of a search; the problem is to find an unknown
optimal structure.

Trees’ trunks should stay unbroken and be able to sustain extreme wind loads from all directions. Their grains should be
able to efficiently transport water to feed branches. We notice that some trees have grains spiralling around their trunk, such
as Ponderosa pine that grows in rocky and windy terrains in Southwestern of the United States (Utah, Arizona, Nevada).
These observations lead to questions: Why does the grain in trees spiral? and What is ‘‘the best” spiralling angle?

It was observed by Kubler [10] that spiralling leads to better distribution of water for the case where the tree roots on one
side are not functional. The efficiency of the water transportation is proportional to the length of the grain. The biological
factor of the spiral formation of the grains was investigated by Schulgasser [11].

In our previous paper [2], we demonstrated that the strength of the trunk depends on spiralling grain angle. Now, we
examine the deformations of the trunk and argue that the spiralling is beneficial since it allows for larger deformations that
release excessive energy and help removing extra weight such as snow from the branches.

Here, we examine whether the design of the trunk corresponds to a solution of the following structural optimization
problem:

Given an axisymmetric cylinder (the trunk) from an orthotropic elastic material (the wood), find an angle of spiralling
(inclination of the main axes of orthotropy to the cylinder’s axes), which increases flexibility and does not significantly
increase the length of the grains.

The displacement fields of the tree trunk is determined using nonlinear finite element method (FEM) that is verified by
analytical solution presented in [7]. Rather than finding the solutions of the axial and bending load case separately, the prob-
lem for the combined loads is solved. The Tsai-Hill failure criterion is used to predict the failure as a function of the grain
angle based on the gross mechanical strength using the mechanics of materials approach.
8. Analysis

The analysis of the mechanical model uses the following assumptions:

– The Ponderosa pine trunk is modelled as a cylinder shown in Fig. 3.
– The torsional load is neglected: Branches are symmetric around the circumference.
– The grain angle does not change radially or axially.
– There are no body forces: all the weight comes from the crown.

We also make a technical assumption. To avoid the singularity at the center of the circular cross-section of the trunk, we
assume that the isotropic material with the same modulus as the grain of tree is placed in a small central circle (its diameter
is 5% of the diameter of the trunk).

8.1. Nonlinear stress analysis

The linear analysis of stresses in helicoidally orthotropic elastic cylinder is found in [2]. It is applicable when the defor-
mation is small. However, when the transverse deflection is large, a significant extra moment is generated by the axial load
and the problem becomes nonlinear. Here, we perform the nonlinear analysis using finite element method (FEM). A 3-D eight
node element shown in Fig. 10 is used for the computation. This element has three degrees of freedom, u, v, and w:
u

v

w

8><
>:

9>=
>; ¼

X8

i¼1

Ni 0 0
0 Ni 0
0 0 Ni

2
64

3
75

ui

vi

wi

8><
>:

9>=
>;þ

X11

j¼9

Nj 0 0
0 Nj 0
0 0 Nj

2
64

3
75

uj

vj

wj

8><
>:

9>=
>;: ð63Þ
The shape functions are



Fig. 10. Sketch of element in global-coordinate system (x, y, z) and local-coordinate element (r, s, t).
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N1 ¼
1
8
ð1� sÞð1� tÞð1� rÞ; N2 ¼

1
8
ð1þ sÞð1� tÞð1� rÞ

N3 ¼
1
8
ð1þ sÞð1þ tÞð1� rÞ; N4 ¼

1
8
ð1� sÞð1þ tÞð1� rÞ

N5 ¼
1
8
½ð1� sÞð1� tÞð1þ rÞ þ ð1� sÞð1� tÞð1þ rÞ�

N6 ¼
1
8
½ð1þ sÞð1� tÞð1þ rÞ þ ð1þ sÞð1� tÞð1þ rÞ�

N7 ¼
1
8
ð1þ sÞð1þ tÞð1þ rÞ; N8 ¼

1
8
ð1� sÞð1þ tÞð1þ rÞ

N9 ¼
1
8
ð1� s2Þ; N10 ¼

1
8
ð1� t2Þ; N11 ¼

1
8
ð1� r2Þ;

ð64Þ
where the parameter (r, s, t) are local-coordinates of the element. Unlike the conventional shape functions of an eight-node
element, we use eleven shape functions for the element. The shape functions with indices 9–11 represent the extra terms
that lessen the stiffness of the conventional linear hexahedral element.

The boundary conditions for the calculation are shown in Fig. 11. At z = 0, the displacements are u = v = w = 0, and the
loads are applied at the free end z = L. The load P is a result from a surface pressure q, while the moment M is generated
by an applied couple f.

8.2. Failure criteria

Due to anisotropy of wood, the conventional maximum strength criterion for isotropic materials gives a poor prediction of
failure. Instead, Tsai-Hill failure criterion is used
r1

r1u

� �2

þ r2

r2u

� �2

� r1r2

r2
1u

þ s12

s12u

� �2

< 1 ð65Þ
Here, subscripts 1, 2, and 12 indicates the fiber (grain), transverse, and shear direction. Stresses in the denominator of Eq.
(65) are equal to the ultimate strength of the material in these directions. When the left-hand side of Eq. (65) is greater than
or equal to one, the failure is predicted. No distinction is made between compressive and tensile stresses. Here we only
investigate the failure based on the gross strength of the tree. Our goal is to relate the angle of the spiralling grains to overall
strength of the tree.

9. Numerical analysis of Ponderosa pine

Ponderosa pines average 100–160 ft (30.47–48.77 m) in height, and 2–4 ft (0.61–1.22 m) in diameter [12]. This analysis
categorizes the Ponderosa pine into three size classes according to [13], (see also Table 4).

The magnitude of axial load P is measured from the average weight of the crown that the Ponderosa pines of this size may
experience [13]. Typical maximum wind speed in Southern Utah is measured at 35 m/s (78.75 mph) [14]. The air density q
and viscosity l are assumed to be 1.23 kg/m3 and 1.78 � 10�5 kg/m � s. For instance, assuming a uniform air flow, the Rey-
nolds number, Re, for the diameter of 0.9398 m is approximated as
Re ¼ 2qvr
l
¼ 2:273� 106 P 104;
The drag coefficient CD of a cylinder is 1.2 for Re P104. Thus,



Fig. 11. Free body diagrams the numerical model.

Table 4
Code number for size class

Size class Diameter at breast height (m)

2 0.1270–0.2794 (5–11 in.)
3 0.3048–0.5080 (12–20 in.)
4 <0.5080 (20 in.)

Table 5
Applied loads and Ponderosa pine sizes

Size class Diameter (m) Height (m) Crown weight (N) Bending moment (N m)

2 0.2286 10.67 556.8 11760
3 0.4826 16.76 3065 61310
4 0.9398 35.36 13410 531100

Table 6
Ponderosa pine material strengths (MPa)

r33t r33c r22t r22c s23u

43 �36 2.8 �5.1 8

Table 7
Modulu

E1

0.85
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FD ¼
1
2

CDAqv2 ¼ 1
2
ð1:2Þð0:9398Þð35:36Þð1:23Þð35Þ2

¼30040 N

M ¼ FDh
2
¼ ð30040Þð35:36=2Þ ¼ 531100N �m;
where A is the frontal area, FD is the drag force, and M is the bending moment. Table 5 shows the loads used in the analysis for
each size class:
s of elasticity of Ponderosa pine with 12% moisture content (GPA)

E2 E3 G12 G13 G23

0.51 10.1 0.065 0.71 0.67



Table 8
Poisson’s ratio of Ponderosa pine with 12% moisture content

m31 m32 m12 m21 m13 m23

0.337 0.4 0.426 0.359 0.41 0.033
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This approximation shows the order of magnitude of the bending moment that the Ponderosa pine in Southern Utah may
experience. The material properties of the Ponderosa pine are computed from the data given in [15,16] and are shown in
Tables 6–8.

10. Results and discussion

First, we mention the effect of the extra shape functions in Eq. (64). Fig. 12 shows the comparison of the finite element
model with and without the extra shape functions when the spiralling angle is 50�. Without the extra shape functions, the
model significantly under-estimates the transverse displacement. The required number of nodes and elements has to be in-
Fig. 12. Transverse displacement along the axis of the tree when spiralling angle is 50�.

Fig. 13. Failure prediction value for spiralling angle from 0� to 90�.
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creased by about seven times in order to obtain converged results. Utilizing the extra shape functions, the number of ele-
ments and node are kept low and the computational time is reduced significantly.

The results of the spiralling angle of the grains are analyzed based on the following criteria:

(i) Composite failure – gives the bound for the maximum angle.
(ii) Transverse deflection – shows flexibility of the tree.

(iii) Minimum grain length – gives the efficient of the water transportation to crown.

Finally, the combined criterion is constructed to show the optimize angle of spiralling.

10.1. Failure criterion

Fig. 13 illustrates that the Tsai-Hill value increases slowly to about 30�, and then increases dramatically beyond this point.
For the given wind load, only class 4 Ponderosa pine shows value that exceeds unity. The limiting spiralling angle cannot be
seen from results of the smaller classes. The class 4 Ponderosa pine has limiting spiralling angle of 55�.
Fig. 14. Maximum transverse deflection.

Fig. 15. Transverse displacement along the axis of the tree (class 4 sample).
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10.2. Transverse displacement and the tree’s flexibility

To study the effect that spirals have on the structural flexibility of the tree, the transverse displacement is computed using
nonlinear FEM where the combined loadings of axial load and bending moment are applied. The maximum displacements at
various angle are shown in Fig. 14. Notice that the maximum deflections of class 2 and 3 are very small when compared to
class 4. The data given in Table 5 shows that the height and the trunk’s diameter are not proportional to each other.

In addition, detailed plots of displacement v of class 4 (largest size) Ponderosa pine is presented in Fig. 15. Spiralling is
needed to generate enough deflection so that the tree does not risk failure, allowing trees in nature to be able to carry exces-
sive weights (such as snow) and withstand high winds. Fig. 15 shows a large increase in the magnitude of the transverse
deflection when the grain angles increase from 30� to 60� in comparison to the smaller change at other intervals of the spi-
ralling angle.

10.3. Water transportation criterion and effectiveness of the spiralling grains

One of the vital purposes of the grains is to transport water from the roots to branches. The effectiveness of the fluid
transportation is proportional to the length of the path. This length increases with the angle. For a given height of a tree,
the length is
Fig. 16. Ratio of failure prediction value to length of grain versus spiralling angle.

Fig. 17. Ratio of maximum deflection to length of grain versus spiralling angle.



Fig. 18. Measurement of angle of spiral.
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L ¼ 2
pr

sin /
: ð66Þ
10.4. Combined criteria

Let us compare the ‘‘effectiveness” of various helicoidal trunks. The ideal design combines the high value of predicted fail-
ure value and the small length of the path along the grain that provides efficient water transportation. Combining these cri-
teria, we choose the functional F(/) equal to the ratio of the Tsai-Hill failure prediction value and the path length of a grain
F ¼ predicted failure value
L

: ð67Þ
A similar criterion is set for deflection the path length of a grain. The ideal design combines the large deflection and small
length of the path along the grain. The corresponding criterion takes the form
G ¼ deflection
L

: ð68Þ
The graphs are shown in Figs. 16 and 17. This criterion suggests that the most ‘‘effective” spiralling angle of the grain is in the
range of approximately 50–60� for class 4 pine.
11. Conclusion

– A linear elastic helicoidal orthotropic cylinder is considered and closed-form analytical expression for the displace-
ment is found. The analytic solution is valid. It is suitable for investigation of the influence of the spiralling and opti-
mization of that angle. It reveals the dependence of elastic constant of the spiralling angle.

– The results are verified by comparing the finite elements solution with the analytical solution. The analytical solution
requires less computational time but the finite element solution can handle the nonlinear model.

– A link model is developed that connects the displacement and rotation of the cylinder’s end with the applied force and
moment. This model can be used as a component of a larger structure or in finite element formulation.

Our analysis shows that the limiting angle is 55� for a full grown Ponderosa pine. Based on Fig. 16, spiralling angle de-
creases as the size of the tree increases. Spiralling angles smaller than 30� are not beneficial according to the two combined
criteria F and G presented here. Most Ponderosa pines observed in Southern Utah show the spiralling of the grain at angle
between 30� and 50�. Fig. 18 shows example of Ponderosa pine having grain spiralling between 30� and 40�.

Here we investigate a Ponderosa pine from a mechanical perspective, and no other factors are accounted for. The list of
other factors that are not considered in this analysis are as follow:

– In nature, the grain angle is larger toward the bottom of the tree and reduces with position up the length of the trunk.
We speculate that when the tree is small, it requires more distribution of fluid to ensure proper growth. Hence, having
the grain spiralling at a larger angle allows the tree to transport more fluid along its circumference. As the tree grows
taller, the angle becomes smaller, which reduces the coverage area allowing the fluid to be transported to the higher
portion faster.
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– The cracking of the tree trunk, which may be an important factor, is not considered in this analysis. Looking at the
elastic constants of the Ponderosa pine, one finds that the transverse modulus E2 is approximately 5% of the grain
modulus E3. This ratio can be viewed as if there were a crack. As the crack propagates around the tree, it is less prone
to fracture than when the grain and the crack are vertical.

This analysis shows that the question of the adaptation of a tree trunk can be considered as a problem of constrained min-
imization. The combined criteria provide a range of beneficial angles of the spirals. A structure can become more flexible by
having the grains spiral along its circumference. The grain length limits the angle range from above.
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