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Abstract

We consider protective structures with elastic–plastic links of a special morphology. The links are bistable. They are
designed to arrest the development of localized damage (a neck) in a link, and initiate the damage in another sequential
link instead. A wave of ‘‘partial damage’’ propagates through the chain, as all the links develop necks but do not fail. A
three-dimensional finite element analysis is used to compute the force–elongation relation for the bistable link. Another
numerical procedure analyzes the dynamics of a chain or a lattice undergoing a collision with a heavy projectile. The pro-
cedure describes the non-linear waves, determines the places of failure and the critical loading conditions. The bistable
chain is compared to the chain of conventional links of the same length, mass, and material. When subjected to an impact,
the structure absorbs several times more energy than a conventional structure. The bistability leads to an unexpected result:
The maximal absorbed energy in the bistable chain is proportional to its volume, not to the cross-section as in the con-
ventional chain. The bistable chain is capable of withstanding a collision with a mass having kinetic energy several times
greater. Even when the bistable chain breaks it effectively reduces the speed of the projectile.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The failure of an elongated specimen occurs
when a localized damaged zone expands across the
sample while the large part of the material of a
broken sample stays undamaged. It is tempting to
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design the specimen that uniformly distributes a
‘‘partial damage’’ throughout its volume and uti-
lizes all the material capability. The problem is to
create a structure capable of distributing the dam-
age and absorbing the energy of an impact without
failure.

The difficulty is the natural localization of the
damage: In solid bars, the damaged cross-section
is weaker and the material in it is more vulnerable
to failure than the material in the undamaged parts.
The maximal stress in a solid bar is always located
.
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Fig. 1. Progressive damage of elastic–plastic chain under tensile
loading. The grey elements are undamaged, the white elements
are partially damaged.
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near the zones of impact and its supports. On the
other hand, a more uniform distribution of the
stress can be achieved in a structure with bistable
links, which experiences a phase transition: The
links transit from initially undamaged state to the
partially damaged state. These two locally stable
states of a link are separated by an interval of unsta-
ble deformation. The transition of a link causes the
transition of a neighboring link which initiates a
non-linear wave of damage that propagates through
the structure. We investigate structures with artifi-
cially induced instabilities due to a special morphol-
ogy of the links that possess non-monotonic
constitutive relations. Previously, the waiting link
structures were examined in a number of papers.
The concept of the structures with waiting links
were suggested by Slepyan and Cherkaev (1995).
The dynamics of reversible bistable structures were
addressed by Balk et al. (2001a,b). The waves in
elastic–brittle structures were studied in the papers
of Slepyan et al. (2005a,b, 2004), Slepyan and
Ayzenberg-Stepanenko (2004). The theory of the
waves in unstable materials is considered in the
book of Slepyan (2002) and in the papers of
Slepyan (2001a,b,c). The dynamics of lattices
were simulated by Cherkaev and Zhornitskaya
(2004).

In this paper, we deal with bistable structures
from the elastic–plastic materials. The model is
more sophisticated than the elastic–brittle models
that have been examined before. The ANSYS simu-
lation is used to obtain the constitutive relations in a
bistable link. The model accounts for the hysteresis
of the loading cycle, the realistic geometric parame-
ters and elastic–plastic properties of the specific
material. The two simulations are conducted: The
first one results in a static constitutive equations
and the second one in the dynamics of the phase
transition and damage propagation. Each link of
the assembly possesses a non-monotonic force–elon-
gation relation; the link can experience an irrevers-
ible damage (partial failure) when its equilibrium
length increases and elastic modulus changes. It is
shown that the waiting link structures sustain a
much larger impact than the conventional ones
due to the distribution of the partial damage and
the increase of the related energy release. The
expected applications range from hypersensitive
sensors that change their properties in response to
a signal, to protective structures, to ‘‘dynamic smart
materials,’’ and to structures with the controllable
damage propagation.
2. Structures with waiting links

2.1. Mechanism of damage propagation

Consider a chain or lattice of bistable links from
an elastic–plastic material. Each bistable link con-
sists of the straight main link and the longer initially
curved waiting link. The main and waiting links are
made of the same elastic–plastic material and joined
at the ends. An example of a one-dimensional chain
is shown in Fig. 1.

Initially, the resistance of the assembly is mainly
due to the elastic response of the main link. The
resistance of the curved waiting link is relatively
small. As the elongation increases, the main link
enters the plastic zone and develops a neck which
reduces its resistance. At that moment, the waiting
link is straightened and its resistance sharply
increases. The sum of the resistances of the two links
becomes bistable, if the parameters of these links are
properly chosen: The total resistance increases, then
decreases, then increases again. The increasing
regimes correspond to the locally stable state, and
the decreasing regime to the unstable state. The pas-
sage between these states is the phase transition.

The properly designed bistable chain is much
more resistant than the conventional chain. In a
conventional elongated bar of elastic–plastic mate-
rial, the necking corresponds to the beginning of a
fatal instability; the damage is accumulated in the
region of the neck and the sample breaks. Only
one neck is developed in the sample independently
of its length. In a bistable assembly, the acti-
vated waiting link arrests the development of the
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Fig. 2. Structure of the rectangular lattice.
Fig. 3. Meshed models for the bistable and solid links.
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irreversible plastic deformation and prevents the
failure of the necked main link. When the elonga-
tion of the whole chain increases, another neck is
formed in a neighbor assembly instead, and the
damage propagates. This sequentially occurred
transformation from one stable state to another cre-
ates a transition wave that propagates along the
chain. The process continues until all links experi-
ence the transition, then the deformations in the
waiting links also become plastic and the chain
breaks.

Notice that the elongation of a rectangular lattice
under plain normal impact is equivalent to the elon-
gation of the chain (Fig. 2). The links that are per-
pendicular to the loading are not stressed. They
enter the equations only by the addition of their
masses at the joints. The static behavior is analo-
gous to the behavior of a chain.

Compared with the elastic–brittle lattices investi-
gated earlier, the elastic–plastic protective struc-
tures naturally sustain larger deformations which
increases the structural strength. The waiting link
may be made considerably thinner in comparison
to the main link, because its role is to stop the fatal
instability of the necking. To the contrary, the elas-
tic–brittle structure will survive the failure of a main
link only if the waiting link is thicker than the main
one.

2.2. Simulation of the bistable link

The finite element simulation is used to demon-
strate the bistable force–displacement relation. Cop-
per C26000 was chosen because of its low hardening
and high ductility. Geometrically, the assembly
consists of the main link (25.4 mm · 7.94 mm ·
1.59 mm) in the center and two equal waiting links
(27.94 mm · 6.35 mm · .79 mm) at the top and bot-
tom, and joined at the ends. This design provides a
symmetric deformation of the main link.

The simulations are carried out using ANSYS
8.0. In a simulated model of the bistable link, the
geometric and material non-linearities and finite
deformations are taken into account. The 3-D
model is used in order to correctly simulate necking.
The finite element simulation is performed using the
8-node element having three degrees of freedom at
each node (SOLID45). The meshed model of the
structure is shown in Fig. 3. Finer mesh resolution
does not yield noticeable differences in the results.
To simulate the tensile experiment, the displacement
is applied in the longitudinal direction at both ends.
The symmetry is used and the simulation is per-
formed on one fourth of the structure. The follow-
ing boundary conditions are imposed at the end of
the link where the waiting and main links are joined:
The vertical displacement is zero, the horizontal dis-
placement is constant at each time instance.

The elastic–plastic response of the assembly is
simulated using von Mises yield criterion, associated
flow rule, and isotropic work hardening. The com-
puted deformation of the structure is shown in the
plot of the von Mises stress (Fig. 4) at the final load
step. For better visibility, the second contour plot
represents only a quarter of the structure. Notice
that the neck in the main link is developed and
arrested when the waiting link is straightened.
Fig. 5 shows the computed force–displacement



Fig. 4. Bistable link: Contour plot of von Mises stress at the final load step.
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relation for the main and waiting link. The bistable
force–displacement relation of the whole assembly
shown in Fig. 6 is obtained by summing the resis-
tance force in the main and waiting links. Notice
that force–elongation relation does not depend on
the location of the neck; in the following simula-
tions, the neck occurs in the center of the links.

The bistable link is compared with the solid link
of the same length, mass, and material, see Fig. 3.
The solid link also develops a neck, see Fig. 7, but
lacks the second stable interval of elongation. The
force–elongation dependence of the solid link is
shown at Fig. 8. In this paper, we do not perform
a detailed investigation of the dependence on the
thickness of the links, but restrict ourselves to sev-
eral examples.

3. Dynamics of a chain

3.1. Assumptions and equations

Addressing the dynamics of bistable chains
(lattices), we use a simplified model. We assume
that

(1) The simulated force–elongation dependencies
in the bistable and solid links are replaced by
the piece-wise linear functions, see Figs. 6
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Fig. 5. Force–displacement diagram for the main and waiting
links. Notice the large interval of the decreasing force in the main
link due to the necking. The S-shaped diagram of the initially
curved waiting link is due to its straightening.
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Fig. 6. Force–displacement diagram of a bistable link and its
piece-wise linear approximation.
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and 8. The figures show that the approxima-
tion is accurate; it allows for accelerating of
the computations.

(2) The model separates the concentrated masses
and massless springs. The mass of a whole link
is concentrated in the joints between them.
This assumption is conventional for structural
dynamics. It greatly simplifies the calculation
because the chain is replaced by a mass-spring
system. The neglected degrees of freedom cor-
respond to the relative motion of different
parts of the link. This motion is of very high
frequency and it is beyond the scope of the
assumptions of elastic–plastic behavior (we
do not account for viscosity), and are not in
the focus of the investigation. Here, we con-
centrate on the propagation of the wave of
transition that required the modeling for much
lower frequencies. For the lattice model
(Fig. 2), the additional masses of perpendicu-
lar unstressed links are added to the masses
of the stressed links at the joints.

(3) The simulated force–elongation dependence
corresponds to the static response of the mate-
rial. It is assumed that the same dependence
describes the response to a dynamic loading.
The interval of the velocities of the projectile
used in the calculations does not exceed 1.2%
of the sound speed in the material which justi-
fies this assumption.

(4) The unloading of the elastic–plastic link fol-
lows the straight path parallel to the linear
(elastic) part of the force–elongation diagram.
This assumption simplifies the model; the
details of this diagram seems to be not very
important for our goals.

The elastic–plastic deformation of the link is
described by the equation [for detailed discussion
of the plastic flow, see Hill (1998), Khan and Huang
(1995)]

F ðt; x; _xÞ ¼ F cðxplðtÞ þ xcÞ � cðxplðtÞ þ xc � xðtÞÞ
ð1Þ

_xplðtÞ ¼
0 if x 6 xc or F < F c

0 if F ¼ F c; _xðtÞ 6 0

_xðtÞ if F ¼ F c; _xðtÞ > 0

8><
>:

ð2Þ

where x is the elongation of the link, xc is the elon-
gation of the elastic limit, xpl is the plastic (irrevers-
ible) elongation, and c is the elastic constant. The
critical forces Fc(x) for the bistable and solid links
are shown in Figs. 6 and 8, respectively. They are
piece-wise linear functions of x. Notice that
Fc(x) = 0 if the elongation exceeds a threshold,
which corresponds to the failure. The initial
condition

xplð0Þ ¼ 0

assumes that initially there is no plastic
deformation.

We perform the following numerical experiment.
A chain is fixed at one end and impacted by the pro-
jectile of mass M at the other end. After the impact,



Fig. 7. Solid link: Contour plot of von Mises stress at the final load step.
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Fig. 8. Force–displacement diagram in the solid link and its
piece-wise linear approximation.
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the mass M stays attached to the free end of the
chain. The dynamics of the chain is described by
the set of differential equations:

m€zn ¼ F ðt; xn; _xnÞ � F ðt; xn�1; _xn�1Þ; ð3Þ
xn ¼ znþ1 � zn; n ¼ 1; . . . ;N � 1 ð4Þ
ðM þ mÞ€zN ¼ �F ðt; xN�1; _xN�1Þ z0 ¼ 0; ð5Þ

where zn is the position of nth knot, xn is the elonga-
tion of nth link, N is the number of links in the
chain, and z0 is the position of the fixed end of the
chain. Mass m of the knot is equal to the mass of
the link. In the lattice model, the mass m is equal
to the double mass of the link, so that the masses
of the unstressed links in the lattice (see Fig. 2)
are taken into accounted. This system is integrated
with the initial conditions

zn ¼ na _zn ¼ 0; n ¼ 1; . . . ;N � 1; ð6Þ

zN ¼ Na; _zN ¼
M

M þ m
v0; ð7Þ

where a is the length of the unstressed link, and v0

is the speed of the impact. This impact delivers
the impulse Mv0 to the last mass in the chain.
The impulse corresponds to the initial speed

M
Mþm v0 of that mass m and the attached mass M

of the projectile.
4. Simulation and results

4.1. Waves of transition

The system of differential equations is solved
using MATLAB. The typical picture of the motion
of the masses in a bistable chain is shown in Fig. 9.
The impact initiates an elastic wave which propa-
gates along the chain. When the wave reflects from
the support, its amplitude doubles. If the magnitude
of the wave is large enough, it transfers the first link
into the plastic unstable state. After this, the wave
of the transition is initiated and propagates toward
the impacted end. Simultaneously, the impact orig-
inates another transitional wave which propagates
toward the support. The chain breaks when these
two waves meet. If the speed of the impact is larger,
the chain fails immediately after the impact when
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Fig. 9. Waves in elastic–plastic chain of 25 bistable links. (a) Observe the fast sonic wave, two waves of transition (damage) and the
breakage when they meet. (b) The fast sonic wave initiates one transition wave.
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the first link breaks, as shown in Fig. 10(a). If the
speed of the impact is smaller, the transition waves
do not break the chain when they meet. The even
smaller speed corresponds to the absence of one of
the transitional waves (see Fig. 9(b)) or both of
them.

This behavior should be compared to the waves
in a chain of the conventional links where no tran-
sitional waves occur, see Fig. 10. The elastic wave
from the impact propagates along the chain. When
it reflects from the support, it transfers the first link
into the plastic unstable state and breaks it, as in
Fig. 10(b). The impact of a larger speed breaks the
link closest to the impact, as in Fig. 10(a). If the
magnitude of the wave is smaller, the chain stays
unbroken.
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Fig. 10. Waves in elastic–plastic chain of 25 s
4.2. Energy absorption

Let us compare the state of the links in the bro-
ken conventional and bistable chains. All the links
of the broken solid chain are undamaged but one.
Only the damaged link experiences the plastic defor-
mation and absorbs the energy. Contrary to this,
many or all the links in the bistable chain experience
a partial damage before breakage. Each of the par-
tially damaged link is plastically deformed and
absorbs the energy. Therefore, the bistable chain
absorbs larger energy before the breakage. In the
optimally designed chain all the links are partially
damaged and absorb the energy. The bistability
leads to an unexpected result: the maximal absorbed
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volume, not to the cross-section as in the conven-
tional chain, as illustrated in Fig. 11.

Fig. 12 compares the resistance of the bistable
and conventional chains. The picture shows the
kinetic energy of the projectile that breaks the chain.
The energy is computed at the instance of the break-
age and it is zero if the projectile is stopped. The
bistable chain of the same mass and length is able
to capture a faster projectile. Even if it is broken,
the projectile has lower residual speed. When the
speed of the projectile is very large, both the bistable
and conventional chains are broken by the projectile
of the same energy; in that range, the link closest to
the impact is broken and the other links do not
contribute.
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Fig. 12. Ratio of the kinetic energies of the projectile before and
after collision with the chain of 15 links. Zero corresponds to
captured projectile.
4.3. Critical loading

The points Bs and Bb shown in Fig. 12 correspond
to the critical behavior of the projectile: It breaks the
chain but its residual speed is reduced to almost. If
the speed of the projectile is smaller, it reverses its
direction and starts to oscillate. We call a projectile
critical if it is stopped by the chain while any projec-
tile with larger mass or velocity breaks it. The veloc-
ity of the critical projectile vanishes at the moment
when the chain fails and its elongation reaches the
maximum. The critical projectile is described by
two parameters, mass M and velocity v0. These crit-
ical parameters are important characteristics of the
chain because they determine its capability to resist
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Fig. 14. Kinetic energy of the projectile that breaks the chain.
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the impact. Fig. 13 compares the critical parameters
of the bistable and conventional chains of the same
mass, length, and material. Notice that the kinetic
energy of the critical projectile stays approximately
constant. The simulated bistable chain of 15 links
shows more than five times higher critical energy than
the conventional chain (see Fig. 14).

5. Conclusions

• The bistable structures can absorb many times
more energy than the conventional structures of
the same size, mass, and material before failure
due to an impact. The amount of the energy
needed to break the chain is proportional to the
volume of the chain not its cross-section.

• Damage is not accumulated in a certain location,
but is uniformly distributed over the structure.
The bistable chains are capable of spreading the
damage along the chain.

• The superior impact resistance is achieved by the
design of the links that leads to bistability of the
effective force–elongation relation. The bistable
structures experience the phase transition that is
accompanied by intensive energy absorption.
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