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The paper suggests exact bounds for the effective conductivity of an isotropic multimate-
rial composite, which depend only on isotropic conductivities of the mixed materials and
their volume fractions. These bounds refine Hashin–Shtrikman and Nesi bounds in the
region of parameters where they are loose. The bounds by polyconvex envelope are mod-
ifies by taking into account the range of fields in optimal structures. The bounds are a
solution of a formulated finite-dimensional constrained optimization problem. For three-
material composites, bounds for effective conductivity are found in an explicit form.
Three-material isotropic microstructures of extremal conductivity are found. It is shown
that they realize the bounds for all values of conductivities and volume fractions. Optimal
structures are laminates of a finite rank. They vary with the volume fractions and experi-
ence two topological transitions: For large values of m1, the domain of material with min-
imal conductivity is connected, for intermediate values of m1, no material forms a
connected domain, and for small values of m1, the domain intermediate material is
connected.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Hashin–Shtrikman bounds

Hashin–Shtrikman bounds (Hashin and Shtrikman,
1962, 1963) for effective properties of composites is per-
haps the most celebrated result in the theory of compos-
ites: Most books on composite discuss them, and a
Google search on them brings up more than 40,000 hits.
The bounds state that the effective conductivity k� of any
isotropic mixture of several isotropic conducting materials
satisfies certain inequalities independently of the structure
of a composite. In the two-dimensional case, the lower kL

and upper kU bounds are

kL 6 k� 6 kU : ð1:1Þ

Here
. All rights reserved.
kL ¼ �k1 þ H0; H0 ¼
XN

i¼1

mi

ki þ k1

 !�1

; ð1:2Þ

kU ¼ �kN þ HU
0 ; HU

0 ¼
XN

i¼1

mi

ki þ kN

 !�1

; ð1:3Þ

k1 < k2 < � � � kN are conductivities of the materials (materi-
als), and m1 P 0; . . . ;mN P 0 ðm1 þ � � � þmN ¼ 1Þ are their
volume fractions.

These bounds and their anisotropic extensions are exact
for two-material composites (mixtures): There are micro-
structures that explicitly realize them for all values of
k1; k2 and m1 (Hashin and Shtrikman, 1962; Lurie and
Cherkaev, 1984; Tartar, 1985). For multicomponent com-
posites, they are not exact for all composites but only if
volume fractions mi of materials are in certain intervals.
The lower bound is definitely not exact for small fractions
m1 of the ‘‘best” material k1. Indeed, it depends on k1 even
in the limit m1 ¼ 0, as it was pointed by Milton (1981).
Clearly, this is impossible because k1 is not presented in
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the composite. Therefore the bound is rough and can be
improved for sufficiently small m1. Moreover, the inaccu-
racy of the multimaterial bound can question the estab-
lished results for two-material bound. Indeed, an
infinitesimal amount of an unaccounted material with low-
est conductivity can significantly change the bound. As-
sume, for example, that two materials with conductivities
k2 ¼ 1 and k3 ¼ 3 are mixed in the equal fractions
ðm2 ¼ m3 ¼ :5Þ. The lower Hashin–Shtrikman bound (1.2)
is kL ¼ 1:667. A formal addition to the mixture a material
with conductivity k1 ¼ :1 and zero volume fraction m1 ¼ 0
changes the bound to kL ¼ 1:5238. Of course the difference
between the two formulations is only semantic. The fact that
the Hashin–Shtrikman bound is loose in a region of param-
eters and is exact outside this region suggests that some
inequality constraints are missing in its derivation. These
constraints might become active in that region.

1.2. Some previous work

Since Hashin and Shtrikman suggested the bounds for
effective properties (Hashin and Shtrikman, 1962) in
1963, the method was extended in several directions. The
contemporary approach to geometrically independent
bounds was suggested in eighties in Lurie and Cherkaev
(1981a,b, 1984, 1985) and Tartar (1985), generalized in
Lurie and Cherkaev (1985), Kohn and Strang (1986), Milton
(1990), and Avellaneda et al. (1996) and other papers. Mil-
ton (1990) called it translation method. It allows one to
obtain the bounds for the effective properties of aniso-
tropic conducting, elastic, and viscoelastic composites
and polycrystals. For references, we refer to books and re-
views (Cherkaev and Kohn, 1997; Cherkaev, 2000, 2004;
Milton et al., 2002) and references therein. The approach
is based on investigation of a nonconvex variational prob-
lem that describes the problem of bounds. The references
can be found in books (Cherkaev, 2000; Milton et al.,
2002; Dacorogna, 1989). The translation bounds are pro-
ven to be exact for two-material mixtures and polycrystals,
but not for general multimaterial composite, as it is evi-
dent from the above example.

Work has been done to extend the technique of the
bounds to multimaterial composites. Nesi (1995) used an
additional inequality to improve the bounds. The inequal-
ity states (see Alessandrini and Nesi, 2001) states that
detðruajrubÞP 0 where ua and ub are two solution of con-
ductivity problem in an inhomogeneous periodicity cell,
exposed to two different external fields. The inequality is
valid independently of optimality of the structure of the
composite. Adding this inequality to the translation meth-
od, Nesi improved Hashin–Shtrikman bound (Nesi, 1995).
Later, structures have been found in Cherkaev (2000) that
attain Nesi’s bound in an asymptotic case when one mate-
rial has infinite conductivity. Simultaneously, evidence
was provided that the bound is not exact in the general
case because it does not satisfy the correct asymptotic. In
the current paper, we use several ideas of Nesi’s approach.

The mathematical foundations of multiwell bounds
were investigated. Smyshlyaev and Willis (1999) formu-
lated the three-well problem as the problem for vector-
valued H-measures. Bhattacharya and Dolzmann (2001)
found the quasiconvex hull of multiwell Lagrangian. Talbot
et al. (1995) suggested an improvement of Hashin–Shtrik-
man bounds. Barbarosie (2003) expanded Milton’s struc-
tures to the case of infinitely many materials. The first
optimal three-material structure was found by Milton
(1981) who considered two kinds of Hashin–Shtrikman
coated circles (Hashin and Shtrikman, 1962), mixed to-
gether. The structures realize the Hashin–Shtrikman bound
(a.k.a. the isotropic translation bound) in a region of
parameters where the volume fraction m1 of the best
material j1 is larger than a threshold value. Lurie and
Cherkaev (1985) formulated an optimization problem
and found a different type of optimal structures: The
multi-layer coated circles. The solution is topologically
different from the solution found in Milton (1981). Effec-
tive conductivity of both structures realizes the bound in
the range where the structures are geometrically possible,
and then deviates from the bound. Milton and Kohn (1988)
extended earlier Milton’s result (Lurie and Cherkaev, 1984)
to anisotropic composites by using second-rank matrix
laminates. All these structures match the bound in a range
of volume fractions m1 > m0

1 and do not match correct
asymptotic when m1 ! 0. This suggested that some unac-
counted inequalities become active for small m1.

Meanwhile, miscellaneous facts concerning optimal
multimaterial composites were collected. Cherkaev and
Gibiansky (1996) found three-component structures of ex-
treme anisotropy whose properties significantly differ
from the two-material ones: When the effective conductiv-
ity in x-direction is equal to the harmonic mean of mixing
materials’ conductivities, the conductivity in perpendicular
direction can be made smaller than arithmetic mean of
them. The necessary conditions technique for examining
fields in multimaterial composites was worked out (Cher-
kaev, 2000) following the approach suggested by Lurie
(1975, 1993) and Murat (1977) in 1970s. Using this tech-
nique, the range of fields in optimal composites were
investigated in Cherkaev (2000) and Cherkaev and Kucuk
(2004), and constraints on the range of fields in an optimal
structure were established.

Gibiansky and Sigmund (2000) discovered a new class
of three-material structures that significantly expanded
the known region of attainability of Hashin–Shtrikman
bound. Recently, Albin et al. found new optimal anisotropic
three-material laminates for two-dimensional conductiv-
ity (Albin et al., 2006, 2007). New optimal three-material
structures for three-dimensional conductivity were de-
scribed by Albin and Cherkaev (2006). These structures
realize Hashin–Shtrikman bounds and anisotropic transla-
tion bounds in a larger range than was known before (they
are discussed below, in Section 8.1). Some hints on the
optimal values of fields in materials outside of optimality
of Hashin–Shtrikman bound were revealed by Albin
(2006) by numerical optimization of microstructures.

1.2.1. Contents of the paper
In this paper, we derive new bounds of isotropic effec-

tive conductivity that complement Hashin–Shtrikman
bounds. In order to establish them, we analyze assump-
tions on admissible microstructures and introduce a con-
straint on fields in them, called rank-one connectedness.



A. Cherkaev / Mechanics of Materials 41 (2009) 411–433 413
Section 2.3 describes the set of admissible microstructures
and explains the rationale of choosing it. We also find
structures that explicitly realize the bounds of conductivity
of three-component composites for all values of volume
fractions and conductivities of components.

Section 2 describes conductivity of an inhomogeneous
body, a corresponding variational problem, and assump-
tions. Section 3 outlines the known bounds (by the poly-
convex envelope) and establishes inequalities for the
fields in optimal two-component structures. Section 4
introduces new bounds by localized polyconvexity, and
works out the algebra of new bounds. The constraint for
fields in optimal structures is discussed in Section 4.4.
These constraints are used in Section 5 to derive an exact
lower bound for effective conductivity of a multimaterial
conducting composite. Section 6 discusses generalization:
The upper bound (Section 6.1) and anisotropic bounds
(Section 6.2). Section 7 gives an explicit description of
the bound for a three-material composite. Section 8 deter-
mines optimal three-material structures in which conduc-
tivity match the bound. Appendix A describes the found
parameters of optimal structures in an asymptotic case
k3 ¼ 1.

2. Periodic conducting composites

2.1. Equations

2.1.1. Periodic cell
Consider the plane divided into periodic system of unit

squares. Each periodicity cell X; ðX ¼ ðx1; x2Þ : 0 6f
x1 6 1; 0 6 x2 6 1g ¼ 1Þ is divided into N parts
Xi; X ¼

S
Xi and each part is occupied with an isotropic

conductor of conductivity ki. Denote the dividing curves
between Xi and Xj as @ij. Note that domains Xi are not nec-
essary connected.

The variable conductivity kðxÞ within the cell is

kðxÞ ¼
XN

i¼1

viðxÞki ð2:1Þ

where x ¼ ðx1; x2Þ and vi is the characteristic function of
subdomain Xi:

viðxÞ ¼
1 if x 2 Xi

0 if x R Xi

�
: ð2:2Þ

The area of subdomain Xi is called volume fraction mi of
material ki:

mi ¼ kXik ¼
Z

Xi

dx ¼
Z

X
vi dx: ð2:3Þ

Fractions mi are assumed to be strictly positive and they
sum up to one.

mi > 0;
XN

i¼1

mi ¼ 1: ð2:4Þ
2.1.2. Conductivity
Assume that a homogeneous external field Ea is applied

to the composite along x1-axis causing potential uaðxÞ in-
side. Potential ua satisfies the following conditions:
(i) ua is harmonic in connected components of Xi,
because kðxÞ ¼ ki is constant there.

r2ua ¼ 0 in Xi; r � kðxÞruaðxÞ ¼ 0 in X; ð2:5Þ

We notice that magnitude jruaj of a harmonic in Xi

field ua reaches its supremum on its boundary @Xi,

arg supx2Xi
jruaðxÞj

� �
2 @Xi; i ¼ 1; . . . ;N: ð2:6Þ

(ii) Gradient ruaðxÞ is X-periodic and its average equals
to the applied field EaZ

X
rua dx ¼ Ea; ruaðxÞ is X-periodic; ð2:7Þ

(iii) Conditions on boundaries @pm between domains Xp

and Xm; p; m ¼ 1; . . . N; p–m, are satisfied

@ua

@s

� �p

m
¼ 0 on @pm; ð2:8Þ

and

k
@ua

@n

� �p

m
¼ 0; on @pm: ð2:9Þ

Here, ½zðsÞ�pm denotes the jump of a function z on the
point s at the boundary @pm,
½zðsÞ�pm ¼ lim
x!s;x2Xp

zðxÞ � lim
x!s;x2Xm

zðxÞ

and n and s are the normal and tangent to @pm. Con-
ditions (2.8) and (2.9) express the continuity of po-
tential ua and normal component of the current,
respectively. We assume that n and s are defined al-
most everywhere on @pm.

2.1.3. Energy
The energy Pa of the periodicity unit cell X in an exter-

nal field Ea is equal to

Pa¼
1
2

inf
ua2Ua

Z
X

XN

i¼1

vikiruT
arua dx

 !
ð2:10Þ

where

Ua¼ ua :

Z
X
rua dx¼ Ea; rua is X-periodic; u2W1

2ðXÞ
� �

:

ð2:11Þ
2.2. Effective properties

The energy is a quadratic function of magnitude of ap-
plied field Ea,

Pa ¼
1
2

k�ðvÞ11ET
aEa: ð2:12Þ

Coefficient k�ðvÞ11 represents the overall conductivity of
the cell subjected to the field Ea. It is the entry of effective
tensor K�ðvÞ; it depends only on characteristic function
v ¼ ðv1; . . . ;vNÞ of layout. In order to characterize tensor
K� in more details, we compute the sum of energies of a
cell subjected to two orthogonal external fields Ea and Eb.
In addition to PaðuaÞ, we consider the energy Pb and
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potential ub 2 Ub defined similarly to (2.11) but associated
with an external field Eb instead of Ea. We also assume that
Eb is orthogonal to Ea; ET

a Eb ¼ 0.
The sum of the energies can be written as

Jðe0;vÞ ¼ Pa þPb ¼
1
2

inf
u2U

Z
X

XN

i¼1

vikiTrðruTruÞdx

 !
:

ð2:13Þ

Here, u is vector of potentials u ¼ ½ua;ub�; U ¼ Ua � Ub, and
ru is a 2 � 2 matrix with columns rua and rub,

ru ¼ ðruajrubÞ ¼

@ua

@x1

@ub

@x1

@ua

@x2

@ub

@x2

0
BB@

1
CCA: ð2:14Þ

Entries ðruÞij ¼
@ui
@xj
2 L2ðXÞ are X-periodic, and matrix ru

satisfies integral conditions (see (2.11)):

U :

Z
X
rudx ¼ e0; e0 ¼ ðEajEbÞ; ET

a Eb ¼ 0: ð2:15Þ

Here, e0 is a symmetric matrix of external fields with
eigenvalues equal to jEaj and jEbj and eigenvectors oriented
along x1 and x2 axes, respectively.

The left-hand side of (2.13) defines the effective conductiv-
ity tensor K�ðvÞ. It is a quadratic form of ðe0Þkj with K� entries

Jðe0;vÞ ¼
1
2

Tr K�ðvÞe0eT
0

� 	
: ð2:16Þ

Because e0 is arbitrary and K�ðvÞ that depends only on lay-
out (structure) v, (2.16) allows for defining K�.

2.2.1. Stationarity of Jðe0;vÞ. Rank-one connectedness
Consider variational problem (2.13). Minimization of

Jðe0;vÞ with respect of u 2 U leads to the Euler–Lagrange
equations (compare with (2.5) and (2.7))

r � kðxÞruj ¼ 0 in X;Z
X
rujdx ¼ Ej; ruj are X-periodic; j ¼ a; b: ð2:17Þ

At the dividing curve @mp between the domains Xm and Xp,
the vector potential u satisfies the main boundary condi-
tions similar to (2.8)

@u
@s

� �m

p

¼ 0 on @mp ð2:18Þ

and the variational boundary conditions similar to (2.9)
which follow from the stationarity of Jðe0;vÞ

k
@u
@n

� �m

p
¼ 0; on @mp: ð2:19Þ

These conditions imply the rank-one connectedness of the
matrices ru and kru on the opposite sides of boundary
@mp:

rank ru½ �mp ¼ 1; rank kru½ �mp ¼ 1: ð2:20Þ

Let denote the set of values of matrices e ¼ ru in Xi as
Wi,

Wi ¼ ruðxÞ; x 2 Xif g ð2:21Þ
Condition (2.20) implies that sets Wm and Wp are rank-one
connected:

9em 2 Wm; 9ep 2 Wp : detðem � epÞ ¼ 0 ð2:22Þ
2.2.2. Optimal composites
A layout v (or a limit of a sequence vs

i


 �
) that minimizes

the energy Jðe0;vÞ with a given external field e0 is called an
optimal composite. Minimal energy is still a quadratic func-
tion of entries of e0 and is defined by a tensor KL of the low-
er bound (see Cherkaev, 2000).

inf
vi as in ð2:3Þ and ð2:4Þ

Jðe0;vÞ ¼
1
2

TrðKLe0eT
0Þ: ð2:23Þ

It is assumed that v satisfies (2.3) and (2.4) or that the
compared structures keep the volume fractions.

Effective conductivity tensor K� of any structure is
bounded by KL as follows

eT
0ðK�ðvÞ � KLÞe0 P 0 8v as in ð2:3Þ and ð2:4Þ; 8e0:

ð2:24Þ

The difference K�ðvÞ � KL is nonnegatively defined, in
particular

detðK�ðvÞ � KLÞP 0 8v as in ð2:3Þ and ð2:4Þ; 8e0:

ð2:25Þ

If jEaj ¼ jEbj ¼ s or e0 ¼ sI, optimal structures are isotropic,
see, for example (Cherkaev, 2000; Milton et al., 2002).

KL ¼ kLI if e0 ¼ sI: ð2:26Þ

Then, the bound kL for isotropic conductivity k� becomes:

kL ¼
1
s2 inf

vi

JðsI;vÞ: ð2:27Þ

Bound kL depends only on ki and mi, it defines the lower
isotropic component of G-closure or the set of all effective
tensors of composites with fixed volume fractions mi of
materials (see Lurie and Cherkaev, 1981a,b, 1984; Cher-
kaev, 2000),

kLðmi; kiÞ 6 k�ðvÞ 8v as in ð2:3Þ: ð2:28Þ
2.3. Relaxed rank-one connectedness

2.3.1. Admissible microstructures
Our goal is to describe optimal composites or optimal

subdomains Xi that minimize Jðe0;vÞ, (2.16). Optimization
at an open set of measurable characteristic functions
v may lead to ill-defined minimizing sequences. For in-
stance, a fractal minimizing sequence of microstructures
(like laminates of infinite rank) requires continuity of po-
tential u at a generalized curve which may densely cover
the whole periodicity cell. The boundary condition (2.8)
that follows from the continuity of u should be redefined
at such fractals and checked for consistency with major
physical assumptions. To avoid ambiguity in the basic def-
initions, some assumptions specifying the partitions must
be imposed. They could be expressed indirectly as a
boundary condition on u in admissible microstructures.
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2.3.2. Underlying equation could be ambiguous
The necessity of constraints on admissible microstruc-

tures is evident from examining of the underlying finite-
difference relations. Partial differential equation (2.5) in
Xi is conventionally viewed as a limit of finite differences
equations in which the potential is defined at knots of a
simple lattice. This viewpoint implies an assumption that
a characteristic scale of domain Xi is much larger than
the distance between the knots in the difference equation.
Particularly, this assumption yields to condition (2.8) in
the limiting differential equation.

For any fixed measurable function v of subdomains, the
assumption of scale separation can be validated by adjust-
ing the lattice. However, there is no means to keep the
scales separated when the energy is minimized with re-
spect to v on a fixed lattice unless some assumptions
(additional terms in the energy or other penalties) are
introduced.

Alternatively, one may arbitrary assign conductivity ki

at every knot of lattice, thereby introducing one scale for
both the structure and potentials. Then, one could end up
with checkerboard-type structures without clear bound-
aries and domains Xi without interiors. Since subdomains
have no interiors, there is no boundary conditions. The cor-
responding difference equations do not tend to (2.5) and
(2.8) and an additional convention is needed for interpret-
ing of the limiting equations. These ambiguities in the ba-
sic definition follow from the absence of an optimal
microgeometry. Depending on the chosen additional
assumptions, one might obtain different results.

2.3.3. Constraints and pure materials
Assume that a minimizing sequence may contain do-

mains Xi of arbitrary shape and connectedness, moreover,
these domains may become infinitely wiggly fractals, as in
Avellaneda et al. (1996). Dealing with such sequences, we
assume that conditions similar to (2.6) and (2.22) are sat-
isfied even when minimizing structures tend to a fractal.
In the last case, we assume relaxed boundary conditions
that correspond to the situation when a ‘‘larger” domain
Xi neighbors a fine-scale mixture of other materials, and
the scales are well separated. Namely, we assume that field
ei at the boundary of Xi must be in rank-one connection
with a convex combination of the fields in the remaining
part of X that represents an averaged field at the other side
of the boundary. Therefore, Wi sets must satisfy the
conditions

9ei 2 Wi; 9ec ¼ C
[
k–i

Wk

 !
: detðei � ecÞ ¼ 0 ð2:29Þ

of relaxed rank-one connectedness. Here, CðXÞ means the
convex envelope of X.

Relaxed rank-one condition (2.29) defines a pure mate-
rial. It states that there exists almost everywhere differen-
tiable component C of the boundary which separates
domain Xi filled with ki from an external domain Xext that
does not contain ki in the proximity of the boundary; it ex-
presses separability of the domain Xi of ki. This condition
follows from continuity of potential u and the assumed lo-
cal piece-wise differentiability of C. Notice that (2.29) does
not require that all microstructural boundaries are of this
type. On a larger scale, Xi may become an element of a
mixture that contains all but jth material and the corre-
sponding boundary separates domain kj from its exterior.

2.3.4. Laminates
Particularly, relaxed rank-one connectedness corre-

sponds to continuity of a potential in the sequential lami-
nates of any finite rank. Definition of these sequences of
structures (see, for example, Lurie and Cherkaev, 1984;
Cherkaev, 2000; Milton et al., 2002) includes an assump-
tion of the separation of scales in laminates of different
rank. Inside any laminate scale, the piece-wise constant
fields satisfy the boundary and equilibrium conditions.
On the boundary between slices of ‘‘fine scale” laminates,
the conditions are satisfied for the averaged in smaller
scales fields as in (2.29). This scheme implies an assump-
tion that the ratio of the scales tends to zero. Any sequen-
tial laminate satisfies (2.29) if the rank of lamination is
arbitrarily large but finite. This condition holds on the
boundary of a smallest layer that contains ki.

Still, (2.29) excludes some fractal sequences of self-
repeated layouts that contain ki in infinitely many scales
as in Avellaneda et al. (1996). In these cases, the problem
can be slightly adjusted. For instance, an additional phase
with an arbitrary small volume fraction can be added to
the scheme for an optimal polycrystal problem in order
to satisfy (2.29), or the rank of laminates can be restricted
by an arbitrary large but finite number.

2.4. Notations

For the next consideration, it is convenient to introduce
a matrix basis for 2 � 2 matrices e ¼ ru. We introduce a
convenient basis (see, for example Cherkaev, 2000; Albin
et al., 2007)

a1 ¼
1ffiffiffi
2
p

1 0
0 1

 �
; a2 ¼

1ffiffiffi
2
p

1 0
0 �1

 �
;

a3 ¼
1ffiffiffi
2
p

0 1
1 0

 �
; a4 ¼

1ffiffiffi
2
p

0 1
�1 0

 �
:

Matrices ai are orthonormal with respect to scalar product
TrðaiaT

j Þ. One can check that TrðaiaT
j Þ ¼ dij, where dij is the

Kronecker symbol. Any 2 � 2 matrix Z is represented by
its coefficients in that basis as follows

Z ¼ 1ffiffiffi
2
p SðZÞa1 þ D�ðZÞa2 þ D��ðZÞa3 þ VðZÞa4½ �

where

SðZÞ ¼ 1ffiffiffi
2
p Z11 þ Z22ð Þ; D�ðZÞ ¼

1ffiffiffi
2
p Z11 � Z22ð Þ;

D��ðZÞ ¼
1ffiffiffi
2
p Z12 þ Z21ð Þ; VðZÞ ¼ 1ffiffiffi

2
p Z12 � Z21ð Þ: ð2:30Þ

One can immediately verify that

TrðZT ZÞ ¼ S2 þ D2 þ V2;

detðZÞ ¼ 1
2
ðS2 þ V2 � D2Þ ð2:31Þ
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where

D2 ¼ D2
� þ D2

��: ð2:32Þ

Notice that SðZÞ; DðZÞ and VðZÞ are invariant to rotation of Z.
If Z is symmetric, then VðZÞ ¼ 0. If Z is proportional to

unit matrix, Z ¼ sI, then VðZÞ ¼ DðZÞ ¼ 0, and SðZÞ ¼
ffiffiffi
2
p

s.
In particular, matrix ru of gradient u is represented as

ru ¼ SðruÞa1 þ D�ðruÞa2 þ D��ðruÞa3 þ VðruÞa4

where

SðruÞ ¼ 1ffiffiffi
2
p @ua

@x1
þ @ub

@x2

 �
; D�ðruÞ ¼ 1ffiffiffi

2
p @ua

@x1
� @ub

@x2

 �
;

D��ðruÞ ¼ 1ffiffiffi
2
p @ua

@x2
þ @ub

@x1

 �
; VðruÞ ¼ 1ffiffiffi

2
p @ua

@x2
� @ub

@x1

 �
:

ð2:33Þ

Matrix e ¼ ru can be represented by its rotationally
invariant components (S, D, V) and the angle of orientation
of the labor system.

3. Harmonic mean and translation bounds

3.1. Harmonic mean bound

In this section, we recall the derivations of the known
bounds for the effective properties and comment on
requirements to optimal fields.

3.1.1. Energy of an optimal composite
In the notations (2.31), the energy of an isotropic com-

posite is

Jðe0;vÞ ¼ Jð
ffiffiffi
2
p

S0I;vÞ ¼ k�S
2
0: ð3:1Þ

The energy is equal the sum of energies in the mixed mate-
rials. We write, using (2.31)

k�S
2
0 ¼ 2 inf

eðxÞ

1
2

XN

i¼1

ki

Z
Xi

Tr eTðxÞeðxÞ
� �

dx

¼ inf
S;D;V

XN

i¼1

ki

Z
Xi

ðS2 þ D2 þ V2Þdx: ð3:2Þ

It is convenient to separate the fields in the subdomains
Xi into their mean values Si; Di; Vi and deviations, rewrite
the energy as follows:

k�S
2
0 ¼ min

S1 ;Di ;Vi

XN

i¼1

mikiðS2
i þ D2

i þ V2
i Þ þN ; ð3:3Þ

where

Si ¼
1
kXik

Z
Xi

SðxÞdx; Di ¼
1
kXik

Z
Xi

DðxÞdx;

Vi ¼
1
kXik

Z
Xi

VðxÞdx; ð3:4Þ

N ¼ inf
SðxÞ;DðxÞ;VðxÞ2W

XN

i¼1

N i; ð3:5Þ

N i ¼ ki

Z
Xi

ðSðxÞ � SiÞ2 þ ðDi � DðxÞÞ2 þ ðVi � VðxÞÞ2
h i

dx:

ð3:6Þ
The mean values are subject to integral constraints

XN

i¼1

miSi ¼ S0;
XN

i¼1

miDi ¼ 0;
XN

i¼1

miVi ¼ 0: ð3:7Þ

and deviations are free of them. The only nonhomogeneous
constraint in (3.7) is imposed on the average of
S-components.

3.1.2. Harmonic mean bound
The lower bounds are obtained by enlarging the set of

minimizers. If differential constraints (2.17) and (2.18) on
minimizers are neglected, the minimum decreases. As-
sume that these constraints are omitted so that eðxÞ is a
matrix with entries eij 2 L2ðXÞ. Then, the energy minimum
corresponds to piece-wise constant isotropic fields in each
domain Xi,

SðxÞ ¼ Si; DðxÞ ¼ Di VðxÞ ¼ Vi 8x 2 Xi; i ¼ 1; . . . ;N;

ð3:8Þ

because the integrals in (3.6) are convex functionals of S, D,
V. The variational problem becomes an algebraic one:
N ¼ 0 in (3.5).

Further, we find:

Vi ¼ 0; Di ¼ 0; i ¼ 1; . . . ;N: ð3:9Þ

Minimizing the right-hand side of (3.3) over Si, subject
to (3.7), we compute

Si ¼
1
ki

HhS0; i ¼ 1; . . . ;N; Hh ¼
XN

i¼1

mi

ki

 !�1

: ð3:10Þ

Expression (3.2) gives the harmonic mean bound for
effective conductivity k�,

k� P kh
L ¼ Hh: ð3:11Þ

Notice that fields that satisfy (3.8) and (3.9) are not
compatible. Since e is constant in Xi and proportional to
unit matrix, a tangent component of e is discontinuous at
the boundaries where S-component jumps, (3.10). This
contradicts (2.20) or (2.29). Therefore the bound (3.11) is
not attainable by a structure.

3.2. Translation or Hashin–Shtrikman bound

3.2.1. Integral constraint and translated energy
A polyconvex envelope (Kohn and Strang, 1986; Lurie

and Cherkaev, 1984; Tartar, 1985; Dacorogna, 1989) is also
obtained by neglecting differential constraints eðxÞ ¼ ru,
and replacing fields in Xi by their averages. However, the
differential constraints are indirectly accounted for via
quasiaffinity of detðruÞ,

detðe0Þ ¼
Z

X
detðruÞdx; 8u 2 U : ð3:12Þ

Adding this equality, multiplied by a real number t
called translation parameter, to both sides of (3.2) we write

Jðe0;vÞ þ t detðe0Þ ¼ inf
eðxÞ¼ru

1
2

XN

i¼1

Z
Xi

kiTr eTðxÞeðxÞ
� ��

þt det eðxÞ�dx ð3:13Þ
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We transform the left-hand side of (3.13) to the form

Jðe0Þ þ t detðe0Þ ¼
1
2
ðk� þ tÞS2

0: ð3:14Þ

recalling that the applied field e0 ¼ 1ffiffi
2
p S0I and the corre-

sponding tensor KL ¼ kLI are isotropic.
To obtain the bound, we again relax the right-hand side

of (3.13) by omitting the differential constrain e ¼ ru and
treating e as a matrix with entries from L2ðXÞ, as before.
The minimum in this enlarged class of minimizers is lower,
and the equality (3.13) is replaced by an inequality

1
2
ðk� þ tÞS2

0 P
1
2

W poly
t ðe0Þ ð3:15Þ

where Wpoly
t is a solution of a finite-dimensional minimiza-

tion problem

Wpoly
t ¼ inf

e2E

XN

i

Z
Xi

ðkiþ tÞ S2ðxÞþV2ðxÞ
� �

þðki� tÞD2ðxÞ
h i

dx:

ð3:16Þ

(here, decomposition (2.31) is used to transform the right-
hand side of (3.13)).

Minimizers S, D, V are subject to integral constraint

E¼ e :

Z
X

SðxÞdx¼ S0;

Z
X

DðxÞdx¼0;
Z

X
VðxÞdx¼0

� �
:

Wpoly
t is a quadratic function of S0, as the left-hand side of

(3.15). Since S0 is arbitrary, we obtain a family of
inequalities

k� P kL ¼
Wpoly

t

S2
0

� t 8t 2 R1; ð3:17Þ

that depends on parameter t 2 R. Translation bound (or
polyconvex envelope) corresponds to maximum of right-
hand side of (3.17) with respect of t.

3.2.2. Range of translation parameter
The integrals in Wpoly

t (3.16) are bounded as

1
mi

Z
Xi

ðki þ tÞ S2ðeðxÞÞ þ V2ðeðxÞÞ
� �

dxþ ðki � tÞD2ðeðxÞÞ
h i

dx

P Gpoly
i ðSi;Di;Vi; tÞ ð3:18Þ

where Si; Di; Vi are defined in (3.4), i ¼ 1; . . . ;N,

Gpoly
i ¼ ðki þ tÞðS2

i þ V2
i Þ þ ðki � tÞD2

i if 0 < t 6 ki

�1 if t > ki

(
:

ð3:19Þ

Indeed, when coefficients ki þ t and ki � t are nonnegative,
the integral in (3.18) is a convex functional of S; D; V . Its
minimum is achieved when SðxÞ; VðxÞ and DðxÞ are con-
stant in Xi and equal to their mean values.

When k1 � t ¼ 0, the right-hand side of (3.18) is inde-
pendent of D2ðxÞ; x 2 X1. The extremal fields SðxÞ; VðxÞ
are constants, as before.

When ki � t < 0, the integral in (3.18) is a concave func-
tional of DðxÞ. The improper infimum of that integral (see
(3.19)) corresponds to a unbounded minimizing sequence
fDsg such that the magnitude of fDsg tends to infinity
while the average of D over Xi is zero,Z

Xi

ðDsÞ2dx!1;
Z

Xi

ðDsÞdx ¼ 0:

Because of this feature, the lower estimate (3.18) is non-
trivial only if t 2 ½0; k1�.

3.2.3. Translation (Hashin–Shtrikman) bound
Let t 2 ½0; k1�. Proceeding as before, we find that optimal

values of Di and Vi are zeros, Di ¼ 0; Vi ¼ 0 and Wpoly
t

becomes

Wpoly
t ¼min

Si2S
C; C ¼

XN

i¼1

miðki þ tÞS2
i ð3:20Þ

where

S : S1; . . . ; SN :
XN

i

miSi ¼ S0

( )
: ð3:21Þ

Performing minimization over Si, we compute optimal val-
ues of Si (compare with (3.10))

Si ¼
1

ki þ t
H0ðtÞS0: ð3:22Þ

where

H0ðtÞ ¼
XN

i

mi

ki þ t

 !�1

: ð3:23Þ

Then we compute C,

C ¼ H0ðtÞS2
0

and arrive at a lower bound (3.17)

k� P BðtÞ 8t 2 ½0; k1�; BðtÞ ¼ �t þ H0ðtÞð Þ: ð3:24Þ

Finally, we choose t 2 ½0; k1� (see (3.19)) to maximize
the lower bound BðtÞ. A straightforward calculation shows
that optimal value of t is k1 – the end point of its permitted
interval.

kL ¼ max
t2½0;k1 �

�t þ H0ðtÞð Þ ¼ �k1 þ H0ðk1Þ: ð3:25Þ

We arrive at the Hashin–Shtrikman bound (1.2) a.k.a.
translation bound.

3.2.4. Fields in translation-optimal structures
If t ¼ k1, the left-hand side of (3.18) is independent of

DðxÞ if x 2 X1 because the coefficient ðk1 � tÞ by D2 van-
ishes, and

Gpoly
i ðS1;D; 0; k1Þ ¼ constantðDÞ:

Optimal D-components areZ
X1

DðxÞdx ¼ 0; DðxÞ is undefined 8x 2 X1; ð3:26Þ

DðxÞ ¼ 0; 8x 2 X�X1: ð3:27Þ

The value of DðxÞ; x 2 X1 can be arbitrary. In order to
satisfy the constraint (3.7) on the mean field, the average
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D1 must be zero, D1 ¼ 0. Optimal S-components are or-
dered and constant in each subdomain,

Si ¼ biS0; bi ¼
1

ki þ k1
H0ðk1Þ; i ¼ 1; . . . ;N: ð3:28Þ

Notice that the polyconvex bound admits a minimizer
with nonzero D-component in X1, unlike the harmonic
mean bound. This flexibility in minimizers makes the
bound attainable by a structure in which fields in all but
the first material are isotropic and incompatible
Di;¼ Vi ¼ 0; i ¼ 2; . . . N. The D-component of the field in
the first material may vary with x 2 X1, providing a con-
nectedness between other materials so that (2.20) is satis-
fied at all interfaces, see Albin et al. (2007) and the
discussion below. In an optimal structure, domain X1 is
placed between the other domains which contain mutually
incompatible fields.

In other terms, sets Wi; i > 1 of ranges of ru in Xi are
rank-one connected to W1 set, see (2.22) and (2.29). Indeed,
sets Wi; i > 1, consist of one isotropic matrix each:
Wi ¼ fru : S ¼ Si; D ¼ 0; V ¼ 0g, but set W1 consists of all
symmetric (V=0) matrices with a fixed trace and arbitrary
D-component, W1 ¼ ru : S ¼ S1; D-arbitrary; V ¼ 0f g. The
equality (2.18) of the tangent components of ru in X1 and
a neighboring subdomain Xi is expressed as Si ¼ S1 þ D1 in
notations (2.33). By choosing a proper value of D in W1,
one can make sets W1 and Wi; i > 1 be rank-one connected.

Remark 3.1. Translation bound assumes a special role of
the first phase k1 because e 2 Wi connects all fields. When
fraction m1 of it tends to zero, m1 ! 0, the fields in
remaining phases lose connectedness and the bound
become loose like the Harmonic mean bound. This causes
the paradox of the Hashin–Shtrikman bound mentioned in
the Introduction. Algebraically, we observe that translation
parameter t is less than or equal to k1 regardless of the
volume fraction of k1. Correspondingly, the bound depends
on k1 even in the limit m1 ! 0.

Remark 3.2. The translation bound for an anisotropic con-
ductivity tensor K�

2
det K� � k2

1

TrK� � 2k1
P H0ðk1Þ 8K� in G-closure ð3:29Þ

is obtained by the same method (see Lurie and Cherkaev,
1984; Tartar, 1985; Milton and Kohn, 1988) and degener-
ates into (1.2) when K� ¼ k�I. This time, the average field
e is not proportional to the unit matrix, DðeÞ–0, but is re-
lated to the degree of anisotropy of bounding tensor K�.
Notice that B0ðk1Þ and H0ðk1Þ keep their forms if D1–0
which is the case for anisotropic e0 and K� (see below, Sec-
tion 6.2). In this case, the optimal fields are similar to
(3.26) and (3.27) has the average of D-component in X1

is equal to D1 ¼ 1
m1

DðeÞ. The D-components in the other
materials are zero.
3.3. Fields in two-material optimal structures

3.3.1. Supporting points
Consider a two-material optimal isotropic composite

from the material km and ki; km > ki. It satisfies the trans-
lation bounds: The fields in the structures satisfy condi-
tions (3.26)–(3.28). Here we show that D-component of
the field in X1 is bounded,

D2
6 ðSi � SmÞ2 8 in Xi: ð3:30Þ
In Xm, the field is isotropic: SðxÞ¼Sm¼b;DðxÞ¼0;VðxÞ¼0.

The corresponding potentials are affine functions

ua ¼
1
2

bmS2
0x1; ub ¼

1
2

bmS2
0x2; 8x 2 Xm:

At the boundary @im, the continuity conditions (2.18) and
(2.19) are satisfied. Since the field in Xm is constant and
isotropic, the field component S, D, V at Xi-side of the
boundary satisfies the conditions

S� D ¼ Sm; Sþ D ¼ km

ki
Sm; V ¼ 0 on @im

or

D2 ¼ ðS� SmÞ2; S ¼ ki þ km

2ki
Sm; V ¼ 0 on @im ð3:31Þ

showing that SðruÞ and DðruÞ are constant at the bound-
ary @im regardless of the orientation of its normal.

In domain Xi, the translation optimality conditions
(3.26)–(3.28) state that S ¼ Si ¼ constant; V ¼ 0. Using
(2.30), these conditions are represented through potentials
ua; ub as

@ua

@x1
þ @ub

@x2
¼ 2bi;

@ua

@x2
� @ub

@x1
¼ 0 8x 2 X1: ð3:32Þ

Eqs. (3.32) are reminiscent of Cauchy–Riemann conditions.
They state that ua and ub can be represented as sum of an
affine function of x1; x2 and the real and imaginary parts of
an analytic in Xi function û of x1 þ ix2, respectively,

ua ¼ bix1 þRðûÞ; ua ¼ bix2 þ IðûÞ: ð3:33Þ

This and similar representations have been used in Vigder-
gauz (1989), Milton et al. (2002), and Grabovsky and Kohn
(1995) to find families of optimal structures.

Absolute value jrûj of gradient of an analytic function
reaches its maximum at the boundary of Xi. Using (3.32),
we exclude derivatives of ub and express detru through
gradient rua of a harmonic in Xi function ua,

detðruÞ¼ @ua

@x1
�@ua

@x1
þ2bi

 �
� @ua

@x2

 �2

¼�krðua�b1x1Þk2
:

ð3:34Þ

The right-hand side of (3.34) reaches its minimum at the
boundary@im and so does detðruÞ. Because of decomposition
(2.31), detðruÞ ¼ S2 þ V2 � D2. Optimality conditions re-
quire that VðxÞ ¼ 0; SðxÞ ¼ Si ¼ constant; x 2 Xi, therefore

detruðxÞ ¼ �D2ðxÞ þ S2
i 8x 2 Xi: ð3:35Þ

Correspondingly, DðxÞ reaches its maximum at @im which
proves (3.30).

Relations (3.26)–(3.28) and (3.30) state that fields in a
two-phase optimal structures are ordered: Difference be-
tween fields in Xi and Xm is nonnegative defined:

eðxÞ�eðyÞP 0)detðeðxÞ�eðyÞÞP 0 8x2Xi; 8y2Xm:

ð3:36Þ
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Notice that relation (3.36) holds also for anisotropic two-
component optimal structures. Particularly, it holds for
second-rank laminates and for simple laminates.

Remark 3.3. A symmetry of fields in optimal structures.
The conclusion of symmetry of the fields ðV ¼ 0Þ in optimal
structures is based on the orthogonality of applied fields E1

and E2 and the symmetry of e0; V0 ¼ 0. If these fields were
non-orthogonal, the consideration would be similar but

formulas would be more bulky. The term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ V2

p
would

replace S in the calculations below.
4. Bound by localized polyconvexity

4.1. Boundedness of the fields in optimal structures

4.1.1. Constraints
The range of fields eðxÞ in optimal multimaterial struc-

tures is bounded. For example, the constraint det e P 0
(see Nesi, 1995; Alessandrini and Nesi, 1996) or

S2 þ V2 P D2 8x 2 X ð4:1Þ

follows from the differential constraints (2.17) and (2.18)
on the minimizer. The inequality (4.1) holds for all struc-
tures, whether they are optimal or not. It is used in Nesi
bound (Nesi, 1995) to improve the Hashin–Shtrikman
bound.

The fields in optimal microstructures satisfy certain
additional local optimality conditions that pointwise re-
strain the ranges Wi of the fields in optimal composites.
These conditions, implemented into the polyconvex enve-
lope procedure, result in better bounds. We call this lower
estimate localized polyconvexity.

Remark 4.1. Examples of constraints are the mentioned
local optimality conditions by structural variation (Lurie,
1975, 1993; Murat, 1977; Cherkaev, 2000). They provide
uniform inequalities for fields in an optimal structure. The
structural variation is performed by interchanging two
infinitesimal elliptical inclusions from materials ki and kj.
These inclusions are placed at arbitrary points of subdo-
mains Xj and Xi, respectively, and the increment of Jðv; e0Þ
is computed. The increment is nonnegative, if the tested
configuration is optimal. This condition leads to an
inequality that constrains values of fields e 2 Wi and
e 2 Wj in arbitrary points of Xi and Xj, respectively. It
uniformly restricts the fields in Xi and Xj.
4.1.2. Ordering and boundedness
Fields in the materials in optimal structures are or-

dered: Norms keik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðeT

i eiÞ
q

satisfy inequalities

keik 2 ½aiþ1;ai� ð4:2Þ

where ai are ordered constants, 0 6 aN 6 . . . 6 a1 <1.
These inequalities can be proven if the variational problem
(2.23) is rewritten as a multiwell problem (see, for exam-
ple Cherkaev, 2000) with the Lagrangian

F ¼ min
i¼1;...N

1
2

kikeiþ1k2 þ ci

� �
that depends only on it e. Here ci are Lagrange multipliers
by constraints (2.3), ordered as follows c1 > . . . ; cn. The
ordering constrains fields in all materials but the first one.

Field in X1 is bounded as well. Indeed, potential ua in
domain X1 is harmonic, therefore the norm of its gradient
reaches its maximum at the boundary @X1 (see (2.6)). At
the other side of this boundary, where other materials
are located,rua is bounded, see (4.2). The jump conditions
(2.18) requires that rua at @X1 be bounded too; therefore
it is bounded everywhere in X1. The same is true for rub.
Therefore, keðxÞk2 ¼ S2 þ D2 þ V2 is bounded everywhere
in X.

Remark 4.2. The boundedness of keðxÞk geometrically
restricts optimal multiphase microstructures. Particularly,
boundaries with corners are excluded as well as structures
where three or more materials meet at isolated points. In
such structures, fields are singular in a neighborhood of
these special points.

An account for constraints on Wi-sets improves the
bounds on effective properties. To derive the bound, we ex-
plore a simple lemma.

Lemma 4.1. Let a be a real parameter, X a bounded domain,
and vðxÞ – an integrable function in X. Assume that vðxÞ is
bounded in X and its mean value is fixed,

kvðxÞkL1 6 vmax;
1
kXk

Z
X

vðxÞdx ¼ v0: ð4:3Þ

Here v0, vmax are real numbers and

jv0j 6 vmax: ð4:4Þ

Then

min
vðxÞ as in ð4:3Þ

1
kXk

Z
X
av2dx

 �
¼

av2
0 if a P 0

av2
max if a 6 0

(
: ð4:5Þ

Indeed, if a P 0, integrant av2 is a convex function of v,
then the minimum in left-hand side is achieved at a con-
stant minimizer vðxÞ ¼ v0. The value of minimum and the
minimizer are independent of vmax. If a 6 0, integrant av2

is a concave function of v, then the minimum corresponds
to piece-wise constant vðxÞ that alternates its extreme
values
voptðxÞ ¼ vmax or voptðxÞ ¼ �vmax 8x 2 X:

Measures of the subdomains where and vopt ¼ �vmax are
equal to kXkmA and kXkmB, respectively. Here mA 2 ½0;1� is
a volume fraction of the domain where vopt ¼ vmax and
mB ¼ 1�mA. The value of minimum is independent of
mA. The average value of minimizer can be made equal to
v0 by a proper choice of these measures, mA ¼ v0þvmax

2vmax
Then

(4.3) is satisfied.

4.2. Optimal constrained fields and bounds

Assume that ranges Wi of fields in an optimal structure
are described by inequalities hiðS;D;VÞP 0. Below in Sec-
tion 4.4, we describe these constraints. Here, we work
out the algebra of the bounds assuming that the con-
straints are applied. We assume that constraints have the
form
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V ¼ 0; D2
6 HiðSÞ in Xi ð4:6Þ

where Hi are some nonnegative functions. Constraints of
ranges of optimal fields Wi can be implemented into the
translation bound derivation, similarly to (Nesi, 1995).

We return to the scheme of the polyconvex envelope for
a multiphase composite, N P 3 accounting for constrained
fields in an optimal structure. Assume that fields in an opti-
mal structure are constrained as (4.6) and let us choose
translation parameter t in (3.24) larger than k1; t > k1.
Then some terms in the right-hand side of inequality
(3.16) become nonconvex and constraints (4.6) become
active.

First, assume that k1 < t 6 k2. Consider inequality (3.18)
for i ¼ 1. Coefficient ðk1 � tÞ in front of

R
X1

D2dx in the
right-hand side is negative. According to Lemma, the con-
straint on D2

6 H1ðSÞ becomes active and the minimizer
takes values

DðxÞ ¼ �H
1
2
1ðSðxÞÞ 8x 2 X1:

The integral of D2 is estimated asZ
X1

D2dx 6
Z

X1

H1ðSÞdx ¼ m1H1ðS1Þ:

Functions Gi in inequalities (3.18) become

G1 ¼ ðk1 þ tÞS2
1 þ ðk1 � tÞH1ðS1Þ; ð4:7Þ

Gi ¼ ðki þ tÞS2
1; i ¼ 2; . . . ;N: ð4:8Þ

Next calculation, performed as in (3.20), gives the
expression for HðtÞ ¼ H1ðtÞ that differs from (3.20) only
in the value of G1 that is defined in (4.8).

Finally, the most restricted lower bound kL is defined by
maximum of H0 and H1. The bound has the form similar to
(3.24):

kL ¼ max
t2½k1 ;k2 �

�t þ HðtÞð Þ; HðtÞ ¼
H0ðtÞ if t ¼ k1;

H1ðtÞ if t 2 ðk1; k2�:

�
ð4:9Þ

Notice that H continuously depends on t. Notice also that
t 2 ½0; k1Þ are nonoptimal (see (3.25)), therefore these val-
ues are not accounted for in (4.9).

4.2.1. Supports of optimal fields
By assumption, optimal fields are symmetric, V ¼ 0.

When t < k2, the S and D components are

SðxÞ ¼ Si; DðxÞ ¼ 0 8x 2 Xi; i > 2;

SðxÞ ¼ S1; DðxÞ ¼ �H
1
2
1 8x 2 X1:

ð4:10Þ

The fields are constant and isotropic in all materials but the
first. In the first material, D-component of the optimal field
is not completely defined: It can take one of two values in
each point.

When t ¼ k2, D-component is undetermined in X2, and
X2 plays the same role as X1 plays in the translation bound.
The optimal fields are

SðxÞ¼ Si; DðxÞ¼0; 8x2Xi; i>2;

SðxÞ¼ S1; DðxÞ¼�H
1
2
1; 8x2X1;

SðxÞ¼ S2; DðxÞ26H2;D2ðxÞ is not defined 8x2X2:

ð4:11Þ
4.2.2. More than three materials
When the number of materials is greater than three, the

procedure can be continued. Increase of t leads to increase
of the number of active constraints. When kr < t 6 krþ1, r
constraints are active:

Gi ¼
ðki þ tÞS2

i � ðt � kiÞHiðSiÞ if i < r

ðki þ tÞS2
1 if r 6 i 6 N

(
ð4:12Þ

Cr ¼
XN

i¼1

miGi

¼
XN

i¼1

mi½ðki þ tÞS2
i � �

Xr

i¼1

miðt � kiÞHiðSiÞ; ð4:13Þ

and

HrðtÞ ¼ min
Si2S;S0¼1

Cr: ð4:14Þ

Bound (3.24) for the effective properties corresponds to
the maximum over t of the obtained expressions. It
becomes

kL ¼ max
r¼0;...;N�1

Br ; ð4:15Þ

Br ¼ max
t2½kr ;6krþ1 �

�t þ HrðtÞð Þ: ð4:16Þ

Optimal fields are symmetric, VðxÞ ¼ 0. They are either iso-
tropic (D-component is zero) or they belong to the bound-
ary of the permitted region (jDj-component is maximal). If
t ¼ kr , the D-component is undetermined in Xr .

SðxÞ¼ Si; DðxÞ¼0; x2Xi; i¼ rþ1; . . . ;N

SðxÞ¼ Si; DðxÞ2¼Hi; x2Xi; i¼1; . . . ;r�1

SðxÞ¼ Si;
DðxÞ2¼0 if t< kr

DðxÞ2 <H2 if t¼ kr

(
; x2Xr

ð4:17Þ

These fields are shown at Fig. 1.
This procedure excludes optimal values of D. The opti-

mal values Si can be found from the finite-dimensional
optimization problem (4.14).

Remark 4.3. In localized polyconvexity, the pointwise
constraints Hi on the optimal fields in Xi become active
everywhere in these sets when t > ki. The points of Xi are
undistinguishable because the differential constraints are
not accounted for.
4.3. Nesi bounds

Nesi (1995) used the inequality (4.1) to improve Ha-
shin–Shtrikman bounds. It leads to constraints

Hi ¼ Hg
i ¼ S2

i ; i ¼ 1; . . . N: ð4:18Þ

and bound (4.15) becomes a Nesi-type bound, as follows.
When t 2 ðkn; knþ1�; ðn < N � 2Þ, we compute from (4.13)
and (4.1)

Gi ¼
2kiS

2
i if i < n

ðki þ tÞS2
i if n 6 i 6 N

(

minimize C (4.13) over Si and obtain
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Fig. 1. Cartoons of the sets of supports (represented by ellipses) and
locations of supports (small circles)in the localized polyconvexification
procedure. Case N ¼ 4; k2 < t < k3.
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Hn ¼
Xn

i¼1

mi

2ki
þ
XN

i¼nþ1

mi

t þ ki

 !�1

:

The bound has the form (4.15). In Nesi bounds, the optimal
D-fields satisfy the relations

jDij ¼
Si if i < n
0 if i > n

�
;

and

jDnj ¼
0 if t 6 knþ1

undefined if t ¼ knþ1

�
:

Nesi bound is better than the translation bound when vol-
ume fraction m1 is smaller than a threshold. However, its
asymptotic m1 ! 0 does not show the expected limit:
Hashin–Shtrikman bound for the remaining materials.
We show in Section 7 that the bound becomes asymptoti-
cally exact when kn !1.

Remark 4.4. Nesi bound is generally not achievable by a
structure. Indeed, according to the bound, an optimal field
satisfies the relation jD1j � S1 ¼ 0, or detðeðxÞÞ ¼ 0 almost
everywhere in X1. This condition implies that detðruÞ ¼ 0
or thatrua andrub are collinear almost everywhere in X1.
Then, solutions ua and ub are linearly dependent contrary
to (2.15). Therefore, condition (4.1) cannot be satisfied if
kn <1 and the bound cannot be exact.
4.4. Extremal constraints

4.4.1. Algebraic form of constraints
Geometry of domains Xi can be arbitrary, therefore the

constraints on Wi do not depend on a point’s position in
these domains. In particular, it cannot depend on the dis-
tance to the boundary, its curvature, connectedness of Xi,
etc., since these can be arbitrarily chosen to minimize the
energy; the points in optimal Xi domains are undistin-
guishable. Constraints on Wi are expressed only through
the values of e in Xi.

Sets Wi depend only on rotational invariants S, V, and D
of field eðxÞ and are independent of the orientation of its
eigenvectors. This feature follows from isotropy of com-
posites: An optimal structure can be composed of several
arbitrarily rotated fragments of an overall isotropic struc-
ture, combined in a larger scale. All the fields are scaled
by magnitude S0 of external field and effective properties
are independent of it.

Assume that sets Wi are described by inequalities
�hiðeÞP 0. The constraints have the forms

�hiðS;D;V ;MÞP 0 or D2
6 �HiðS;V ;MÞ in Xi ð4:19Þ

where M is the vector of volume fractions, M ¼ ðm1; . . . mNÞ.
�hi are homogeneous functions of S, D, V,

�hiðS;D;V ;MÞP 0) �hiðcS; cD; cV ;MÞP 0; 8c > 0:

We can assume that S0 ¼ 1. The constraints assume the
form

�hiðS;D;V ;MÞP 0 in Xi: ð4:20Þ
4.4.2. Optimality of constraints
The translation-type bounds by localized polyconvexity

in Section 4.1 monotonically depend on constraints Hi, see
(4.14) (the exception is Hashin–Shtrikman bound where
the constraints are nor active). The bound kL in (4.14) de-
creases when Hi increases (see (4.13)),

@kL

@Hi
6 0; i ¼ 1; . . . ;N: ð4:21Þ

Notice that sets Wi are rank-one connected in the relaxed
sense (see (2.29)) if H is large enough. Condition (2.29)
keeps some Hi positive.

The translation bound corresponds to the absence of the
constraints ðH ¼ 1Þ and is the least restrictive. Nesi bound
is more restrictive, because it uses inequalities (4.1). It is
generally loose and becomes exact only if kN ¼ 1, as we
show in Section 8.2. This bound could be further improved
if Hi were smaller, see Remark 4.4. The toughest bound
corresponds to the smallest Hi P 0 consistent with the
condition (2.29). The anisotropic component D of the field
is unrestricted by the mean field and should be made as
small as possible, see (3.6).

The continuity conditions (2.18) and (2.20) imply that
Hi > 0 for some i, that is any structure necessarily includes
some fields with nonzero D-components. Constraints must
allow for relaxed rank-one connectedness of the sets:
Inequalities (2.29) should be satisfied for all Wi. For conti-
nuity of the potentials at the interfaces, it is sufficient to re-
quire that the sets Wi contain relaxed rank-one connected
matrices.

Generally, �hi might depend on volume fractions M. We
request that constraints (4.19) are independent of M and
assume the form

hiðS;D;VÞ ¼min
M

�hiðS;D;V ;MÞP 0 8x 2 Xi: ð4:22Þ

This assumption does not decreases Wi-sets because the
inequality (4.22) is valid for all volume fractions.
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Particularly, (4.22) is satisfied for less-than-N materials
composite, namely for any two-material composites from
materials ki and kp; i; p ¼ 1; . . . ;N; ki < kp. The two-mate-
rial problem is an asymptotic of the general one, that cor-
responds to all volume fractions but two vanishing,
mj ! 0; j–i; p. Referring to (3.26)–(3.28) and (3.30), we
require that Wp contains the point ½Sp; Di ¼ 0; V ¼ 0�, and
Wi contains the point ½Si; Di ¼ Si � Sp; V ¼ 0�, or

hpðSp;0;0ÞP 0; hiðSi;�ðSi � SpÞ; 0ÞP 0; 1 6 i < p 6 N:

ð4:23Þ

The minimal sets that satisfy conditions (4.19)–(4.23)
are follows.

1. The nonsymmetric V-component of e is zero every-
where (see Remark 3.3),
VðxÞ ¼ 0 in X: ð4:24Þ
Fig. 2. Uniformly connected sets Qi of ranges of fields in materials ki .
2. Field in XN is constant and isotropic, eN ¼ 1ffiffi
2
p bNI: WN

consists on one point:
SN ¼ bN ; D ¼ 0: ð4:25Þ
3. The smallest Wi-set, rank-one connected with WN (4.25)
contains a field e such that detðe� bNIÞ ¼ 0 or
ðS� bNÞ
2 � D2 ¼ 0; S ¼ SðxÞ; D ¼ DðxÞ; x 2 Xi
The smallest function HiðSÞ that allows this connection is
as follows

D2
6 HiðSÞ ¼ ðS� bNÞ

2
; 8S;D 2 Wi;

i ¼ 1: . . . ;N � 1: ð4:26Þ
Notice that (4.26) is stronger than (4.18) and coincides
with it when bN ¼ 0 or kN ¼ 1. Condition (4.26) is derived
from the optimality requirements coupled with the rank-
one connectedness requirements. It is valid for optimal
structures, while (4.18) is valid for all structures.
4.4.3. Uniform connectedness
We call sets W1; . . . WN uniformly connected if any pair of

them contains rank-one connected matrices, see Fig. 2,

9eðxÞ; x 2 Xi; 9eðyÞ; y 2 Xj : detðeðxÞ � eðyÞÞ ¼ 0;
8i; j ¼ 1; . . . ;N: ð4:27Þ

In terms of microstructures, the constrains do not prevent
any two subregions Xi and Xj from being neighbors in the
structure. Sets Wi defined by (4.24)–(4.26) are uniformly
connected. Moreover, it is easy to see that they form a min-
imal uniformly connected set of fields. Notice that the ranges
W1 and WN are independent of intermediate properties ki.
Notice also that the ranges of intermediate materials be-
long to the convex envelope of W1 and WN ,

Wi 2 C W1;WNð Þ; i ¼ 2; . . . ;N � 1: ð4:28Þ

This feature is expected because each intermediate mate-
rial can be equivalently replaced by a mixture of the ex-
treme materials k1 and kN; ki 2 G-closureðk1; kNÞ.

Remark 4.5. The corresponding constraints for anisotropic
K� could be different: (4.22) may be refined if its depen-
dence of D0–0 is accounted for.
Remark 4.6. The conditions of contacts between materials
in an optimal structure are investigated in Cherkaev (2000)
(Chapter 9). This technique is a development of the struc-
tural variation technique suggested by Lurie (1993). They
are obtained by comparing the jump conditions (2.18)
and (2.19) with an increment of functional J caused by
structural variation in a neighborhood of an optimal bound-
ary. Conditions at an optimal contact coincide with the
above conditions (4.25) and (4.26).
5. New lower bound

5.1. First bound by localized polyconvexity

Here we work out the bounds of Section 4.2 using the
constraints (4.26). Assume that k1 < t 6 k2 and substitute
H1 ¼ ðS1 � SNÞ2 into inequalities (4.7) and (4.8). We have

G1 ¼ ðk1 þ tÞS2
1 þ ðk1 � tÞðS1 � SNÞ2

¼ 2k1S2
1 þ ðk1 � tÞ �2S1 þ SNð ÞSN ;

Gi ¼ ðki þ tÞS2
i ; i ¼ 2; . . . ;N:

The value of C (see (4.13)) in the interval k1 < t 6 k2 is de-
noted as C1 where index 1 points to left end of the interval
ðk1; k2� of variation of t. It is equal to

C1 ¼ Cjt2ðk1 ;k2 �

¼ 2m1k1S2
1 þ

XN�1

i¼2

miðki þ tÞS2
i � 2m1ðk1 � tÞS1SN

þ mNðkN þ tÞ þm1ðk1 � tÞð ÞS2
N ð5:1Þ

or in the vector form

C1 ¼ STðR1 þ Y1PTÞS:

Here S is vector of components of the fields in materials,
ST ¼ ðS1; . . . ; SNÞ; R1 is a diagonal N�N matrix
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R1¼diagðm1ð2k1Þ;m2ðk2þ tÞ; . . . ;mNðkNþ tÞþm1ðk1� tÞÞ;
ð5:2Þ

and Y1 and P are N-dimensional vectors with the entries

ðY1Þj ¼
�2m1ðk1 � tÞ if j ¼ 1
0 if j ¼ 2; . . . ;N

�
; ð5:3Þ

ðPÞj ¼
0 if j ¼ 1; . . . ;N � 1
1 if j ¼ N

�
: ð5:4Þ

A rank-one nonsymmetric matrix Y1PT has only one non-
zero entry ðY1PTÞ1N ¼ �2m1ðk1 � tÞ that corresponds to
term �2m1ðk1 � tÞS1SN in right-hand side of (5.1).

Quadratic form C1 is assumed to be nonnegative. This
assumption corresponds to symmetric part of matrix
R1 þ Y1PT being nonnegative defined. Solving the last con-
dition for mN we arrive at the condition

mN P m1
2tðt � k1Þ

ðk1 þ tÞðkN þ tÞ 8t 2 ðk1; k2�: ð5:5Þ

The inequality is the strongest, if t ¼ k2. Here, we assume
this inequality to be true (for three-material composites,
the opposite case of small mN corresponds to the optimal-
ity of the Hashin–Shtrikman bound, as it can be checked
from the corresponding formulas in Section 7).

We normalize the mean field, S0 ¼ m1S1 þ . . .þ
mNSN ¼ 1 or, in the vector form,

MT S ¼ 1; MT ¼ ðm1; . . . mNÞ: ð5:6Þ

and minimize C1 over vector S ¼ ðS1; . . . SNÞ. Performing
minimization, we find vector Sopt of optimal fields

SoptðtÞ ¼ H1ðR1 þ Y1PTÞ�1M and min
S

C1 ¼
1

H1
ð5:7Þ

where

H1 ¼
1

MTðR1 þ Y1PTÞ�1M
: ð5:8Þ

Finally, we substitute (5.7) into bound (4.15), (4.16) and
obtain

kð1ÞL ¼ max
t2ðk1 ;k2 �

�t þ H1:ð Þ ð5:9Þ

Accounting for (5.2)–(5.4), we compute 1
H1

,

1
H1
¼
XN�1

i¼2

mi

kiþ t
þðk1� tÞm2

1þðkNþ2k1� tÞm1mNþ2k1m2
N

ðk2
1� t2Þm1þ2k1ðkNþ tÞmN

:

ð5:10Þ

Observe that H1 degenerates into H0 (1.2) when t ¼ k1.
Therefore this bound is no less restrictive than Hashin–
Shtrikman bound (1.2).

5.1.1. Supporting sets
The supporting sets of the pairs (S, D) for the optimal

fields (5.7) are

W1 ¼ S1; �ðS1 � SNÞf g

W2 ¼
S2;0f g if t 2 ðk1; k2Þ
S2;Df g; D 6 S1 � SN if t ¼ k2

�
Wi ¼ Si;0f g; i ¼ 3; . . . ;N

ð5:11Þ

where Si are as in (5.7).
Formulas (5.11) imply that field e in X1 is always in the
rank-one contact with eN ¼ SNI in an optimal structure. In
X1, the DðxÞ-component is not defined pointwise. It is only
required that DðxÞ alternates values �ðS1 � SNÞ and its
mean value be zeroZ

X1

Dðe1Þdx ¼ D0 ¼ 0: ð5:12Þ

When topt ¼ k2, the bound keeps its form, and S-compo-
nents of the optimal fields are still computed by (5.7) but
the D-component X2 becomes undefined. Its mean value
satisfies the constraintZ

X1

DðeÞdxþ
Z

X2

DðeÞdx ¼ D0 ¼ 0: ð5:13Þ

Remark 5.1. Nonzero values of DðxÞ in X2 provide the
continuity of potential u at the interfaces when the
uniformly bounded field ru in X1 can no longer connect
domains of other materials with isotropic fields, because
volume fraction m1 is too small. In that case, the D
component of the field in X2 becomes nonzero.
5.2. Next bounds

In the general case ðN P 4Þ, calculations are similar. As-
sume that

t 2 ðkr ; krþ1� ð5:14Þ

where r ¼ 2; . . . ;N � 2. Terms ðki � tÞD2
i ; i� 1; . . . ; r be-

come concave and corresponding constraints
ðDiÞ2 6 ðSi � DiÞ2; i ¼ 1; . . . r become active.

We compute as in (4.12)

Gri¼
ðkiþ tÞS2

i þðki� tÞ Si�Sið Þ2 if i¼1; . . . ;r

ðkiþ tÞS2
i if i¼ rþ1; . . . ;N

(
ð5:15Þ

where first index r refers to interval ðkr ; krþ1� of t and the
second index i – to the material ki. Then, we compute C
as in (4.13)

Cr ¼
XN

i¼1

miðki þ tÞS2
i �

Xr

i¼1

miðt � kiÞ Si � SNð Þ2

or in the vector form

CrðtÞ ¼ ST
r ðRr þ YrP

TÞSr

where Rr – diagonal matrix with components ðRrÞii

ðRrÞii ¼
2miki if i ¼ 1; . . . ; r

miðki þ tÞ if i ¼ r þ 1; . . . ;N � 1
qr if i ¼ N

8><
>: ;

qr ¼ mNðkN þ tÞ þ
Xr

i¼1

miðki � tÞ; ð5:16Þ

P is defined in (5.4), and Yr is a vector with coordinates

ðYrÞi ¼
2miðki � tÞ if i ¼ 1; . . . ; r

0 if i ¼ r þ 1; . . . ;N

�
: ð5:17Þ
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To compute the bounds, we again fix t 2 ðkr ; krþ1� and per-
form minimization over the components Si that are con-
strained as in (5.6) assuming positive definiteness of
ðRr þ YrP

TÞ,

ðRr þ YrP
TÞ > 0: ð5:18Þ

Remark 5.2. For three-material mixtures, either (5.18) is
satisfied, or Hashin–Shtrikman bound holds. However, for
the more-than-three-material composites, this condition
might become active, when m1 and mN are simultaneously
sufficiently small. We do not work out the details of this
case here.

Vector Sopt of optimal fields in the materials is

SoptðtÞ ¼ HrðRr þ YrP
TÞ�1M

where

HrðtÞ ¼
1

MTðRr þ YrP
TÞ�1M

: ð5:19Þ

Thus, the problem of bounds is reduced to a finite-dimen-
sional problem of constrained optimization: It remains to
compute the optimal t for each interval (5.14) and compare
results:

Theorem 5.1. Effective conductivity k� of any N-material
composite that satisfies (5.18) is bounded from below by kL,

kL ¼ max
r¼1;...;N�1

max
t2ðkr�1 ;krÞ

ð�t þ HrðtÞÞ
� �

ð5:20Þ

where k0 ¼ 0.

When m1 ! 0, the bound (5.20) tends to the bound for
the remaining N � 1 materials, unlike to Hashin–Shtrik-
man bounds (1.2).

5.3. Simplification of the bound form

Term 1
Hr
¼ MTðRp þ YpÞ�1M can be simplified using

Sherman–Morrison formula

ðRr þ YrP
TÞ�1 ¼ R�1

r þ
1

1þ YT
r R�1

r P
R�1

r YrP
T A�1

: ð5:21Þ

We compute

1
Hr
¼ MT R�1

r M þ ðM
T R�1

r YrÞðPT R�1
r MÞ

1þ YrR
�1
r P

: ð5:22Þ

Using definitions of Rr ; M; Yr , we compute

MT R�1
r M ¼

Xr

i¼1

mi

2ki
þ
XN�1

i¼rþ1

mi

ki þ t
þm2

N

qr
;

MT R�1
r Yr ¼ 2

Xr

i¼1

mi
ki � t

ki
; YT

r R�1
r P ¼ 0; PT R�1

r M ¼ mN

qr
:

Substituting these terms into (5.22), we obtain an explicit
formula
1
Hr
¼
Xr

i¼1

mi

2ki
þm2

N

qr
þ
XN�1

i¼rþ1

mi

ki þ t
þ 2

mN

qr

Xr

i¼1

mi

ki
ðki � tÞ:

Collecting the coefficients by mi, we compute

1
HrðtÞ

¼
Xr

i¼1

mi

2ki
1� 4mNðki � tÞ

qr

 �
þ
XN�1

i¼rþ1

mi

ki þ t
þm2

N

qr

ð5:23Þ

where qr is defined in (5.16). Expression (5.23) should be
substituted into expression (5.20) for the bound.

5.3.1. Asymptotic
When the optimal value of t0 of translator t is t0 ¼ k1,

the bound becomes Hashin–Shtrikman bound. Indeed, we
compute (5.23) in this case:

r¼0; q¼mNðkNþk1Þ; Hðk1Þ¼H0ðk1Þ¼
XN

i¼1

mi

kiþk1

 !�1

:

Substituting this expression into kL, we obtain the Hashin–
Shtrikman bound (1.2).

When kN ¼ 1, we compute qr ¼ 1, and Hr becomes as
in Nesi bound

HrðtÞ ¼
Xr�1

i¼1

mi

2ki
þ
XN�1

i¼r

mi

t þ ki

 !�1

: ð5:24Þ
6. Generalizations

6.1. Upper (dual) bound

The dual bound kU P k� is found by the same procedure.
It is enough to recall that any divergencefree field
j ¼ ðj1; j2Þ is a turned 90� gradient, j ¼ Rrudual where R is
the matrix of 90� rotation, and udual is a dual scalar poten-

tial. The energy of the type F ¼ 1
k jT j where r � j ¼ 0 can be

represented as F ¼ 1
k ðrudualÞTðRT RÞrudual. Since RT R ¼ I, the

form of energy becomes similar to the one used in deriva-
tion of the lower bound. Therefore, the lower bound
k� P kLðk1; . . . kN;m1; . . . ;mN; tÞ where kL is defined in
(5.20), implies the dual bound
1
k�

P kL
1
kN
; . . . ;

1
k1
;mN; . . . ;m1;

1
t

 �
ð6:1Þ

obtained by the substitution

ki $
1

kN�iþ1
mi $ mN�iþ1; t $ 1

t
ð6:2Þ

that preserves the ordering of conductivities 1
kN
< . . . ; 1

k1
and

their fractions. The dual bound can be rewritten as the
upper bound for k�,

k� 6 kU ; where kU ¼
1

kL
1

kN
; . . . ; 1

k1
;mN; . . . ;m1;

1
t

� � : ð6:3Þ
6.2. Bounds for anisotropic composites

The bound for anisotropic effective conductivity K� is
derived by a similar procedure, using (2.24) and (2.25).
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This time, it is not assumed that the external field e0 and
the corresponding optimal effective tensor K� are isotropic,
D0–0. The anisotropy of the average field e0 changes the
left-hand side of (3.15) but it does not change the right-
hand side of this estimate and supporting sets Wi, if the le-
vel of anisotropy D0=S0 is small enough, see Remark 3.2.

Indeed, assume for example that t 2 ðk1; k2Þ. The D com-
ponent of the field in X1 still alternates the same support-
ing points �ðS1 � SNÞ but this time it has a nonzero mean
value D̂1 2 ½�ðS1 � SNÞ; ðS1 � SNÞ�. The fractions (measures)
of the supports are chosen to provide the equality
D0 ¼ m1D̂, see (5.12) and (5.13). If D0 is close to zero,
m1jD0j 6 S1 � SN , the supports Wi are the same as in isotro-
pic case. In this range, the bound is derived similarly to the
isotropic case. Here, we do not work out the details of the
constraints on the range of D0.

Assume that D0 is ‘‘small” in the following sense

m1jD0j 6 S1 � SN: ð6:4Þ

Then, the bounds allow for an extension to anisotropic
composites. Since supporting sets Wi are the same as in
the isotropic case, the expressions for Hr is also the same.
Repeating the derivation of the bound, we transform the
left-hand side of (3.16) assuming that D0–0 and K� is an
anisotropic tensor with eigenvalues k�1 and k�2. The trans-
lated effective energy (3.14) becomes

J0ðK�; e0Þ þ t detðe0Þ ¼
1
2

k�1ðS0 þ D0Þ2 þ
1
2

k�2ðS0 � D0Þ2

þ tðS2
0 � D2

0Þ

and the bound (3.15) becomes

1
2

k�1ðS0 þ D0Þ2 þ
1
2

k�2ðS0 � D0Þ2 þ tðS2
0 � D2

0Þ � HrðtÞS2
0 P 0;

ð6:5Þ

where HrðtÞ is defined in (5.19). This inequality is satisfied
for all S0; D0 if the above quadratic form is nonnegative,
see (2.24) and (2.25). The nonnegativity is equivalent to
the requirement that matrix

k�1 þ k�2 þ 2t � 2HrðtÞ k�1 � k�2
k�1 � k2� k�1 þ k�2 � 2t

 !
P 0: ð6:6Þ

is nonnegatively defined. The nonnegativity of the deter-
minant of this matrix leads to inequalities

2
k�1k�2 � t2

k�1 þ k�2 � 2t
P HrðtÞ; 8t 2 ðkr�1; kr �; 8r ¼ 1; . . . ;N � 1:

ð6:7Þ

Equivalently, it can be rewritten in the form

1
k�1 � t

þ 1
k�2 � t

6
2

HrðtÞ � 2t
; 8t 2 ðkr�1; kr �;

8r ¼ 1; . . . ;N � 1: ð6:8Þ

that is familiar for the bounds of two-component compos-
ites (Lurie and Cherkaev, 1986; Cherkaev, 2000; Milton
et al., 2002). The bound degenerates into (5.20), when ten-
sor K� is isotropic ðk�1 ¼ k�2 ¼ k�Þ.

The bound is valid for all effective tensors K� but may
not be exact. Indeed, if assumption (6.4) is not valid, addi-
tional constraints must be imposed on the set of admissi-
ble fields. The new constraints make the inequalities
more restricted and can only increase the lower bound
(6.7).

Bound (6.7) can be complemented by the dual bound
obtained as in Section 6.1. Together, they define a bounded
domain in the plane of eigenvalues of K� – the outer bound
of the G-closure of multicomponent mixtures.

7. Bounds for three-material composites

7.1. Explicit bounds

For three-material mixtures, it is possible to explicitly
compute optimal translation parameter t and the bound.
When N ¼ 3, the bound (5.20) takes form

k� P kL ¼ max
t2½k1 ;k2 �

�t þ H1ðtÞð Þ ð7:1Þ

where

1
H1ðtÞ

¼ m1

2k1
þ m2

k2 þ t
þ ðm1ðk1 � tÞ þ 2k1m3Þ2

2k1ð2k1m3ðk3 þ tÞ þm1ðk2
1 � t2ÞÞ

:

ð7:2Þ

Optimal value t0 of t in (7.1) are computed by solving the
equation

d
dt
�t þ H1ðtÞð Þ

����
t¼tst

¼ 0 ð7:3Þ

for t. The bulky calculation performed by Maple gives the
following:

t0ðm1Þ ¼
k1 if m11 6 m1 6 1
�k2 þ

ffiffiffiffiffi
m2
p ð1� ffiffiffiffiffim2

p Þ
m1

Z1 if m12 6 m1 6 m11

k2 if 0 6 m1 6 m12

8><
>: :

ð7:4Þ

Here,

m11 ¼ 2
ffiffiffiffiffiffiffi
m2
p

ð1�
ffiffiffiffiffiffiffi
m2
p

Þ k1ðk3 � k2Þ
ðk3 � k1Þðk1 þ k2Þ

ð7:5Þ

m12 ¼
1� ffiffiffiffiffiffiffi

m2
p

4k2ðk3 � k1Þ
Z0 ð7:6Þ

Z0 ¼ 2k2ðk3 � k1Þ þ
ffiffiffiffiffiffiffi
m2
p

ðk1 þ k2Þð2k3 � k1 � k2Þ �
ffiffiffiffiffi
Z2

p� �
ð7:7Þ

Z1 ¼
2m3k1ðk3 � k2Þ �m1ðk2

2 � k2
1Þ

ðm1k1 þm2k2 þm3k3Þ � k1 �
ffiffiffiffiffiffiffi
m2
p ðk2 � k1Þ

ð7:8Þ

Z2 ¼ 4k2
2ðk3 � k1Þ2 þ 4

ffiffiffiffiffiffiffi
m2
p

Z3 þm2Z4 ð7:9Þ

Z3 ¼ ðk2ðk1 � k2Þðk1 � k3Þðk1 � k2 þ 2k3Þ ð7:10Þ

Z4 ¼ ðk1 � k2Þ2ðk2
1 þ 6k1k2 � 4k1k3 � 4k2k3 þ 4k2

3 þ k2
2Þ
ð7:11Þ
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When t0 ¼ k1, bound (7.2) degenerates into Hashin–
Shtrikman bound. This happens when m1 P m11, see
(7.4). Notice that if m2 ¼ 0 (a composite is made of two
components) then m11 ¼ 0, which shows that the
Hashin–Shtrikman bound is exact everywhere, as
expected.

The critical parameters m11 and m12 are found as solu-
tions of the equations

tstðk1; k2; k3;m1;m2Þ ¼ k1; ð7:12Þ

tstðk1; k2; k3;m1;m2Þ ¼ k2; ð7:13Þ

respectively; tst is the solution of (7.3). Solving (7.12) for
m1, we obtain boundary m1 ¼ m11ðm2; k1; k2; k3Þ of a region
where the new bound replaces the Hashin–Shtrikman
bound. Similarly, a solution to (7.13) defines the second
boundary m1 ¼ m12ðm2; k1; k2; k3Þ where the new bound
changes its form. We check that m12

m11
6 1 for all values of

parameters.
To find the explicit bounds for effective properties we

substitute the optimal values t0 into bound (7.1) and
(7.2). The results are as follows.

Theorem 7.1. The effective conductivity k� of a two-dimen-
sional isotropic composite of three isotropic materials with
conductivities k1 < k2 < k3 taken in the fractions m1; m2 and
m2, m1 þm2 þm3 ¼ 1, is bounded from below by the bound
kL ¼ Bðm1;m2Þ:

k� P Bðm1;m2Þ ð7:14Þ

where

Bðm1;m2Þ ¼
B1 if m11 6 m1 6 1
B2 if m11 6 m1 6 m12

B3 if 0 6 m1 6 m12

8><
>: : ð7:15Þ

Here

B1 ¼ �k1 þ
m1

2k1
þ m2

k1 þ k2
þ m3

k1 þ k3

 ��1

ð7:16Þ

B2 ¼ k2 þ ð1�
ffiffiffiffiffiffiffi
m2
p

Þ2 Z5

Z6
ð7:17Þ

B3 ¼ �k2 þ
m2

2k2
þ Z7

 ��1

ð7:18Þ

and

Z5 ¼ m1k2
1 �m1k2

2 þ 2m3k1ðk3 � k2Þ

Z6 ¼ ð1�
ffiffiffiffiffiffiffi
m2
p

Þ2 þ ð1�m1 �
ffiffiffiffiffiffiffi
m2
p

Þ2
h i

k1

þm1ð1�
ffiffiffiffiffiffiffi
m2
p

Þ2k2 þm1m3k3

Z7 ¼
ðk1 � k2Þm2

1 þ ð2k1 � k2 þ k3Þm1m3 þ 2k1m2
3

ðk2
1 � k2

2Þm1 þ 2k1ðk2 þ k3Þm3

:

Bðm1;m2Þ is a continuously differentiable function of m1 and
m2.

The regions of the optimality of Bi are shown in Fig. 4.
7.2. Asymptotics

Case m1 ! 1. If m1 ¼ 0, then t0 ¼ k2 the Bðt0Þ becomes

Bjm1¼0ðk2Þ ¼
m2

2k2
þ m3

k2 þ k3

and the bound becomes a Hashin–Shtrikman bound for a
two-component mixture of k2 and k3, as expected.

Case k3 ¼ 1. If k3 ¼ 1, the formulas are simpler, but
the problem still preserves its form. This case coincides
with the bounds by Nesi (Nesi, 1995) computed for
k3 ¼ 1 (Fig. 5).

Theorem 7.2. The effective conductivity k� of a two-dimen-
sional isotropic composite of two isotropic materials with
conductivities k1, k2 and an ideal conductor k3 ¼ 1 taken in
the fractions m1; m2 and m3, respectively, is bounded from
below by the bound kL ¼ B1ðm1;m2Þ:

k� P B1ðm1;m2Þ ð7:19Þ

where

B1ðm1;m2Þ ¼
B11 if m111 6 m1 6 1
B12 if m112 6 m1 6 m111

B13 if 0 6 m1 6 m112

8><
>: : ð7:20Þ

Here,

B11 ¼ �k1 þ
m1

2k1
þ m2

k1 þ k2

 ��1

ð7:21Þ

B12 ¼ k2 þ 2
k1

m1
ð1�

ffiffiffiffiffiffiffi
m2
p

Þ2 ð7:22Þ

B13 ¼ �k2 þ
m1

2k1
þ m2

2k2

 ��1

ð7:23Þ

and

m111 ¼
2k1

k2 þ k1
ð
ffiffiffiffiffiffiffi
m2
p

�m2Þ;

m112 ¼
k1

k2
ð
ffiffiffiffiffiffiffi
m2
p

�m2Þ: ð7:24Þ

Bound B12 corresponds to an optimal value t10 of the translator
t,

t10 ¼ 2k1

ffiffiffiffiffiffiffi
m2
p �m2

m1
� k2:
8. Optimal three-material structures

8.1. Structures for Hashin–Shtrikman bound

Hashin–Shtrikman bound for multimaterial composites
is realizable if volume fraction m1 is above a threshold,
m1 P m11: There exist structures with conductivity kL. In
these structures, the fields are constant and isotropic in
all materials but k1. The conditions (2.18) allow for rank-
one contact between the fields in k1-material and fields
in other materials, but rank-one contact between these
other materials is not permitted.
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8.1.1. Coated circles
The coated circles assembly suggested by Milton (1981)

is constructed in two steps. Firstly, a structure with circular
inclusions from one of the materials k2; . . . ; kN that are sur-
rounded by an annuls from k1 is built. These are Hashin–
Shtrikman coated circles. The fractions of material k1 in
these coated circles is chosen so that all two-material
coated circles have the same isotropic effective properties
k�, which is possible only if k1 < k� 6 k2 and implies a con-
straint m1 2 ½m10;1� on minimal needed amount of m1: It
must be larger than a threshold m10. Secondly, the ob-
tained two-materials composites of same effective conduc-
tivity are mixed together in a larger scale; obviously, the
effective conductivity does not change.

The fields inside the inclusions from k2; . . . ; kN are constant
and isotropic Si ¼ bi; Di ¼ 0; Vi ¼ 0; i ¼ 2; . . . ;N in agree-
ment with the translation bound, see (3.26)–(3.28). The fields
in annuls filled with k1 vary with its radius r. One can check,
however, that S ¼ constantðrÞ; V ¼ 0, and that DðrÞ de-
creases when r increases (see, for example Milton et al.,
2002). The maximum value of Dðr0Þ is achieved in the inner
radius r0 of an annulus that satisfies the contact condition be-
tween materials k1 and kj: At this line, constraint (4.26) is sat-
isfied as equality Dðr0Þ ¼ S1 � Sj. There is no outer boundary
for annuli in this assembly: The coated circles fill in the entire
plane by repeating themselves in infinitely many scales.

8.1.2. Similar structures
Another optimal structure of multicoated circles was

found by Lurie and Cherkaev (1985). The multicoated struc-
ture consists of several inscribed annuli. The cental circle is
occupied with kN , next annulus with k1, next annulus with
kN�1, next again with k1, etc. Volume fractions of k1 in annuli
are chosen so that fields in annuli between them are con-
stant. The structure also realizes Hashin–Shtrikman bound
and is subject to the same constraint m1 2 ½m10;1�.

Two-material Vigdergauz structures (Vigdergauz, 1989;
Grabovsky and Kohn, 1995) are similar to coated circles.
They are periodic assembles of inclusions from ki of opti-
mal shape in the envelope of k1. These two-material struc-
tures also can be generalized to the multimaterial case,
using two well-separated scales. A smaller scale corre-
sponds to solutions of periodic Vigdergauz problems for
all pairs k1 and ki; i ¼ 2; . . . ;N. A larger scale is used to
mix these composites together as in Milton scheme. The
same constraint applies.
8.1.3. Multiscale laminates: Geometry
A different type of optimal structures is multiscale lam-

inate by Albin et al. (2007) and suggested the earlier rectan-
gular blocks by Gibiansky and Sigmund (2000). These
structures and the fields in the layers are depicted in
Fig. 6. The structures are optimal in a region of parameters
m1 2 ½m11;1� that is greater than the region of optimality of
coated circles, m11 < m10. Moreover, we show here that
multiscale laminate structures are optimal everywhere
where Hashin–Shtrikman bound is optimal.

Remark 8.1. The laminate of a rank (Cherkaev, 2000) is a
multiscale sequence of microstructures (laminates within
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laminates) that corresponds to an indefinite increase of the
ratio of the thickness of laminates of different scales. The
effective conductivity of that sequence tends to its limit k�
in the sense of G-convergence.



e 0

11

13
22

41

51

3331

1

4
3

5

11

13,33
31

41

51

2

6

22

Fig. 6. Right: Cartoon of an optimal laminate three-material structure (see Albin et al., 2007). The case m1 P m11 (Hashin–Shtrikman bound). The two-digit
labels on layers show the order of laminating (first digit) and the material (second digit). Left: Eigenvalues of corresponding supporting fields in an optimal
three-material composite. Circles denote fields in layers, lines denote a connected path. The small stripped circle denotes the average isotropic field e0.
Digits on lines show the order of lamination.

A. Cherkaev / Mechanics of Materials 41 (2009) 411–433 429
The central element of the optimal structures is the T2-
structures introduced in Albin et al. (2007), see Fig. 6, cen-
ter. They are as follows. The laminate of materials k1, and
k3 is formed with volume fractions m11 and m13 ¼ 1� m11.
The tangent is oriented along x1 -axis. This laminate is la-
beled ‘‘1”; the label corresponds to the first index of the
volume fractions m1p, second index p refers to material kp.
At the second step, this composite is laminated in an
orthogonal direction with a layer of k2; the layers are ori-
ented along x2-axis. This layer is labeled ‘‘2” and the vol-
ume fractions of the added layer of k2 is denoted m22. We
call the resulting second-rank laminate (Cherkaev, 2000)
the T-structure and denote it as L13;2.

Next, the T-structure is laminated in x1 direction with
another laminate of materials k1 and k3. This laminate is la-
beled ‘‘3” and the volume fractions of materials in it are de-
noted as m31 and m33 ¼ 1� m11, respectively. The layers are
oriented along x2, orthogonal to the layer with T-structure.
We call this structure T2-structure and denote it L13;2;13. The
relative volume fractions of the two fragments are called m4

– the fraction of the T-structure, and 1� m4 – the fraction of
the added laminate. Finally, the T2-structures are sequen-
tially laminated by the two orthogonal layers of k1, forming
the structure L13;2;13;1;1.
8.1.4. Multiscale laminates: Rank-one connections
The fields in optimal structures are controlled by frac-

tions of materials in the layers. In all orthogonal laminates,
fields are symmetric ðV2 ¼ V3 ¼ 0Þ. In the optimal struc-
tures, the fractions must be chosen so that the fields in X2

and X3 are isotropic (D2 ¼ D3 ¼ 0), S-component of the field
constant in each subdomain, and the ratio between S-com-
ponents is as prescribed in the bound, see (3.22).

In laminates, field e ¼ ru is represented by the pair
ðea; ebÞ of its eigenvalues, the eigenvectors of e are directed
along or across laminates. Laminate structure can realize
the translation optimality conditions (3.26)–(3.28) as fol-
lows. A laminate labeled ‘‘1” connects field ðb1; b3Þ in the
first material with isotropic field ðb3; b3Þ in third material.
The fields are rank-one connected. The average field in
the laminate is ðel; b3Þ where el ¼ lb3 þ ð1� lÞb1 and
l 2 ð0;1Þ is the volume fraction of the third material.

T-structure is formed when the obtained composite is
laminated with layer of k2. We request that D-component
of the field in k2 is zero, or that it has a form ðb2; b2Þ. These
fields in the structure are compatible if fraction l is so cho-
sen that field ðel; b3Þ is in rank-one contact with the field
ðb2; b2Þ in k2: kl ¼ lb3 þ ð1� lÞb1 ¼ b2. Parameters bi are
related by (3.28).

T2-structure is formed when the T-structure is lami-
nated in an orthogonal direction with another laminate
of k1 and k3. The volume fractions of the materials in the
added laminate must be chosen so that field in k1 is equal
to ðb3; b1Þ and field in k3 – to ðb3; b3Þ and, in addition, the
added laminate and the T-structure are in rank-one con-
nection. Then, S-component of the field in k1 is constant
everywhere in the structure, and field in k3 is constant
and isotropic everywhere.

Finally, the assembly is twice laminated with k1 in two
orthogonal directions. The fields in them must have the
form ðya; b1 � yaÞ and ðyb; b1 � ybÞ, respectively, where ya

and yb are real parameters. Then S-component of the field
is constant. The volume fractions of the added layers are
chosen so that the whole structure is isotropic ðD0 ¼ 0Þ.
The fields are shown in Fig. 6.

The above-listed conditions for the fields in laminates
form a system of equations for the unknown volume frac-
tions of layers. If the system has a solution, the optimal
structure is found. The solvability conditions restrict the
range of volume fraction m1 as m1 P m11 (see Albin
et al., 2007). The described structure realizes Hashin–
Shtrikman bound because sufficient conditions (3.27),
(3.28), and (4.26) are satisfied everywhere.

Remark 8.2. Optimal structures of rectangular blocks, sug-
gested earlier by Gibiansky and Sigmund (2000) are similar
to the laminates described here. The square cell of period-
icity X is divided into four rectangular domains, filled with
either pure materials or laminates. The effective properties
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of laminates in the rectangles are chosen so that the
separation of variables in (2.17) is possible, and the solution
uðx1;ubÞ is piece-wise affine. Gibiansky and Sigmund (2000)
proved optimality of this construction: It realizes Hashin–
Shtrikman bound in the interval m1 2 ½m11;1�.
8.2. New optimal three-material structures

We demonstrate here that the obtained bounds are ex-
act by showing optimal laminate structures with conduc-
tivities equal to the bound kL.

Theorem 8.1. The bound (7.19)–(7.24) is exact in each point:
There exist laminates of a finite rank that realize the bounds.

Optimal structures that realize the new bounds are
shown in Fig. 7. Fields in the neighboring subdomains are
rank-one connected, which provides for continuity of the
potential. In optimal structures, fields eij in layers satisfy
sufficient conditions (5.11):

1. Gradients rua and rub are orthogonal everywhere in
X; V ¼ 0.

2. Field is isotropic and constant everywhere in X3; D ¼ 0
and S ¼ b3.

3. S-component of field in X1 is constant, S ¼ b1 and this
field is always in rank-one contact with the third mate-
rial, D ¼ �ðb1 � b3Þ.

4. If m12 < m1 < m11, the field in X2 is isotropic:
DðxÞ ¼ 0; SðxÞ ¼ b2. If m1 6 m12, then SðxÞ ¼ b2 is con-
stant, but DðxÞ varies in different layers of k2.

The fields are shown in Fig. 3.

8.2.1. Optimal microstructures for B3

The sequential laminates that realize the bound (7.18)
kL ¼ B3 are L123;2;123-structures. They are constructed by
the following iterative scheme:

(1) The laminate of materials k1; k2 and k3 is formed with
volume fractions m11; m12 and m13 ¼ 1� m11 � m12. The
tangent is oriented along x1-axis. The layers are
labeled 11, 12, 13, respectively.
Fig. 7. Left, Center, Right: Cartoons of optimal structures for the bounds B1; B2;

decreases: The X1 domain in the left structure is connected, no domains are conn
connected. When m1 ! 0, the right structure degenerates into a two-material se
laminates of k2 and k3.
(2) The obtained composite is laminated in the orthogo-
nal direction with a layer of k2 oriented along x2-
axis, forming a T-structure. This layer is labeled 22,
and the structure – L123;2.

(3) The obtained T-structure is laminated in x1 direction
with another laminate of materials k1; k2 and k3.
The layers in this last laminate are labeled 31, 32,
33, respectively. The volume fractions of materials
in that laminate are denoted as m31; m32 and
m33 ¼ 1� m11 � m12, respectively, and the layers are
oriented along x2. The relative volume fractions of
the two fragments are m4 – the fraction of the T-
structure, and ð1� m4Þ – the fraction of the lastly
added laminate. We denote this structure as
L123;2;123. The total volume fractions of k1 and k2 are
m1 ¼ ð1� m4Þm31 þ m4ð1� m2Þm11; ð8:1Þ

m2 ¼ ð1� m4Þm32 þ m4ð1� m2Þm12 þ m4m2: ð8:2Þ
B3, res
ected in
cond ra
Volume fractions of layers in an optimal structure are
chosen to satisfy the optimality conditions listed
above, as it is shown in Appendix A.
8.2.2. A different optimal structure for B3

The shown optimal structures are not unique. There are
several ways to join optimal fields by a rank-one path. An-
other type of optimal structures that realizes B3-bound for
very small m1 is found in Cherkaev (2000) for the case
k3 ¼ 1. This structure is L123;2-laminate of the second rank
in which the layers of all three materials are laminated in
an orthogonal direction with a layer of k2. This laminate
can be isotropic if m1 is sufficiently small

m1 2 ½0;m1120�; m1120 ¼
m2ð1�m2Þ

1þm2

k1

k2

 �
:

Notice that m1120 < m112, see (7.24). The effective conductiv-
ity of optimal L123;2 and L123;2;123 laminates coincide, but
the last one is optimal in a larger range of m1.

8.2.3. Optimal structures for B2

Optimal structures that realize the intermediate bound
B2 are special T2-structures (Fig. 7, center field) of the type
pectively. Observe the topological change when the amount of k1

the structure in the center, and domain X2 in the right structure is
nk laminate with k2 (envelope) and k3 (inclusions), laminated with
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L13;2;13. In them, fractions m12 and m32 are zero,
m12 ¼ 0; m32 ¼ 0 so that k2-material is placed in the second
layer only. In the range m12 < m1 < m11, structural param-
eters (volume fractions of laminates) can be chosen to sat-
isfy the optimality conditions in Theorem 8.1, as it is
shown in Appendix A.

8.2.4. Asymptotic
When m1 ! 0, the structure degenerates into an

optimal two-material composite L23;2;23. It realizes
Hashin–Shtrikman bound for (k2; k3)-composite. Indeed,
the T-structure (regions ‘‘1” and ‘‘2”) becomes matrix lam-
inate L23;2 that realizes the translation bound (3.29) (see
Lurie and Cherkaev, 1984; Cherkaev, 2000). Lamination of
this structure with a laminate L23 keeps it translation-opti-
mal (see Albin et al., 2007). An appropriate choice of
parameters brings the structure to an isotropy. The limit-
ing structure is of the type of ‘‘haired sphere” structures,
described in Albin and Cherkaev (2006).

When m2 ! 0 or m3 ! 0, the optimal structure degen-
erates into L13;1;1 and L2;1;1, respectively. These are equiva-
lent to second-rank matrix laminates that are optimal for
two-material (k1; k3)- and (k1; k2)-composites, respectively.

8.3. Connectedness of subdomains in optimal composites

We comment on the topology of the optimal periodic
structures that realize the bounds. Their periodic elements
are shown in Fig. 7. There are three types of structures and
two topological transitions between these types. When m1

decrease from one to zero, the enveloping material
changes from k1 to k2 in the following way.

When m1 > m11 (bound B1), structure L13;2;13;1;1 is opti-
mal. In the structure, a part of k1 in the outer layers forms
a connected domain. The T2-structures form inclusions in
that domain. The inclusions are composed as follows:
The nucleus is made from an intermediate material k2,
and the periphery is a laminate from k1 and k3; the layers
are directed toward the core, providing a path for the cur-
rent between an outer boundary and the nucleus.

Below the threshold m11, the outer layers of k1 disappears
and the T2-inclusions are joined together. In the region
m12 < m1 < m11 (bound B2), structure L13;2;13 is optimal. In
that structure, none of materials occupies a connected do-
main, but ðk1; k3Þ-layers connect X-periodic nuclei of k2.
The optimal composite resembles Schulgasser’s optimal
polycrystals (Schulgasser, 1982) with the nuclei.

Below the second threshold m1 < m12 (bound B3), struc-
ture L123;2;123 is optimal. In it, a layer of k2 is added to the
ðk1; k3Þ-laminate that surrounds the nuclei. Thus, domain
X2 percolates and becomes connected. Domains X1 and
X3 become inclusions. The field in X3 remains constant
and isotropic.
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Appendix A. Calculation of parameters of optimal
laminates

A.1. Expression for effective properties

Here we show the optimal structural parameters for the
structures that realize the bound B (7.14) for all values of
parameters. Volume fractions of layers in an optimal struc-
ture are chosen so that the optimality conditions of Section
8.2 are satisfied. The calculation was performed by Maple.
Here we show the results of the calculation of the optimal
parameters for the asymptotic case k3 ¼ 1when the bound
has the form (7.19). The general case of finite k3 is similar,
but the formulas are much bulkier and not too instructive.
They are obtained by applying the same Maple procedure.

Assume that the structure is subjected to a pair of iso-
tropic external fields e0 ¼ I. The fields e ¼ ru in layers
form a diagonal matrix. This matrix is represented by a
two-dimensional vector of eigenvalues enm ¼ ðenm½1�;
enm½2�Þ where indices n and m show the material in a layer
and the position of the layer in a structure, respectively.
Their eigenvectors of enm are co-directed with laminate
direction, so the matrices enm are completely defined by
the vector of their eigenvalues. The average field e0 is as-
sumed to be e0 ¼ I. Applying rank-one conditions on the
boundaries, we find fields in L123;2;123 ðk3 ¼ 1Þ

e11 ¼
k2

m4ðm11k2þm12k1Þ

0

 !
; e31 ¼

0
k2

m31k2þm32k1
;

 !
ð9:3Þ

e12 ¼
k2

m4ðm11k2þm12k1Þ

0

 !
; e22 ¼

1
m4

1
m2

 !
; e32 ¼

0
k1

m31k2þm32k1
;

 !

ð9:4Þ

e13 ¼ e33 ¼
0
0

 �
: ð9:5Þ
A.2. Optimal parameters for B1-structures

The structures that realize Hashin–Shtrikman bound
(Fig. 7, left field) are orthogonal laminates of the type
L13;2;13;1;1. They are mentioned above, in Section 8.1 and
are described in detail in Albin et al. (2007). They consist
of inclusions sequentially laminated by two orthogonal
layers of the amount m1 �m11 of k1. The inclusions are
T2-structures L13;2;13 in which the amount of the k1-mate-
rial is equal to m11.

A.3. Optimal parameters for B2-structures

These optimal structures that realize the intermediate
bound B2 are T2-structures (Fig. 7, center field) of the type
L13;2;13. In them:

1. The fractions m12 and m32 are zero, m12 ¼ 0 and m32 ¼ 0 so
that k2 is placed in the second layer only. It forms nuclei
inclusions joined by directors: laminates from k1 and k3.
Constraint (8.1) becomes m2 ¼ m2m4 and the effective
conductivities k�1 and k�2 in x1 and x2 directions, respec-
tively, become linear combinations of k1 and k2
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k�1 ¼
1

m2m31
ðm2 � m2m4 þ m4m32Þk1 þ m4m32k2½ �; ð9:6Þ

k�2 ¼
1

m4m11
ð1þ m2m12 � m2Þk1 þ m2m11k2½ �: ð9:7Þ

2. S-component is constant in X1, that is e11½1� ¼ e13½2� in
(9.3), which implies m31 ¼ m11m4, see (9.3).

3. D-component is zero in X2, that is e22½1� ¼ e22½2� in (9.4),
which implies m2 ¼

ffiffiffiffiffiffiffi
m2
p

and m4 ¼
ffiffiffiffiffiffiffi
m2
p

, see (9.4).
4. The structure is isotropic, or k�1 ¼ k�2 (see (9.6) and

(9.7)).

We choose volume fractions of laminates to satisfy the
above conditions and (8.1) and (8.2). Solving the corre-
sponding equations for fractions mmn, we compute their
optimal values denoted as vmn

v2 ¼ v4 ¼
ffiffiffiffiffiffiffi
m2
p

; v31 ¼
m1

2ð1� ffiffiffiffiffiffiffi
m2
p Þ ; v11 ¼

m31ffiffiffiffiffiffiffi
m2
p : ð9:8Þ

Energy densities W1 and W2 in the first and second mate-
rials, respectively, are

W1 ¼
1
2

k1 e2
11 þ e2

31

� �
¼ k1

1� ffiffiffiffiffiffiffi
m2
p

m1

 �2

ke0k2;

W2 ¼
1
2

k2ke2
22k ¼

k2

2m2
ke0k2

:

The average energy m1W1 þm2W2 defines the effective
conductivity k�. One checks that k� ¼ B12 . Therefore, the
bound is exact.

A.4. Optimal parameters for B3-structures

These are the T2-structures (see Fig. 7, right field) of the
type L123;2;123 that satisfy (8.1) and (8.2). Effective proper-
ties of these structures are expressed through the struc-
tural parameters as

k�1 ¼
k2

m31k2 þ m32k1

1
m2
ðm2 � m2m4 þ m4m32Þk1 þ m4m32k2ð Þ;

ð9:9Þ

k�2 ¼
k2

m12k1 þ m11k2

1
m4
ð1þ m2m12 � m2Þk1 þ m2m11k2:ð Þ:

ð9:10Þ

The optimality conditions are

1. S-component is constant in X1, that is e11½1� ¼ e31½2� in
(9.3), implying

m31k2 þ m32k1 ¼ m4ðm11k2 þ m12k1Þ: ð9:11Þ

2. S-component is constant in X2, that is

e12½1� þ e12½2� ¼ e22½1� þ e22½2� ¼ e32½1� þ e32½2�

One of these equalities follows from (9.11), the other
implies

k1

m31k2 þ m32k1
¼ 1

m2
þ 1

m4
:

3. The structure is isotropic, k�1 ¼ k�2 in (9.10) and (9.9).
Solving for structural parameters mp, we obtain a family
of isotropic structures that have the same optimal effective
property k� ¼ B13 . Therefore the bound B13 is exact.

A.5. Nonuniqueness

Optimal structures L123;2;123 are not unique. There is a
freedom in choosing volume fractions. Namely, fraction
m23 is not defined by optimality conditions, that is the dis-
tribution of k2 between the inner and outer layers is not
unique. We put m32 ¼ Pm4m12 where P is a parameter and
obtain

v2 ¼ v4 ¼
m1k2 þm2k1

k1
; ð9:12Þ

v31 ¼
P

1þ P
m1k1

ðk1 � ~kÞ
þ 1� P

1þ P

~k
2k2

; ð9:13Þ

v11 ¼
k1

P þ 1
m1k1

k1k̂� k̂2
þ P � 1

2k2

 !
: ð9:14Þ

Here, k̂ ¼ m2k1 þm1k2. The range of P is obtained from the
conditions v31 P 0 and v11 P 0. Solving for P, we obtain

P 2 P0;
1
P0

� �
; P0 ¼ 1� 8k2m1k1

k2
1 � k̂2

: ð9:15Þ

We also check that the optimal effective conductivity k� is
independent of P. For definiteness, we may request that the
average field in the X1 and X2 is isotropic, which corre-
sponds to P ¼ 1.

A.6. Transition points

We expect that v12 and v32 vanish when m1 ¼ m12 be-
cause at that point the bound becomes kL ¼ B2 and the cor-
responding optimal structure becomes L13;2;13 as described
above. To confirm this feature, we introduce a nonnegative
parameter l1 ¼ m12 �m1 P 0, instead of m1, and calculate
optimal volume fractions v12 and v32:

v12¼l1
k2

Pþ1

ffiffiffiffiffiffiffi
m2
p

k1
ffiffiffiffiffiffiffi
m2
p �l1k2

� 1þ ffiffiffiffiffiffiffi
m2
p

ð�1þ ffiffiffiffiffiffiffi
m2
p Þk1�l1k2

 �
;

ð9:16Þ

v32 ¼ l1

Pk2 2k1
ffiffiffiffiffiffiffi
m2
p � l1k2

� �
P þ 1ð Þk1 k1ð1�

ffiffiffiffiffiffiffi
m2
p Þ þ l1k2

� � : ð9:17Þ

We observe that both fractions m32 and m12 vanish when
l1 ¼ 0 and the structure becomes a B2-type structure. At
the point of this topological transition, the current
densities through k1 and k2 are equal, k1je11j ¼ k2je22j. A
similar calculation for the transition point m11 is
performed in Albin et al. (2007). It shows that external lay-
ers disappear in L13;2;13;1;1-structure when m1 ! m11 þ 0.
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