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1. Abstract

We find plane periodic three-material composite structures of maximal stiffness, which is the composites
of minimal elastic energy in a given homogeneous anisotropic stress field. One of the materials is assumed
to be very weak (void), and the two others are linearly elastic and isotropic. A similar problem for two-
material mixtures was solved 25 years ago (Gibiansky and Cherkaev, 1984) and it was shown that the
second-rank laminates are optimal because they correspond to translation bound for the energy. Since
then, the theory of bounds for the two-material composite was developed and other types of optimal
structures were found. The generalization of the results to multimaterial case is nontrivial and requires
new ideas. Here, the new bounds are established for the energy of a periodic cell and new types of
microstructures are suggested that either exactly realize these bounds, or approximate them. We find
these bounds using localized polyconvexity method. The bounds are geometrically independent: they
depend only on elastic moduli of the materials, their volume fractions, and the anisotropy of a homoge-
neous external loading. The found optimal structures vary with the loading anisotropy degree. We show
that there are several topologically different structures and several algebraically different bounds that are
optimal in different parameter domains. All the microstructures are found by the same procedure based
on (i) the energy bounds and sufficient optimality conditions for stress fields inside each material, and
(ii) the lamination technique that allows for satisfaction of these conditions.

2. Keywords: multimaterial composites, optimal microstructures, structural optimization, bounds for
effective properties,

3. Introduction

We consider the problem of optimal micro-geometries of multimaterial elastic composites (plane prob-
lem), aiming to maximize the stiffness of the composite in a given homogeneous stress field. Several types
of optimal two-material micro-geometries are described in such papers as [10, 9, 12, 2, 16, 7]. Optimal
structures depend on the degree of anisotropy of the stress loading. Their topology is simple and intu-
itively clear: for moderately anisotropic loading, the stronger material “wraps” the weaker one so that
the weak material forms an nucleus, and the strong one - a core. The structure adjusts itself to meet the
sufficient optimality conditions, which are found independently from solving the problem of geometrically
independent bounds for effective properties. They state that the stress field in nucleus is isotropic and
the sum of absolute values of the main stresses in the core is constant. For very anisotroptic loading, the
structure degenerates into laminates.The results are summarized in books [4, 2, 3].

The problem of optimal three-material composite is far more complex and optimal structures are more
diverse. This time, the optimal topology depends on volume fractions of the mixing elements. The general
theory of multiphase exact bounds and structures is not worked up yet, although many partial results
are obtained, see [14, 11, 15, 8, 6]. We consider here the simplest problem of this kind, assuming that
two materials have zero Poisson coefficients and the third one is void, and still obtain a variety of optimal
geometries. We exploit the method of localized polyconvezity developed previously in [5] for solution of
similar problem for bounds of isotropic composites. The method is based on the procedure by Nesi [13]
that combines the translation method [4] and additional inequality constraints. We extend the bounds
[13, 5] to anisotropic composites. The obtained bounds and corresponding sufficient conditions for the
stress in the materials in optimal structures are then used to determine optimal laminate structures, as
in [5]. Depending on anisotropy of the loading and volume fractions, we find several types of structures
using the technique of inverse laminating, see [1, 5]. In all cases but one, the found structures achieve
the bounds. In the remaining case, the found structures approximate the bound.

The considered problem is an essential part of a more general problem of optimal multimaterial de-
sign. In the general problem, one asks about an optimal layout of materials in a domain that is subject
to a fixed boundary traction. It turns out that the optimal layout is highly heterogeneous and there are



domains where the materials mix in an infinitesimal scale to achieve the optimality. The microstructures
of these optimal mixtures are investigated here. The found optimal structures are distributed in a large
scale in an optimal design, according to the stress field in it.

4. The problem
Assume that three materials are mixed forming a periodic composite. The materials occupy plain domains
Q;, i =1,2,3 C Ry that form a unit periodicity cell,

U Q=0
i=1,2,3
where ) is a unit square, Q = {(z1,22) : 0 <z <1, 0 <2y < 1}. The areas m; = ||Q;]| of Q; are fixed:
my+my+mg =1, m; >0, (1)

otherwise, {2; are arbitrary sets.
The periodic composite is subject to an arbitrary homogeneous stress field oo applied at infinitely
distant points. The stress tensor
o= 011 012
021 022

satisfies the constraints (equilibrium conditions)
_ T
o=0",VzeQ, (2)
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in each point of the domain, and the integral constraint

/Qadmo. (4)

We consider the simplest problem of optimal multimaterial composites: Assume that one of the
material (material No 3) is void, its compliance tensor is infinite, stress is zero

c=0 in 93
and the strain tensor is not defined. The energy of void is presented as

oo ={ Lo o0 ®

Assume also that the other two materials possess zero Poisson coefficients, their compliance tensors
are proportional to the unit fourth-rank tensor, so that the stress is proportional to the strain. The
energy of such materials has a form

1 1
Wi(o) = EkiTr(a2) = 5l~ci(s2 +D?%), i=1,2. (6)
where k; and ko are the compliances of the corresponding material,
k< kz, (7)

and S and D are the half-sum and half-difference of the eigenvalues o, and oz of the stress tensor o,

s:%(aamﬁ), D:%(Ua—ag). (8)

We also introduce the related spherical s and deviatoric d parts of o,

s = %TT’(O’)I, d=o—-s, (Trd=0). 9)



Because Poisson coefficient is zero, the problem is invariant to the change of sign of the eigenvalues
0o and og, which allows of considerating only the case

0a>0 o3>0 (10)
and significantly simplifies the notations.
The energy of the cell has the form
2
En(UO7 ki, QZ) - o as inr(%i){1(3)7(4) ; /;Zi Wz (O—)dm (11)

We find a lower geometrically independent bound for the energy by arbitrary varying subdomains ©; and
Q5 while preserving their areas (fractions of the materials in the composite)

B(U();ki;mi) = ,LanZ‘QJ:mlEn(UO;kHQZ) (]‘2)

The bounds for the stiffness (the energy) quadratically depend on eigenvalues of o¢ and have the form

B(oo, ki,mi) = o5, W (ki, my, ), (13)
where
— |28 , rel0,1]
O0a

is the ratio of eigenvalues og, and ogg of o and it is assumed that |oga| > |00g|-

5. Technique: Localized polyconvex envelope

The technique of the derivation of the bound is called localized polyconvezification and is described in
[5]. In the procedure, the differential constraints (3) are relaxed and replaced by an integral constraint
of quasiaffiness, see for example [4]

/ det(0)dz = det(cg) or /(s2 — D¥dz = S2 — D2 (14)
Q Q

and inequalities (see Nesi inequalities [13])
det(o) >0, Vo e Q, if det(op) > 0. (15)

Notice that the procedure gives Translation Bounds without these inequalities, or when the inequalities
are slack. In the following analysis (see Section 6), this case corresponds to regimes D and E. Notice that
the translation bound is optimal when fraction m; is large enough.

The relaxed problem defines the bound W of the energy En,

W(o) < En(o) Vo (16)
in the form
W= (| min, V7V < (55 0F) ) an
where
V! = min / (ks + £)||3(x) | de, (18)
s(x)eQ Jq,
v = : / ki —t)||d 2d ; 19
§ (in Qi( )d(2)]|”de (19)
P = {51,52,D2,D2 : m1S1 + maeSs = SO = an(l + 7'),
mi1D1 +myDy = Dy = 0oa(1 —17)}, (20)
Q = {s()d(): sl > |d|]* Yz € © (21)

/ S(x) de = m;S;, / D(z)dz = m;D;, i = 1,2} . (22)
Qi Qi



Analyzing this problem, we notice several types of minimizers — stress components s(x), d(z) in subdo-
mains (2;. These minimizers corresponds to the inequality Eq.(16) and they safisfy sufficient optimality
conditions. These minimizers-stresses are generally not compatible, and the bound is not achievable.
Ineq. (21) might be either active or not. Let us comment on these conditions.

— Because of inequality Eq.(21), optimal value of ¢ is nonnegative, ¢t > 0.

— The eigenvectors of o(x) are codirected with the eigenvectors of oy everywhere in ().

— Minimum in the Eq.(18) is achieved at a constant solution, s(x) = S;I Vz € ;.

— When t,,: € [0,k1), minimum in the Eq.(19) is acheved at a constant solution, d(z) =constant,
lld(x)|| = D; Y € Q; as well.

— When t,p; = k1, the deviator d(x) in €, is not defined because the coefficient k1 — t becomes zero,
see Eq.(19). d(x) can vary without affecting the bound, if only Ineq.(21) is satisfied. In Q5, the optimal
deviator d(z) is zero.

— When t,,: > k1, the functional V" is a concave function of d(z). Its minimum corresponds to d(x)
that alters between the extremal values %||s||, see Ineq.(21). It also can stay constant and equals to either
|Is|]] or —]|s||. The equality holds ||d(z)||*> = ||s(x)||* Vz € Qi, and the mean values of S and D satisfy
inequality

—Sl S D1 S Sl, D1 = L D(ZL“) dx. (23)
miy N
This inequality becomes active (satisfied as an equality) when D(z),z € € is constant.

— When t,,: < k», the D-field in 2, is constant. When t,,: = k2, the D-field in 2, is not uniquely

defined, see Eq.(19).

6. Results: Bounds

The optimal bound for the energy is a multifaced surface: It is expessed by different analytic expressions
in different domains. The results are conveniently presented in the parameters plane r,mi, Figure 1. The
dependence on my is not shown on the figures. We notice that this dependence leads to transformation
of the shape of the regions below but does not change their topology. We also notice that bounds depend
on absolute values of the stress tensors. Therefore we assume that o, > 0 and o3 > 0. The bounds are
as follows

Table 1: Bounds for energy

Ineq(23) in topt D(z)in @ | D(z) in Q3 | Exact?
A slack ko D =4S € [—S2, Ss] yes
B slack € (k1,k2) D=4=+S5 0 yes
C active € (0,kz) D=5 cnst yes
D slack k1 € [-S51, 5] 0 yes
E slack € (0,ky) | cust, |[D| < S cnst no

where regions (see Figure 1) are defined as

P (kl klmz —mlkz) mzkf
Al ke 2
12 [ mzkl +m1kz + \/ mzkl +m1kz) — mzk%
k1 (vVms — 1—
my<r<r, BWTEIm) L k(o m) (24)
kz 2k2
Ky — kymeg — myks) m ky (1= me
Dy (k1 1My — maky) ma <r, and 0<r<1, 0<m1§71( m2) (25)
m1k2 k2
Sk2 dmayk?
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(m2k1 + mlkg) + \/(m2k1 + mlkz) — m2k1 ( 2R
where a =miks +miks +2msoky, and mso <r <1 (26)
P (kl klmz —mlkz)mz < < mg\/kz kl k1m2 —m1k2) (1—m1 mz)
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Figure 1: Regions of multifaced boundary for the energy in an anisotropic field.

0<r<ms (27)
dmsk? k
op M2 7 <r, M2 <r
(a = 4m2kf) miki + miks + mokq
and r<1, m; <1l-—my (28)
P mz\/kz (kl —k1m2 —mlkz) (1—m1 —mz) <r< mgkl
B mika maikls + miks + m2k17
mq S 1-— ma (29)

The lower bound of the energy is expressed as a function of invariants Sp, Dy of the external stress
and the problem’s parameters. The analytic expressions of the bound in the regions A — E are:

1
— o e k| S2 4 kD2
Wa o= l(m F 5] | S+ kD3 (30)
k1 2
Wp = 2. [50 -2 (502 - Doz) mz} + ko (502 — DOZ) ) (31)
B (ki (1—mo)® koo 2, ke 2
We = S +— (So + Do)” + 5 (So — Do)”, (32)
r 1
— m ma _ 2 2
wo = |(GE+ay) k| S+ aoh (33)
Wy = Wg(t 34
B x| E(t), (34)
[ mi mo -1 my mo -t
Vie(t) = ‘ —t| S? ‘ t| D2.
WE() <k1+t+k2+t> SO+ <k1—t+k2—t> + 0
Optimal values of ¢ in the regions B and C are
k
toptg = m—lr (v/mar (L +71) — 2mar) — ks, (35)
1
m
topte: = m—12r (1 —ma) k1 —miks) . (36)

Optimal value of t in region E is a root of the equation d;"zE = 0. The bulky solution of the resulting

fourth-order equation for t is not shown here. The positions of eigenvalues of stresses-minimizers are
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Figure 2: The eigenvalues of the stresses-minimizers, according to the bounds. Notice that
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shown in Figure 2.

7. Results: Structures

Table 2: Optimal structures
Finally, we show the structures that realize the bounds A-D and approximate the bound E.

Region Al A2 B C D E
Type | (T,2) | (1%2) | (%) [ (T) | (7%, 1,1 [ (T,1)
Optimal? yes yes yes | yes yes unknown

AN

Region Al Region B Region D
AN\
A\ A\
Region A2 Region C Region B1

Figure 3: The laminates. The equilibrium condition is enforced.

Optimal structures in regions A-D

The cartoon of the found optimal structures is presented in Figure 3. They are sequential laminates, in
other words, they are obtained by several steps, each step requires laminating of laminates obtained in
previous steps.

e In region C, a simple (7')-structure is optimal. It is as follows: a laminate from materials 1 and 3
is laminated in an orthogonal direction with a layer of material 2. The stress fields in the materials
are constant and rank-one connected, i.e. det(s; — o;) = 0. We can show that the (T)-structure
is optimal by a direct energy calculation and by noticing that the stresses in the structure coincide
with the stresses-minimizers in Figure 2

e In region B, the (7'?)-structure is optimal, which is obtained from (T')-structure by adding a layer
of laminate from materials 1 and 3, see Figure 3. The fractions are chosen so that the field in 4
has constant magnitude everywhere. The stresses in neighboring laminates are rank-one connected.
The direct computation shows that the stresses in the optimal (7'?)-structure lie in the points of
the stresses-minimizers, Figure 2, which are found from sufficient optimality conditions. We see
that the (T'2)-structure is also optimal.

e The structures (7,2) and (T'2,2) are optimal in region A1l and A2 respectively, they are shown in
Figure 3. We prove the optimality of these structures by the same method, comparing the stresses
in layers with the ones found from sufficient optimality conditions and shown in Figure 2.

e In region D, the bound coincides with the Translation bound. The optimal structures have been
found previously, in [8, 1], using the same method (that was developed there). The structures have
the form (72,1, 1) and are shown in Figure 3.



At the boundaries of the regions, the corresponding structures meet each other. For example, the
(T?) structure becomes (T')-structure when the additional layers disappear.

Conjectured optimal structures in region E.

Finally, we guess optimal structures in case E. Notice that the (T, 1)-structures are optimal at the bound-
aries with regimes C and D. These structures degenerate into structures found in [6] for asymptotic case
approaching one-directional load. They also degenerate into laminates when ms — 0. We conject that
they stay optimal inside region E. However, these or other laminate structures cannot realize the corre-
sponding bounds because the bounds require that stress in all three phases is constant and these fields are
not rank-one connected. Likely, the bound is not exact in region E and its improvement would require
consideration of other complementary inequalities that are not revealed yet.

8. Stress in optimal laminates

Here we will give an example of how to find the optimal structure. The structure discussed here is optimal
in region @ 4,. It corresponds to translation parameter ¢ = k2 and is a second rank laminate. It is formed
by first laminating material 1, 2 and 3 along w» direction with relative volume fraction of material 1
equaling to u11, relative volume fraction of material 2 equaling to p12 and then adding material 2 to the
resulting laminate along x; direction with relative volume fraction of material 2 equaling to ps. Again
z1 and z are orthogonal to each other. Let vectors s;; represent the fields in each material with the first
subscript ¢ describing the layer and second subscript j describing the material considered under given
external stress field op = [091  0g2]. The first element of s;; codirects with the eigenvector corresponding
to o1 and the second one codirects with the eigenvector corresponding to og2. As shown in Figure 4, the
field inside material 1 is constant and so is the trace of the field inside material 2. Layers of materials
1, 2 and 3 are rank-1 connected (see Figure 4), that is the stress in the normal direction of the interface
between any two materials and the strain in the tangential direction are continuous. Based on this, we

Figure 4: The fields inside the structure T-2.

have the following:

S11 = [0, Oé] 5 (37)
s512 = [0, k]i—za} ) (38)
sz = [B, 0o02]. (39)

The average field (represented as point D in Figure 4) in the first layer (material 1, 2 and 3) is:

ki«
510 = S11p11 + S12M12 = {0, apry + k1—2,u12] (40)

and it is rank-1 connected with the field (see point E in Figure 4) inside the second layer of material 2,



therefore the following is true:
kia
apry + k1—2,u12 = 0o2. (41)

Also the average field between second layer of material 2 (point E in Figure 4 ) and average field of the
first rank laminate (material 1, 2, and 3) equals to the external field, and this leads to:

ﬁuz = 0o1- (42)
The fact that the trace of fields inside material 2 is constant requires that:
kla

B+o02 = Ty

The restrictions on volume fractions are of the following:

par (1 —p2) = my, (44)
prz (1 — p2) + po

I
3
M
—~
e~
ot
~

Solve (41)-(45), we obtain:

ks (001 + 002)
= D200 7 g02) 46
@ m1k2 + k1m2 ( )

ki (001 + 002)

= —, 47

ﬁ m1k2 + klmg ( )
M0 mi k2001

= + , 48

faz oo1 + 002 (Miky +maki — k1) (001 + 002) (48)

= mi1002 _ mikioo1 (49)

oo1 + 002 (maiks +maoki — ki) (001 + 002)’
001 (m1k2 + k1m2)

= . 50
Hz ootk — 002 (kl —myky — m2k1) ( )

Recall that 091 = og2r and substitute this condition into (48)-(50) and we get:

ma rmy ks

= + , o1

Hi2 ].+7“ (m1k2 —l—m2k1 —kl) (].-|—’I") ( )
k

[ _ mi _ rmiky (52)

1+r (m1k2+m2k1—k1) (].+’I‘),

r (m1k2 + klmz)

= ) 93
H2 ’I"kl — (m1k2 + m2k1 — kl) ( )

Requiring that all the volume fractions fall into (0, 1], we have the following restriction on the values of
r which correspond to the optimal structures:

0<r< m2 (kl —miks _k1m2)‘

54
T (54)
Note that if r = 0, then pys = 0, which means the structure degenerates into laminate, and if r =
ma (k1 —mika—kims)/(kamy), then pyo = 0, which means that the structure degenerates into T-structure.

9. Discussion

1. One can show that the obtained results degenerate into known bounds/structures for two-material
problem if any of the volume fractions vanishes, or if k; = ko, or ky — oo.

2. Generalization of the obtained results to non-zero Poisson coefficients seems to be straightforward but
the formulas will be more bulky. The case of three nonzero materials is more knotty, and one expects
new domains of analyticity of the bound and new types of matching structures to appear.

3. The gap between the bound and the structures in Region E cannot be closed by the localized polycon-
vexity method because the bound corresponds to incompatible fields in materials. It is surprizing that
the method allows for exact bounds in the other regions.

4. Unlike two-material case, the optimal three-material structures undergo several topological transi-
tions. Either the first or second material or none of the materials forms a connected domain, depending
on volume fractions and the degree of anisotropy.
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