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Optimal structures of multiphase elastic compositesAndrej Cherkaev and Yuan ZhangDepartment of Mathematics, University of Utah, Salt Lake City, Utah, USA,cherk@math.utah.edu and zhang@math.utah.edu1. AbstractWe �nd plane periodic three-material composite structures of maximal sti�ness, which is the compositesof minimal elastic energy in a given homogeneous anisotropic stress �eld. One of the materials is assumedto be very weak (void), and the two others are linearly elastic and isotropic. A similar problem for two-material mixtures was solved 25 years ago (Gibiansky and Cherkaev, 1984) and it was shown that thesecond-rank laminates are optimal because they correspond to translation bound for the energy. Sincethen, the theory of bounds for the two-material composite was developed and other types of optimalstructures were found. The generalization of the results to multimaterial case is nontrivial and requiresnew ideas. Here, the new bounds are established for the energy of a periodic cell and new types ofmicrostructures are suggested that either exactly realize these bounds, or approximate them. We �ndthese bounds using localized polyconvexity method. The bounds are geometrically independent: theydepend only on elastic moduli of the materials, their volume fractions, and the anisotropy of a homoge-neous external loading. The found optimal structures vary with the loading anisotropy degree. We showthat there are several topologically di�erent structures and several algebraically di�erent bounds that areoptimal in di�erent parameter domains. All the microstructures are found by the same procedure basedon (i) the energy bounds and su�cient optimality conditions for stress �elds inside each material, and(ii) the lamination technique that allows for satisfaction of these conditions.2. Keywords: multimaterial composites, optimal microstructures, structural optimization, bounds fore�ective properties,3. IntroductionWe consider the problem of optimal micro-geometries of multimaterial elastic composites (plane prob-lem), aiming to maximize the sti�ness of the composite in a given homogeneous stress �eld. Several typesof optimal two-material micro-geometries are described in such papers as [10, 9, 12, 2, 16, 7]. Optimalstructures depend on the degree of anisotropy of the stress loading. Their topology is simple and intu-itively clear: for moderately anisotropic loading, the stronger material \wraps" the weaker one so thatthe weak material forms an nucleus, and the strong one - a core. The structure adjusts itself to meet thesu�cient optimality conditions, which are found independently from solving the problem of geometricallyindependent bounds for e�ective properties. They state that the stress �eld in nucleus is isotropic andthe sum of absolute values of the main stresses in the core is constant. For very anisotroptic loading, thestructure degenerates into laminates.The results are summarized in books [4, 2, 3].The problem of optimal three-material composite is far more complex and optimal structures are morediverse. This time, the optimal topology depends on volume fractions of the mixing elements. The generaltheory of multiphase exact bounds and structures is not worked up yet, although many partial resultsare obtained, see [14, 11, 15, 8, 6]. We consider here the simplest problem of this kind, assuming thattwo materials have zero Poisson coe�cients and the third one is void, and still obtain a variety of optimalgeometries. We exploit the method of localized polyconvexity developed previously in [5] for solution ofsimilar problem for bounds of isotropic composites. The method is based on the procedure by Nesi [13]that combines the translation method [4] and additional inequality constraints. We extend the bounds[13, 5] to anisotropic composites. The obtained bounds and corresponding su�cient conditions for thestress in the materials in optimal structures are then used to determine optimal laminate structures, asin [5]. Depending on anisotropy of the loading and volume fractions, we �nd several types of structuresusing the technique of inverse laminating, see [1, 5]. In all cases but one, the found structures achievethe bounds. In the remaining case, the found structures approximate the bound.The considered problem is an essential part of a more general problem of optimal multimaterial de-sign. In the general problem, one asks about an optimal layout of materials in a domain that is subjectto a �xed boundary traction. It turns out that the optimal layout is highly heterogeneous and there are1



domains where the materials mix in an in�nitesimal scale to achieve the optimality. The microstructuresof these optimal mixtures are investigated here. The found optimal structures are distributed in a largescale in an optimal design, according to the stress �eld in it.4. The problemAssume that three materials are mixed forming a periodic composite. The materials occupy plain domains
i; i = 1; 2; 3 � R2 that form a unit periodicity cell,[i=1;2;3
i = 
where 
 is a unit square, 
 = f(x1; x2) : 0 � x1 < 1; 0 � x2 < 1g. The areas mi = k
ik of 
i are �xed:m1 +m2 +m3 = 1; mi � 0; (1)otherwise, 
i are arbitrary sets.The periodic composite is subject to an arbitrary homogeneous stress �eld �0 applied at in�nitelydistant points. The stress tensor � = ��11 �12�21 �22�satis�es the constraints (equilibrium conditions)� = �T ; 8x 2 
; (2)@@x1�11 + @@x2�12 = 0@@x1�21 + @@x2�22 = 0 8x 2 
 (3)in each point of the domain, and the integral constraintZ
 � dx = �0: (4)We consider the simplest problem of optimal multimaterial composites: Assume that one of thematerial (material No 3) is void, its compliance tensor is in�nite, stress is zero� = 0 in 
3and the strain tensor is not de�ned. The energy of void is presented asW3(�) = � 0 if � = 0+1 if � 6= 0 : (5)Assume also that the other two materials possess zero Poisson coe�cients, their compliance tensorsare proportional to the unit fourth-rank tensor, so that the stress is proportional to the strain. Theenergy of such materials has a formWi(�) = 12kiTr(�2) = 12ki(S2 +D2); i = 1; 2: (6)where k1 and k2 are the compliances of the corresponding material,k1 < k2; (7)and S and D are the half-sum and half-di�erence of the eigenvalues �� and �� of the stress tensor �,S = 12(�� + ��); D = 12(�� � ��): (8)We also introduce the related spherical s and deviatoric d parts of �,s = 12Tr(�)I; d = � � s; (Tr d = 0): (9)2



Because Poisson coe�cient is zero, the problem is invariant to the change of sign of the eigenvalues�� and �� , which allows of considerating only the case�� � 0 �� � 0 (10)and signi�cantly simpli�es the notations.The energy of the cell has the formEn(�0; ki;
i) = min� as in (2);(3);(4) 2Xi=1 Z
i Wi(�)dx: (11)We �nd a lower geometrically independent bound for the energy by arbitrary varying subdomains 
1 and
2 while preserving their areas (fractions of the materials in the composite)B(�0; ki;mi) = inf
i:j
ij=miEn(�0; ki;
i): (12)The bounds for the sti�ness (the energy) quadratically depend on eigenvalues of �0 and have the formB(�0; ki;mi) = �20�W (ki;mi; r); (13)where r = �����0��0� ���� ; r 2 [0; 1]is the ratio of eigenvalues �0� and �0� of �0 and it is assumed that j�0�j � j�0� j.5. Technique: Localized polyconvex envelopeThe technique of the derivation of the bound is called localized polyconvexi�cation and is described in[5]. In the procedure, the di�erential constraints (3) are relaxed and replaced by an integral constraintof quasia�ness, see for example [4]Z
 det(�)dx = det(�0) or Z
(S2 �D2)dx = S20 �D20 (14)and inequalities (see Nesi inequalities [13])det(�) � 0; 8x 2 
; if det(�0) � 0: (15)Notice that the procedure gives Translation Bounds without these inequalities, or when the inequalitiesare slack. In the following analysis (see Section 6), this case corresponds to regimes D and E. Notice thatthe translation bound is optimal when fraction m1 is large enough.The relaxed problem de�nes the bound W of the energy En,W (�) � En(�) 8� (16)in the form W = maxt2R � minS1;S2;D1;D22P (V 01 + V 02 + V 001 + V 002 )� t �S20 �D20�� ; (17)where V 0i = mins(x)2Q Z
i(ki + t)ks(x)k2dx; (18)V 00i = mind(x)2QZ
i(ki � t)kd(x)k2dx; (19)P = fS1; S2; D2; D2 : m1S1 +m2S2 = S0 = �0�(1 + r);m1D1 +m2D2 = D0 = �0�(1� r)g; (20)Q = �s(x); d(x) : ksk2 � kdk2 8x 2 
 (21)Z
i S(x) dx = miSi; Z
i D(x) dx = miDi; i = 1; 2� : (22)3



Analyzing this problem, we notice several types of minimizers { stress components s(x), d(x) in subdo-mains 
i. These minimizers corresponds to the inequality Eq.(16) and they sa�sfy su�cient optimalityconditions. These minimizers-stresses are generally not compatible, and the bound is not achievable.Ineq. (21) might be either active or not. Let us comment on these conditions.{ Because of inequality Eq.(21), optimal value of t is nonnegative, t � 0.{ The eigenvectors of �(x) are codirected with the eigenvectors of �0 everywhere in 
.{ Minimum in the Eq.(18) is achieved at a constant solution, s(x) = SiI 8x 2 
i.{ When topt 2 [0; k1), minimum in the Eq.(19) is acheved at a constant solution, d(x) =constant,kd(x)k = Di 8x 2 
i as well.{ When topt = k1, the deviator d(x) in 
1 is not de�ned because the coe�cient k1 � t becomes zero,see Eq.(19). d(x) can vary without a�ecting the bound, if only Ineq.(21) is satis�ed. In 
2, the optimaldeviator d(x) is zero.{ When topt > k1, the functional V 001 is a concave function of d(x). Its minimum corresponds to d(x)that alters between the extremal values �ksk, see Ineq.(21). It also can stay constant and equals to eitherksk or �ksk. The equality holds kd(x)k2 = ks(x)k2 8x 2 
1, and the mean values of S and D satisfyinequality �S1 � D1 � S1; D1 = 1m1 Z
1 D(x) dx: (23)This inequality becomes active (satis�ed as an equality) when D(x); x 2 
1 is constant.{ When topt < k2, the D-�eld in 
2 is constant. When topt = k2, the D-�eld in 
2 is not uniquelyde�ned, see Eq.(19).6. Results: BoundsThe optimal bound for the energy is a multifaced surface: It is expessed by di�erent analytic expressionsin di�erent domains. The results are conveniently presented in the parameters plane r;m1, Figure 1. Thedependence on m2 is not shown on the �gures. We notice that this dependence leads to transformationof the shape of the regions below but does not change their topology. We also notice that bounds dependon absolute values of the stress tensors. Therefore we assume that �� > 0 and �� > 0. The bounds areas follows Table 1: Bounds for energyIneq(23) in 
1 topt D(x) in 
1 D(x) in 
2 Exact?A slack k2 D = �S 2 [�S2; S2] yesB slack 2 (k1; k2) D = �S 0 yesC active 2 (0; k2) D = S cnst yesD slack k1 2 [�S1; S1] 0 yesE slack 2 (0; k1) cnst, jDj < S cnst nowhere regions (see Figure 1) are de�ned as�A1 : (k1 � k1m2 �m1k2)m2m1k2 � r � m2k21h(m2k1 +m1k2) +p(m2k1 +m1k2)2 �m2k21i2m2 � r � 1; k1 �pm2 �m2�k2 � m1 � k1 (1�m2)2k2 ; (24)�A2 : (k1 � k1m2 �m1k2)m2m1k2 < r; and 0 < r � 1; 0 < m1 � k1 (1�m2)k2 (25)�B : m2k21�(m2k1 +m1k2) +q(m2k1 +m1k2)2 �m2k21�2 < r � 4m2k21�a+pa2 � 4m2k21�2where a = m1k2 +m1k1 + 2m2k1; and m2 � r � 1 (26)�C : (k1 � k1m2 �m1k2)m2m1k2 � r � m2pk2 (k1 � k1m2 �m1k2) (1�m1 �m2)m1k2 ;4



Figure 1: Regions of multifaced boundary for the energy in an anisotropic �eld.0 < r � m2 (27)�D : 4m2k21�a+pa2 � 4m2k21�2 < r; m2k1m1k1 +m1k2 +m2k1 � rand r � 1; m1 � 1�m2 (28)�E : m2pk2 (k1 � k1m2 �m1k2) (1�m1 �m2)m1k2 < r < m2k1m1k1 +m1k2 +m2k1 ;m1 � 1�m2 (29)The lower bound of the energy is expressed as a function of invariants S0; D0 of the external stressand the problem's parameters. The analytic expressions of the bound in the regions A�E are:WA = "�m12k1 + m22k2��1 � k2#S20 + k2D20; (30)WB = k12m1 �S0 � 2q�S02 �D02�m2�2 + k2 �S02 �D02� ; (31)WC = "k1 (1�m2)22m1 + k2m22 # (S0 +D0)2 + k22m2 (S0 �D0)2 ; (32)WD = "�m12k1 + m2k2 + k1��1 � k1#S20 + k1D20; (33)WE = maxt2[0;k1) ~WE(t); (34)~WE(t) = "� m1k1 + t + m2k2 + t��1 � t#S20 + "� m1k1 � t + m2k2 � t��1 + t#D20:Optimal values of t in the regions B and C aretoptB = k1m1r (pm2r (1 + r)� 2m2r)� k2; (35)toptC = m2m1r ((1�m2) k1 �m1k2) : (36)Optimal value of t in region E is a root of the equation dWEd t = 0. The bulky solution of the resultingfourth-order equation for t is not shown here. The positions of eigenvalues of stresses-minimizers are5



A.   t=k2

E. t<k1, D1< S1

B.  k1<t<k2, D1<S1

D. t=k1, D1<S1

Field−optimizers in Material No 1

Field−optimizers in Material No 2

C.  0<t<k2, D1=S1

Figure 2: The eigenvalues of the stresses-minimizers, according to the bounds. Notice thatthe equilibrium condition is not assumed.
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shown in Figure 2.7. Results: Structures Table 2: Optimal structuresFinally, we show the structures that realize the bounds A-D and approximate the bound E.Region A1 A2 B C D EType (T, 2) (T 2; 2) (T 2) (T) (T 2, 1, 1) (T,1)Optimal? yes yes yes yes yes unknown
Region A1

Region A2

Region B

Region C

Region D

Region A1Region EFigure 3: The laminates. The equilibrium condition is enforced.Optimal structures in regions A-DThe cartoon of the found optimal structures is presented in Figure 3. They are sequential laminates, inother words, they are obtained by several steps, each step requires laminating of laminates obtained inprevious steps.� In region C, a simple (T )-structure is optimal. It is as follows: a laminate from materials 1 and 3is laminated in an orthogonal direction with a layer of material 2. The stress �elds in the materialsare constant and rank-one connected, i.e. det(�i � �j) = 0. We can show that the (T )-structureis optimal by a direct energy calculation and by noticing that the stresses in the structure coincidewith the stresses-minimizers in Figure 2� In region B, the (T 2)-structure is optimal, which is obtained from (T )-structure by adding a layerof laminate from materials 1 and 3, see Figure 3. The fractions are chosen so that the �eld in 
1has constant magnitude everywhere. The stresses in neighboring laminates are rank-one connected.The direct computation shows that the stresses in the optimal (T 2)-structure lie in the points ofthe stresses-minimizers, Figure 2, which are found from su�cient optimality conditions. We seethat the (T 2)-structure is also optimal.� The structures (T; 2) and (T 2; 2) are optimal in region A1 and A2 respectively, they are shown inFigure 3. We prove the optimality of these structures by the same method, comparing the stressesin layers with the ones found from su�cient optimality conditions and shown in Figure 2.� In region D, the bound coincides with the Translation bound. The optimal structures have beenfound previously, in [8, 1], using the same method (that was developed there). The structures havethe form (T 2; 1; 1) and are shown in Figure 3.7



At the boundaries of the regions, the corresponding structures meet each other. For example, the(T 2) structure becomes (T )-structure when the additional layers disappear.Conjectured optimal structures in region E.Finally, we guess optimal structures in case E. Notice that the (T; 1)-structures are optimal at the bound-aries with regimes C and D. These structures degenerate into structures found in [6] for asymptotic caseapproaching one-directional load. They also degenerate into laminates when m3 ! 0. We conject thatthey stay optimal inside region E. However, these or other laminate structures cannot realize the corre-sponding bounds because the bounds require that stress in all three phases is constant and these �elds arenot rank-one connected. Likely, the bound is not exact in region E and its improvement would requireconsideration of other complementary inequalities that are not revealed yet.8. Stress in optimal laminatesHere we will give an example of how to �nd the optimal structure. The structure discussed here is optimalin region �A2 . It corresponds to translation parameter t = k2 and is a second rank laminate. It is formedby �rst laminating material 1, 2 and 3 along x2 direction with relative volume fraction of material 1equaling to �11, relative volume fraction of material 2 equaling to �12 and then adding material 2 to theresulting laminate along x1 direction with relative volume fraction of material 2 equaling to �2. Againx1 and x2 are orthogonal to each other. Let vectors sij represent the �elds in each material with the �rstsubscript i describing the layer and second subscript j describing the material considered under givenexternal stress �eld �0 = [�01 �02]. The �rst element of sij codirects with the eigenvector correspondingto �01 and the second one codirects with the eigenvector corresponding to �02. As shown in Figure 4, the�eld inside material 1 is constant and so is the trace of the �eld inside material 2. Layers of materials1, 2 and 3 are rank-1 connected (see Figure 4), that is the stress in the normal direction of the interfacebetween any two materials and the strain in the tangential direction are continuous. Based on this, we

Figure 4: The �elds inside the structure T-2.have the following: s11 = [0; �] ; (37)s12 = �0; k1�k2 � ; (38)s22 = [�; �02] : (39)The average �eld (represented as point D in Figure 4) in the �rst layer (material 1, 2 and 3) is:s10 = s11�11 + s12�12 = �0; ��11 + k1�k2 �12� (40)and it is rank-1 connected with the �eld (see point E in Figure 4) inside the second layer of material 2,8



therefore the following is true: ��11 + k1�k2 �12 = �02: (41)Also the average �eld between second layer of material 2 (point E in Figure 4 ) and average �eld of the�rst rank laminate (material 1, 2, and 3) equals to the external �eld, and this leads to:��2 = �01: (42)The fact that the trace of �elds inside material 2 is constant requires that:� + �02 = k1�k2 : (43)The restrictions on volume fractions are of the following:�11 (1� �2) = m1; (44)�12 (1� �2) + �2 = m2: (45)Solve (41)-(45), we obtain:� = k2 (�01 + �02)m1k2 + k1m2 ; (46)� = k1 (�01 + �02)m1k2 + k1m2 ; (47)�12 = m2�02�01 + �02 + m1k2�01(m1k2 +m2k1 � k1) (�01 + �02) ; (48)�11 = m1�02�01 + �02 � m1k1�01(m1k2 +m2k1 � k1)(�01 + �02) ; (49)�2 = �01(m1k2 + k1m2)�01k1 � �02 (k1 �m1k2 �m2k1) : (50)Recall that �01 = �02r and substitute this condition into (48)-(50) and we get:�12 = m21 + r + rm1k2(m1k2 +m2k1 � k1) (1 + r) ; (51)�11 = m11 + r � rm1k1(m1k2 +m2k1 � k1) (1 + r) ; (52)�2 = r (m1k2 + k1m2)rk1 � (m1k2 +m2k1 � k1) : (53)Requiring that all the volume fractions fall into (0, 1], we have the following restriction on the values ofr which correspond to the optimal structures:0 < r < m2 (k1 �m1k2 � k1m2)k2m1 : (54)Note that if r = 0, then �2 = 0, which means the structure degenerates into laminate, and if r =m2(k1�m1k2�k1m2)=(k2m1), then �12 = 0, which means that the structure degenerates into T -structure.9. Discussion1. One can show that the obtained results degenerate into known bounds/structures for two-materialproblem if any of the volume fractions vanishes, or if k1 = k2, or k2 !1.2. Generalization of the obtained results to non-zero Poisson coe�cients seems to be straightforward butthe formulas will be more bulky. The case of three nonzero materials is more knotty, and one expectsnew domains of analyticity of the bound and new types of matching structures to appear.3. The gap between the bound and the structures in Region E cannot be closed by the localized polycon-vexity method because the bound corresponds to incompatible �elds in materials. It is surprizing thatthe method allows for exact bounds in the other regions.4. Unlike two-material case, the optimal three-material structures undergo several topological transi-tions. Either the �rst or second material or none of the materials forms a connected domain, dependingon volume fractions and the degree of anisotropy. 9
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