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ABSTRACT. We introduce a family of optimal anisotropic two-dimensional
multimaterial laminate composites which correspond to extreme overall
conductivity. These laminates attain the translation bounds and gener-
alize all previously known constructions for these bounds. The method
of construction is based on the analysis of the fields in optimal struc-
tures.

1. INTRODUCTION

The problem of the optimal structure of a periodic composite has been
the subject of substantial work in various communities. Since the pioneering
work of Hashin and Shtrikman (1962), two techniques have been used to
solve the problem. On one hand, outer bounds on the effective tensors are
established, which depend only on the physical properties of the constituent
materials and on their relative volume fractions. One the other hand, the
effective tensors of periodic microstructures are used to establish an inner
bound on the set of effective tensors. An outer bound is found to be optimal
if it coincides with an inner bound.

Though the G-closure problem for two conducting materials in two di-
mensions was solved more than twenty years ago in Hashin and Shtrikman
(1962); Tartar (1979); Lurie and Cherkaev (1984); Tartar (1985), the solu-
tion for three-material mixtures is still not known. The translation bound,
which is related to the polyconvex envelope of an auxiliary energy, is always
attainable for two-material composites. However, for multimaterial com-
posites the bound is attainable only in a special range of volume fractions
of the components Hashin and Shtrikman (1962); Milton (1981); Lurie and
Cherkaev (1985); Milton and Kohn (1988); Gibiansky and Sigmund (2000).
Additionally, there are results for improved bounds in the case of small
volume fractions of the best or worst conductor Talbot et al. (1995); Nesi
(1995).

In this paper, we construct a family of structures which realize the trans-
lation bound by analyzing the (pointwise) fields in optimal structures. In
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particular, our family of structures generalizes the structures of multima-
terial composites found in Milton and Kohn (1988), and those found in
Gibiansky and Sigmund (2000). Additionally, we discuss a new pointwise
constraint on the fields in the materials inside any translation-optimal struc-
ture which supplements the translation bound. This constraint determines a
new necessary condition for the attainability of the translation bound. Our
method is based on the analysis of the fields in optimal structures. The re-
sults are presented for two-dimensional linear conductivity, although much
of the method applies to various other types of physical phenomena both in
two and three dimensions.

2. NOTATIONS AND BOUNDS

2.1. Multiphase conducting mixtures. Consider a two-dimensional pe-
riodic multiphase structure. The unit periodicity cell Q = [0,1]? is divided

into N parts §2q,..., €y occupied with materials with isotropic conductivity
tensors
(1) K=kl fori=1,..,.N

where I is the two-by-two identity matrix. We assume the conductivities
are ordered so that 0 < k; < --- < kn. The conductivity equations applied
to the periodicity cell are written as

(2) div K (z)Vu(z) =0 in €, /QVU(:U) de =e

where K : Q — {Kj,..., Ky} is the variable conductivity tensor defined by
(3) K@z)=K; ifzeQ;, i=1,...,N,

Ki,...,Ky are given by (1), and where e is the prescribed external field
acting on 2.

Assume that the periodicity cell with material layout defined by K(z)
is subject to the homogeneous external field e that is gradient of a linear
potential e’'z. The energy stored in the material is given by

W(K,e) = inf / Vu(z) - K(z)Vu(z) dz
uEH#(Q)#»eq} Q

where H #(Q) is the space of locally H' functions on R? which are Q-periodic
with zero mean. The infimum is taken over functions with fixed affine part
plus a variable periodic oscillating part:

u(z) = e -z + osc(z), /QVU(.’L‘) dx = e.

The affine part, e-x, is prescribed by the loading. The minimization is taken
over the zero-mean oscillating part, osc(zx).



A CLASS OF OPTIMAL CONDUCTING LAMINATES 3

The effective tensor K* of the structure with the partition €2; is defined as
a homogeneous material that stores the same energy as the mixture under
the same homogeneous loading. That is,

e-K'e = inf / Vu(z) - K(2)Vu(z) de Ve € R?
uw€H (Q)+ea JQ

In order to completely determine K*, it suffices to consider the response
of the same structure to the two orthogonal loadings, see Lurie and Cherkaev
(1984); Francfort and Milton (1994).

(4) e=e =m(1,000 and e=ey =1y(0,1)7.
The response in this case means the sum of the energies of these loadings:
(5) W(K,e1) + W(K, ey).

This functional can be conveniently rewritten in terms of two-by-two matri-
ces. We write (4) as

(6) E = diag(ry,m2).

Given any pair of potentials U = (uy,uz), we define the two-by-two gradient
matrix as the matrix whose rows counsist of the gradients of u; and wy:

ou;

DU = {DUij}i,je{l,Q}v DUy; = Oz;°
J

The sum of energies (5) becomes

W(K,E) = " Hlinf. / (DU (z) K(z),DU(x)) dz
€HL(N)2+Ex J

where (-, ) is the inner product defined on two-by-two matrices by
(A, B) = tr(AB").

The effective tensor K* is the unique (symmetric) tensor satisfying the re-
lation

(EK*E) = inf / (DU (z) K (z), DU (z)) dz VE € R?*2
UEHL(Q)?+Ez /o

3. BOUNDS

3.1. Wiener and translation bounds. The effective conductivity satis-
fies the following inequality bounds, (see, for example, Cherkaev (2000);
Milton (2002)).

(1) The Wiener bounds:

N o\t N
(7) <Z %) < Amin(K*) < Amax(K*) < Zmzkz

=1 1=1
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where Apin(K*) and A\pax(K*) are the minimum and maximum
eigenvalues of K* respectively and where m; = |Q;| are the rela-
tive volume fractions of the materials, m; + mo + msg = 1. The
inequalities place the pair of eigenvalues of any effective tensor in a
rectangular box in the eigenvalue plane. The bound is sharp: The
effective tensor of the anisotropic laminate satisfies both inequalities
as equalities. Moreover, for multicomponent (N > 3) structures,
the bound is achieved at certain intervals of the sides of the box,
Cherkaev and Gibiansky (1996).
(2) The translation bounds:

tr K* — 2k my;
8 — =<2
(8) det K* — k% — iz_;ki-l-kl’
(9) tr K 2k N > 9 my;

det K* — k% =S hy + ki

These bounds are sharp for certain values of the m;, k;, and the
degree of anisotropy of K* as is discussed later in this paper.

3.2. Conditions of realizability of the translation bounds. The trans-
lation bounds (8) and (9) are not sharp for all values of the parameters m;
and k;. Intuitively, we see this from the fact that the formulas for the bounds
still depend on ki (respectively ky) when my = 0 (respectively my = 0) as
was discussed in Milton and Kohn (1988). Besides, for m; or my near 0,
there are better bounds Talbot et al. (1995); Nesi (1995), so the translation
bounds cannot be sharp. In the rest of the paper we focus primarily on the
lower bound (8). Similar constructions exist for the upper bound (9) by
duality arguments.

Theorem 1 (Realizability theorem). A structure realizes the bound (8), if
the following conditions hold on the pointwise field DU when the structure
is placed in to a properly scaled diagonal external field E in (6) (compare to

Grabousky (1996); Milton (2002).)
(P1) tr DU =1 a.e. in Q.
(P2) DU = {201 a.e. in € fori=2,..,N.
(P3) DU is diagonal in €.

In fact, the theorem is true if (P1)-(P3) hold in an approximate sense. In
particular, if the piecewise constant “fields” in a sequential laminate satisfy
(P1)-(P3) then the laminate is optimal. It is in this sense that we refer to
the fields in laminate structures from now on.

In addition, we show that in order for a laminate structure to satisfy the
bound, the field in the first material cannot be “too anisotropic”

Theorem 2. If a laminate structure satisfies the bound (8) then (under
the assumptions of the previous theorem) the field in the first material must
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satisfy the relation
k1kn
(kN + k1)2

Indeed, this inequality easily follows from the fact that the fields in a layer
of lamination must be in a rank-one connected.

The inequality (10) limits the applicability of (8); the bound cannot be
satisfied by laminates that are either extremely anisotropic or that contain
too small an amount of the first material. The T-structures described below
satisfy the condition (10) as equality and therefore represent the boundary
of applicability of the translation bound for laminates.

(10) det DU > in Q.

4. THE OPTIMAL STRUCTURES

(2) (b) ()
[TIT] [
[TIT] [

(d) (e)

FIGURE 1. Previously known three-phase structures optimal
for the translation bound (8).

4.1. Known structures. The first type of isotropic structures to attain
the translation bound was described in Milton (1981) (see Figure 1a). The
construction for the lower bound (8) (K* is isotropic) is possible if my is
large enough. All such constructions satisfy K; < K* < K. Milton’s
construction was extended to anisotropic composites later in Milton and
Kohn (1988) (see Figure lc). The topology of the optimal structures is
not unique as follows from Lurie and Cherkaev (1985) where an alternative
construction was given for structures with exactly the same volume fractions
and effective properties as those presented by Milton (see Figure 1b). In
Cherkaev and Gibiansky (1996) three-material anisotropic structures that
have effective tensors with eigenvalues on an interval of the sides of the
Wiener box not only in its corner were introduced (see Figure le). There
are no similar structures in the two-material case.

In Gibiansky and Sigmund (2000) a new construction was described that
significantly increased the set of optimal points of the translation bounds
(8) and (9) for the case N = 3. The paper focuses on the problem of bulk
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moduli, but the authors extend the results to the conductivity problem as
well. Their structures were the surprising result of a numerical simulation.
Using a “topology optimization” algorithm developed earlier by Sigmund,
the authors searched for optimal structures by computer. They found a
structure which lies outside the Kohn and Milton range of parameters (m;
is too small for any of the previous constructions to apply) but which nu-
merically appears to satisfy the translation bound. The surprise occurred
when the authors attempted to replace the computer output with a similar,
but simpler structure for which the effective properties could be analytically
computed. The simplified structure was optimal for the translation bounds.
Instead of iterated laminates or coated spheres, they used the Marino and
Spagnolo type structures Marino and Spagnolo (1969) (reinvented by Sig-
mund in the paper Sigmund (2000)) that consist of rectangular domains with
special conductivities that make separation of variables possible in the ho-
mogenization equations. Reinterpreting their results slightly, we divide the
cell of periodicity into four rectangular subdomains. The opposite squares
are occupied by Ko and K3, and the remaining rectangles are filled with
laminates from K; and K3 (see Figure 1d). The effective conductivity of
the laminate depends on the volume fraction of materials in it. This con-
ductivity (or, equivalently, the fraction of the materials in the laminate) is
chosen in such a way that the conductivity equation (2) permits a sepa-
ration of the variables if the external fields are homogeneous. Because of
this feature, the solution is analytic and so are the effective properties. Us-
ing Maple, the authors then found that the structures are optimal for the
translation bound (8). The authors also described more complicated struc-
tures that were optimal for larger values of m; and which coincided with
the previously known structures at the point K* = Ks.

4.2. Optimal laminates. Here we describe a new family of optimal mi-
crostructures for the case N = 3. They are the laminates with the special
property that the fields inside the layers of pure material satisfy the suf-
ficient conditions (P1)-(P3). We observe that they also necessarily satisfy
the applicability condition (10). To find an optimal structure, we assign the
fields in layers to be optimal and choose the volume fractions to allow com-
patibility for lamination. We begin with some degenerate cases and work
toward the general structure.

A parameterization. The phase K; and its volume fraction m; play a special
role in the bound (8) and in the associated optimal structures. For this
reason, it is convenient to introduce the fraction p of Ky relative to Ks,

mo ms

l1—-p= .
p 1—m1

N 1-— my ’
Using p-notation, the translation bound (8) for three material mixtures
is rewritten as

1 tr K* =2k _ my P 1—p
11 - < — 4+ (1- .
W 5 G- S m1)<k2+k1+k3+k1
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If we think of p € [0,1] as a parameter of the problem, we can write the
requirement that a structure attains bound (8) as

1 trK*—2k _( p_ 4 1-p )
2 det K*—k? ko+k1 ks+k1

ok~ (s + 27k)
Furthermore, the “coating principle” discussed in this section is an operation
on structures which increases m;, preserves p, and preserves the equality in
(12). For this reason, it is convenient to fix p and plot the values of K*
where the bound (8) is sharp in the eigenvalue plane. From these values, we
can recover via (12) the value of my (and thus all other volume fractions)
for each plotted point.
The lamination formula. The effective properties tensor K* of a laminate
from two anisotropic materials with conductivity tensors A and B, in volume

fractions m and 1 —m respectively, and with normal n to the layers, is given
by the representation (see, for example Cherkaev (2000); Milton (2002))

(13) K*:L(KA,KB,n,m):mKA+(1—m)KB—N

(12) mi =

where
N =m(l —m)(Kg — Ka)n[nT (mKg + (1 —m)Ka)n] *nT (K — Ka).

Coating with Kj preserves optimality. In order to describe the variety of
the optimal structures, we make the following observation.

Theorem 3 (The Coating Principle). If a structure K* is optimal for the
translation bound (8), then all structures obtained by laminating it with ma-
terial K1 are also optimal for (8). The laminating can be iterated so that
the original structure is “coated” by K.

This observation allows us to describe only the eztremal structures that
attain the bound (8) in the sense that they contain the minimal amount of
K.

In particular, the coating principle immediately proves the optimality of
all optimal two-phase structures — the laminates of second rank. These
structures are the result of the coating of the pure phase Ky (which is triv-
ially optimal for (8)). The two-phase structures correspond to p = 1 (see
(11) and (12)).

The coating principle also plays an important role in the analysis of mul-
tiphase mixtures. Notice that the coating changes the volume fractions, m;,
but it preserves the value of p. Since coating increases the value of mq, the
principle allows to look for the optimal structures with the lowest value of
m1. Every optimal structure generates a set of optimal coated structures.
T-structures. The simplest optimal structure is the T'-structure. It is assem-
bled as a sequence of laminates. First, K; and K3 are laminated with normal
in the z;-direction. Then, the resulting composite is laminated with K9 with
the normal in the xo-direction. Figure 2a illustrates the construction of the
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T-structure. The effective properties of the T-structure are found by iter-
ating the lamination formula for two materials K4 and Kp with normal n
and in relative amounts m and 1 — m respectively,

Kr=1L <K2, L (K1,K37n17 L) ) n2,m2>

mi + ms3

where n = (1,0)7 and ny = (0,1)%.

|:| - K1
1111} 11 [HTT= 1] 3= K,
111108 1111 =11 m=K;

(a) (b) (

FIGURE 2. A selection structures optimal for (8). (a) a T-
structure, (b) a T-structure with one layer of “coating”, (c)
a T2-structure.

aQ
~

Theorem 4. For all values of p € [0, 1], there exists a T-structure with the
given value of p that is optimal for the translation bound (8).

It may seem surprising that we have found that there is always an optimal
T-structure for any p. Keep in mind that we consider structures with fixed
relative volume fractions of Ky and K3 but with arbitrary fraction of Kj.
Coated T-structures. From the optimal T-structure, we obtain a set of op-
timal structures by coating with K; according to Theorem 3. The obtained
region is shaded in the eigenvalue plane in Figure 3. The calculation corre-
sponds to the parameters

(14) kl == 1, kz == 2, k3 == 5, p = %
It is convenient to represent an anisotropic material by two symmetric points
(A1, A2) and (A2, A1) in the plane of eigenvalues to avoid ordering the eigen-
values. Particularly, the optimal T'-structure is represented by two points,
both labeled K. The domain optimal structures given by coating the 7'-
structure is the union of two lens-shaped regions in the plane. The bound-
aries of this set are the laminate curves. Recall that rather than fixing
volume fractions, we fix the value p which in turn fixes the ratio of mo to
mg. The figure also includes some dotted curves of constant volume frac-
tion. Those closer to K; indicate larger values of m; than those farther
away. Any point where one of these curves intersects the region of optimal
coated T-structures is an optimal point for the translation bound (8) with
the volume fractions given through m; and p.

An extremely anisotropic T-structure with an additional layer of K; in-
stead of coating in the z-direction is shown in Figure 2b. We notice that
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my = 0.05488

F1GURE 3. The set of optimal structures formed by coating
the optimal T-structure.

these optimal structures that attain the translation bound are topologically
equivalent to the extremal structures that attain the Wiener bound, Figure
le (see Cherkaev and Gibiansky (1996)). The structures differ by a single
parameter: the relative fraction of K in the inner layer. Although these two
structures are both optimal, they are optimal for different bounds. There-
fore, it is not yet known if the structures with intermediate values of the
parameter are optimal for some generalized bound. They are not optimal
for any of the bounds (7)-(9). However, these structure would give a fair
approximation to the boundary of all optimal structures.

T2-structures. Next, we enlarge the class of optimal structures by consider-
ing a generalization of the T-structure. We laminate the T-structure with a
laminate of K7 and K3 in the orthogonal direction as seen in Figure 1c. The
effective tensor of such T2-structures is found from the iterative procedure

KT2 :L(KT’K]I.?)’nl’WZ)? KT :L(K27K137n27w1)7
Kis =L (Ki,Ks,no,v'), Kiz=L(Ki,Ksni,v).

The properties depend on four structural parameters: v, ', w,ws that all
vary in [0,1] and subject to the constraint that fixes p. The T2-structures
form a class of optimal anisotropic structures between the T-structures and
the isotropic structures of Gibiansky and Sigmund, as is stated the following
theorem.

Theorem 5. For all values of p € [0, 1] there exists a family of T?-structures
optimal for the bound (8) and with variable anisotropy. The optimal param-
eters of optimal structures satisfy the relations

v=0, V=wo
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where
k1 (ks — ko) 1
15 O = < =
( ) (k2+/€1)(/€3—k‘1) - 2
and
1-06
(16) (1 —2pO)wiws + pO(w1 + we) —p =0, pl(—i;ﬁ.) <wi,ws < 1.

This construction generates a curve of eigenvalue pairs of effective tensors
that passes through T-structure and the isotropic point of Gibiansky and
Sigmund.

The volume fractions in the optimal laminates are

(17) mi :@(WI(l—WQ)+WQ(1—W1)), Mo = wiwe, M3 =1—m;—mas.
The effective tensors have eigenvalues A1, Ao parameterized by
wlkg(kl + kg) + (1 - wl)kg(kl + kg)
wo (k1 + k3) + (1 —wa2) (k1 + k2)
w2k2(k]_ + k3) + (1 - w2)k3(k]_ + kg)
wi (k1 +k3) + (1 —wi) (k1 + k2)

The T2 structures are extreme in the sense that (10) is satisfied as equality
everywhere in ).

The extreme values of wy or wy correspond to the T-structure. On the
other hand, when w; = ws, we obtain an isotropic structure whose volume
fractions satisfy the equality m; = 20(,/mz — mg) (compare to Gibiansky
and Sigmund (2000) formula (49)!). The T2-structures are a generalization
of both the T-structures and the Gibiansky-Sigmund structure with minimal
amount of m;. The parameters wy, we, v and v/ are determined based on
the requirements (P1)-(P3) on the fields inside the phases of an optimal
structure.

Recall that we do not fix meo. Instead we fix p = 13?11 and allow the
volume fractions to vary subject to this constraint. Using this, the natural
limits 0 < wy,ws < 1 and the values of the volume fractions given in (17),
we find (16).

The relation between the effective properties of optimal mixtures is sym-
metric to the interchanging w; <> wy in spite of the nonsymmetric iterative
procedure.

The set of optimal structures. Combining the extremal T?-structures with
the coating principle, we obtain a variety of optimal structures because each
T?-structure can be coated, increasing the amount m; but keeping relative
fraction p. The set of all coated T?-structures with the given value of p
forms a subset of structures optimal for the translation bound (8). This set
is illustrated in the eigenvalue plane in Figure 4a for parameters as in (14).
The set of optimal structures is bounded by the solid boundary, which is
the union of coated T-structures (the curves between K; and Kp) and the
T2-structures (the curve passing through Kgs). The closed region bounded

(18) AL =

(19) Ao =
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by the dotted lines represent the previously known optimal structures of
Kohn and Milton, and Gibiansky and Sigmund.
5. DI1SCUSSION

Curves of constant volume fraction are indicated in Figure 4a by the
dotted lines. In particular the curve passing through K7 represents the case

my = 0.05488

my = 0.2469

%3 = 0.04616

(a) (b)

FIGURE 4. (a) Optimal points for the lower translation

bound for 11”7‘21 = %. (b) Optimal points for the upper
translation bound for 72— = ﬁ.
3

my = ©(1 — my) while the curve passing through Kgg represents the case
my = 2@(\/777,_2 — mg).

Our results can be rewritten for the fixed volume fractions instead of
fixed parameter p = mgy/(1 — my). For example, consider the question of
the G-closure when

mi = 0.4, mo = 0.01, m3 = 0.59.

We need only examine Figure 4a and the corresponding figure for the upper
bound, Figure 4b. The optimal points of the lower bound marked by the
thick dashed curve in Figure 5 are the intersection of the curve of constant
my = 0.4 with the optimal region shown in Figure 4a. The dot in Figure 5
marks the point where this curve intersects the dashed Gibiansky-Sigmund
line. Similarly, the optimal points marked by the thick curve on the upper
bound in Figure 5 are points where the line of constant volume fraction
ms = 0.59 intersects the set of optimal points in Figure 4b. The solid
portion of the curve marks the intersection with the Kohn-Milton region.
Look again at Figure 4a. As long as m; > 20(,/mz—ms), the intersection
of the constant m; curve and the region of optimal points is a connected
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FIGURE 5. (left) The bounds (7)-(9) with known optimal
points indicated by thick lines. (right) a magnification of the
upper-left corner.

section of the curve which includes the isotropic point. Thus, the intersection
can be described by the most anisotropic point only. For m; > ©(1 — msg)
this most anisotropic point is a coated T-structure. For m; < O(1 —my), it
is a T2-structure. We summarize this in the following theorem.

Theorem 6. Let the volume fractions my, mo and ms be given.

(i) If my > ©(1 — my), then (8) is sharp. Moreover, there exists a
set of optimal tensors whose most anisotropic member is that given
by the optimal coated T-structure with the given volume fractions.

(11) If 20(\/my —my) < my < O(1 —my), then (8) is sharp. More-
over, there exists a set of optimal tensors whose most anisotropic
member is that given by the optimal T?-structure satisfying the vol-
ume fraction constraints. In particular, the parameters wi and woy
for this most anisotropic structure can be found by solving simulta-
neously the equations

mi = @w1(1 — (/.)2) + @U)Q(]. — wl), mo = Wiwa.
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