
A CLASS OF OPTIMAL TWO-DIMENSIONALMULTIMATERIAL CONDUCTING LAMINATESNATHAN ALBIN1, ANDREJ CHERKAEV2, AND VINCENZO NESI3Abstract. We introduce a family of optimal anisotropic two-dimensionalmultimaterial laminate composites which correspond to extreme overallconductivity. These laminates attain the translation bounds and gener-alize all previously known constructions for these bounds. The methodof construction is based on the analysis of the �elds in optimal struc-tures. 1. IntroductionThe problem of the optimal structure of a periodic composite has beenthe subject of substantial work in various communities. Since the pioneeringwork of Hashin and Shtrikman (1962), two techniques have been used tosolve the problem. On one hand, outer bounds on the e�ective tensors areestablished, which depend only on the physical properties of the constituentmaterials and on their relative volume fractions. One the other hand, thee�ective tensors of periodic microstructures are used to establish an innerbound on the set of e�ective tensors. An outer bound is found to be optimalif it coincides with an inner bound.Though the G-closure problem for two conducting materials in two di-mensions was solved more than twenty years ago in Hashin and Shtrikman(1962); Tartar (1979); Lurie and Cherkaev (1984); Tartar (1985), the solu-tion for three-material mixtures is still not known. The translation bound,which is related to the polyconvex envelope of an auxiliary energy, is alwaysattainable for two-material composites. However, for multimaterial com-posites the bound is attainable only in a special range of volume fractionsof the components Hashin and Shtrikman (1962); Milton (1981); Lurie andCherkaev (1985); Milton and Kohn (1988); Gibiansky and Sigmund (2000).Additionally, there are results for improved bounds in the case of smallvolume fractions of the best or worst conductor Talbot et al. (1995); Nesi(1995).In this paper, we construct a family of structures which realize the trans-lation bound by analyzing the (pointwise) �elds in optimal structures. InDate: December 1, 2005.Key words and phrases. Structural optimization, multicomponent optimal composites,bounds, polyconvexity, rank-one convexity, multiwell variational problem .1



2 N. ALBIN, A. CHERKAEV, AND V. NESIparticular, our family of structures generalizes the structures of multima-terial composites found in Milton and Kohn (1988), and those found inGibiansky and Sigmund (2000). Additionally, we discuss a new pointwiseconstraint on the �elds in the materials inside any translation-optimal struc-ture which supplements the translation bound. This constraint determines anew necessary condition for the attainability of the translation bound. Ourmethod is based on the analysis of the �elds in optimal structures. The re-sults are presented for two-dimensional linear conductivity, although muchof the method applies to various other types of physical phenomena both intwo and three dimensions.2. Notations and bounds2.1. Multiphase conducting mixtures. Consider a two-dimensional pe-riodic multiphase structure. The unit periodicity cell 
 = [0; 1]2 is dividedinto N parts 
1; : : : ;
N occupied with materials with isotropic conductivitytensors(1) Ki = kiI for i = 1; :::; Nwhere I is the two-by-two identity matrix. We assume the conductivitiesare ordered so that 0 < k1 < � � � < kN . The conductivity equations appliedto the periodicity cell are written as(2) divK(x)ru(x) = 0 in 
; Z
ru(x) dx = ewhere K : 
! fK1; :::;KNg is the variable conductivity tensor de�ned by(3) K(x) = Ki if x 2 
i; i = 1; : : : ; N;K1; :::;KN are given by (1), and where e is the prescribed external �eldacting on 
.Assume that the periodicity cell with material layout de�ned by K(x)is subject to the homogeneous external �eld e that is gradient of a linearpotential eTx. The energy stored in the material is given byW (K; e) = infu2H1#(
)+e�xZ
ru(x) �K(x)ru(x) dxwhereH1#(
) is the space of locallyH1 functions on R
2 which are 
-periodicwith zero mean. The in�mum is taken over functions with �xed a�ne partplus a variable periodic oscillating part:u(x) = e � x+ osc(x); Z
ru(x) dx = e:The a�ne part, e �x, is prescribed by the loading. The minimization is takenover the zero-mean oscillating part, osc(x).



A CLASS OF OPTIMAL CONDUCTING LAMINATES 3The e�ective tensor K� of the structure with the partition 
i is de�ned asa homogeneous material that stores the same energy as the mixture underthe same homogeneous loading. That is,e �K�e = infu2H1#(
)+e�xZ
ru(x) �K(x)ru(x) dx 8e 2 R
2:In order to completely determine K�, it su�ces to consider the responseof the same structure to the two orthogonal loadings, see Lurie and Cherkaev(1984); Francfort and Milton (1994).(4) e = e1 = r1(1; 0)T and e = e2 = r2(0; 1)T :The response in this case means the sum of the energies of these loadings:(5) W (K; e1) +W (K; e2):This functional can be conveniently rewritten in terms of two-by-two matri-ces. We write (4) as(6) E = diag(r1; r2):Given any pair of potentials U = (u1; u2), we de�ne the two-by-two gradientmatrix as the matrix whose rows consist of the gradients of u1 and u2:DU = fDUijgi;j2f1;2g; DUij = @ui@xj :The sum of energies (5) becomesW(K;E) = infU2H1#(
)2+ExZ
 hDU(x)K(x);DU(x)i dxwhere h�; �i is the inner product de�ned on two-by-two matrices byhA;Bi = tr(ABT ):The e�ective tensor K� is the unique (symmetric) tensor satisfying the re-lationhEK�; Ei = infU2H1#(
)2+ExZ
 hDU(x)K(x);DU(x)i dx 8E 2 R

2�2:3. Bounds3.1. Wiener and translation bounds. The e�ective conductivity satis-�es the following inequality bounds, (see, for example, Cherkaev (2000);Milton (2002)).(1) The Wiener bounds:(7)  NXi=1 miki !�1 � �min(K�) � �max(K�) � NXi=1 miki:



4 N. ALBIN, A. CHERKAEV, AND V. NESIwhere �min(K�) and �max(K�) are the minimum and maximumeigenvalues of K� respectively and where mi = j
ij are the rela-tive volume fractions of the materials, m1 + m2 + m3 = 1. Theinequalities place the pair of eigenvalues of any e�ective tensor in arectangular box in the eigenvalue plane. The bound is sharp: Thee�ective tensor of the anisotropic laminate satis�es both inequalitiesas equalities. Moreover, for multicomponent (N � 3) structures,the bound is achieved at certain intervals of the sides of the box,Cherkaev and Gibiansky (1996).(2) The translation bounds:trK� � 2k1detK� � k21 � 2 NXi=1 miki + k1 ;(8) trK� � 2kNdetK� � k2N � 2 NXi=1 mikN + ki :(9) These bounds are sharp for certain values of the mi, ki, and thedegree of anisotropy of K� as is discussed later in this paper.3.2. Conditions of realizability of the translation bounds. The trans-lation bounds (8) and (9) are not sharp for all values of the parameters miand ki. Intuitively, we see this from the fact that the formulas for the boundsstill depend on k1 (respectively kN ) when m1 = 0 (respectively mN = 0) aswas discussed in Milton and Kohn (1988). Besides, for m1 or mN near 0,there are better bounds Talbot et al. (1995); Nesi (1995), so the translationbounds cannot be sharp. In the rest of the paper we focus primarily on thelower bound (8). Similar constructions exist for the upper bound (9) byduality arguments.Theorem 1 (Realizability theorem). A structure realizes the bound (8), ifthe following conditions hold on the pointwise �eld DU when the structureis placed in to a properly scaled diagonal external �eld E in (6) (compare toGrabovsky (1996); Milton (2002).)(P1) trDU = 1 a.e. in 
1.(P2) DU = k1ki+k1 I a.e. in 
i for i = 2; :::; N .(P3) DU is diagonal in 
1.In fact, the theorem is true if (P1)-(P3) hold in an approximate sense. Inparticular, if the piecewise constant \�elds" in a sequential laminate satisfy(P1)-(P3) then the laminate is optimal. It is in this sense that we refer tothe �elds in laminate structures from now on.In addition, we show that in order for a laminate structure to satisfy thebound, the �eld in the �rst material cannot be \too anisotropic"Theorem 2. If a laminate structure satis�es the bound (8) then (underthe assumptions of the previous theorem) the �eld in the �rst material must



A CLASS OF OPTIMAL CONDUCTING LAMINATES 5satisfy the relation(10) detDU � k1kN(kN + k1)2 in 
1:Indeed, this inequality easily follows from the fact that the �elds in a layerof lamination must be in a rank-one connected.The inequality (10) limits the applicability of (8); the bound cannot besatis�ed by laminates that are either extremely anisotropic or that containtoo small an amount of the �rst material. The T 2-structures described belowsatisfy the condition (10) as equality and therefore represent the boundaryof applicability of the translation bound for laminates.4. The optimal structures
(a) (b) (c)

= K3= K2= K1(d) (e )Figure 1. Previously known three-phase structures optimalfor the translation bound (8).4.1. Known structures. The �rst type of isotropic structures to attainthe translation bound was described in Milton (1981) (see Figure 1a). Theconstruction for the lower bound (8) (K� is isotropic) is possible if m1 islarge enough. All such constructions satisfy K1 � K� � K2. Milton'sconstruction was extended to anisotropic composites later in Milton andKohn (1988) (see Figure 1c). The topology of the optimal structures isnot unique as follows from Lurie and Cherkaev (1985) where an alternativeconstruction was given for structures with exactly the same volume fractionsand e�ective properties as those presented by Milton (see Figure 1b). InCherkaev and Gibiansky (1996) three-material anisotropic structures thathave e�ective tensors with eigenvalues on an interval of the sides of theWiener box not only in its corner were introduced (see Figure 1e). Thereare no similar structures in the two-material case.In Gibiansky and Sigmund (2000) a new construction was described thatsigni�cantly increased the set of optimal points of the translation bounds(8) and (9) for the case N = 3. The paper focuses on the problem of bulk



6 N. ALBIN, A. CHERKAEV, AND V. NESImoduli, but the authors extend the results to the conductivity problem aswell. Their structures were the surprising result of a numerical simulation.Using a \topology optimization" algorithm developed earlier by Sigmund,the authors searched for optimal structures by computer. They found astructure which lies outside the Kohn and Milton range of parameters (m1is too small for any of the previous constructions to apply) but which nu-merically appears to satisfy the translation bound. The surprise occurredwhen the authors attempted to replace the computer output with a similar,but simpler structure for which the e�ective properties could be analyticallycomputed. The simpli�ed structure was optimal for the translation bounds.Instead of iterated laminates or coated spheres, they used the Marino andSpagnolo type structures Marino and Spagnolo (1969) (reinvented by Sig-mund in the paper Sigmund (2000)) that consist of rectangular domains withspecial conductivities that make separation of variables possible in the ho-mogenization equations. Reinterpreting their results slightly, we divide thecell of periodicity into four rectangular subdomains. The opposite squaresare occupied by K2 and K3, and the remaining rectangles are �lled withlaminates from K1 and K3 (see Figure 1d). The e�ective conductivity ofthe laminate depends on the volume fraction of materials in it. This con-ductivity (or, equivalently, the fraction of the materials in the laminate) ischosen in such a way that the conductivity equation (2) permits a sepa-ration of the variables if the external �elds are homogeneous. Because ofthis feature, the solution is analytic and so are the e�ective properties. Us-ing Maple, the authors then found that the structures are optimal for thetranslation bound (8). The authors also described more complicated struc-tures that were optimal for larger values of m1 and which coincided withthe previously known structures at the point K� = K2.4.2. Optimal laminates. Here we describe a new family of optimal mi-crostructures for the case N = 3. They are the laminates with the specialproperty that the �elds inside the layers of pure material satisfy the suf-�cient conditions (P1)-(P3). We observe that they also necessarily satisfythe applicability condition (10). To �nd an optimal structure, we assign the�elds in layers to be optimal and choose the volume fractions to allow com-patibility for lamination. We begin with some degenerate cases and worktoward the general structure.A parameterization. The phase K1 and its volume fraction m1 play a specialrole in the bound (8) and in the associated optimal structures. For thisreason, it is convenient to introduce the fraction p of K2 relative to K3,p = m21�m1 ; 1� p = m31�m1 :Using p-notation, the translation bound (8) for three material mixturesis rewritten as(11) 12 � trK� � 2k1detK� � k21 � m12k1 + (1�m1)� pk2 + k1 + 1� pk3 + k1� :



A CLASS OF OPTIMAL CONDUCTING LAMINATES 7If we think of p 2 [0; 1] as a parameter of the problem, we can write therequirement that a structure attains bound (8) as(12) m1 = 12 � trK��2k1detK��k21 � � pk2+k1 + 1�pk3+k1�12k1 � � pk2+k1 + 1�pk3+k1� :Furthermore, the \coating principle" discussed in this section is an operationon structures which increases m1, preserves p, and preserves the equality in(12). For this reason, it is convenient to �x p and plot the values of K�where the bound (8) is sharp in the eigenvalue plane. From these values, wecan recover via (12) the value of m1 (and thus all other volume fractions)for each plotted point.The lamination formula. The e�ective properties tensor K� of a laminatefrom two anisotropic materials with conductivity tensors A and B, in volumefractions m and 1�m respectively, and with normal n to the layers, is givenby the representation (see, for example Cherkaev (2000); Milton (2002))(13) K� = L(KA;KB ; n;m) = mKA + (1�m)KB �NwhereN = m(1�m)(KB �KA)n[nT (mKB + (1�m)KA)n]�1nT (KB �KA):Coating with K1 preserves optimality. In order to describe the variety ofthe optimal structures, we make the following observation.Theorem 3 (The Coating Principle). If a structure K� is optimal for thetranslation bound (8), then all structures obtained by laminating it with ma-terial K1 are also optimal for (8). The laminating can be iterated so thatthe original structure is \coated" by K1.This observation allows us to describe only the extremal structures thatattain the bound (8) in the sense that they contain the minimal amount ofK1.In particular, the coating principle immediately proves the optimality ofall optimal two-phase structures { the laminates of second rank. Thesestructures are the result of the coating of the pure phase K2 (which is triv-ially optimal for (8)). The two-phase structures correspond to p = 1 (see(11) and (12)).The coating principle also plays an important role in the analysis of mul-tiphase mixtures. Notice that the coating changes the volume fractions, mi,but it preserves the value of p. Since coating increases the value of m1, theprinciple allows to look for the optimal structures with the lowest value ofm1. Every optimal structure generates a set of optimal coated structures.T-structures. The simplest optimal structure is the T -structure. It is assem-bled as a sequence of laminates. First, K1 andK3 are laminated with normalin the x1-direction. Then, the resulting composite is laminated withK2 withthe normal in the x2-direction. Figure 2a illustrates the construction of the



8 N. ALBIN, A. CHERKAEV, AND V. NESIT -structure. The e�ective properties of the T -structure are found by iter-ating the lamination formula for two materials KA and KB with normal nand in relative amounts m and 1�m respectively,KT = L�K2; L�K1;K3; n1; m1m1 +m3� ; n2;m2�where n1 = (1; 0)T and n2 = (0; 1)T .
= K3= K2= K1(a) (b) (c)Figure 2. A selection structures optimal for (8). (a) a T -structure, (b) a T -structure with one layer of \coating", (c)a T 2-structure.Theorem 4. For all values of p 2 [0; 1], there exists a T -structure with thegiven value of p that is optimal for the translation bound (8).It may seem surprising that we have found that there is always an optimalT -structure for any p. Keep in mind that we consider structures with �xedrelative volume fractions of K2 and K3 but with arbitrary fraction of K1.Coated T-structures. From the optimal T -structure, we obtain a set of op-timal structures by coating with K1 according to Theorem 3. The obtainedregion is shaded in the eigenvalue plane in Figure 3. The calculation corre-sponds to the parameters(14) k1 = 1; k2 = 2; k3 = 5; p = 160 :It is convenient to represent an anisotropic material by two symmetric points(�1; �2) and (�2; �1) in the plane of eigenvalues to avoid ordering the eigen-values. Particularly, the optimal T -structure is represented by two points,both labeled KT . The domain optimal structures given by coating the T -structure is the union of two lens-shaped regions in the plane. The bound-aries of this set are the laminate curves. Recall that rather than �xingvolume fractions, we �x the value p which in turn �xes the ratio of m2 tom3. The �gure also includes some dotted curves of constant volume frac-tion. Those closer to K1 indicate larger values of m1 than those fartheraway. Any point where one of these curves intersects the region of optimalcoated T-structures is an optimal point for the translation bound (8) withthe volume fractions given through m1 and p.An extremely anisotropic T -structure with an additional layer of K1 in-stead of coating in the x-direction is shown in Figure 2b. We notice that
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Figure 3. The set of optimal structures formed by coatingthe optimal T -structure.these optimal structures that attain the translation bound are topologicallyequivalent to the extremal structures that attain the Wiener bound, Figure1e (see Cherkaev and Gibiansky (1996)). The structures di�er by a singleparameter: the relative fraction of K1 in the inner layer. Although these twostructures are both optimal, they are optimal for di�erent bounds. There-fore, it is not yet known if the structures with intermediate values of theparameter are optimal for some generalized bound. They are not optimalfor any of the bounds (7)-(9). However, these structure would give a fairapproximation to the boundary of all optimal structures.T2-structures. Next, we enlarge the class of optimal structures by consider-ing a generalization of the T -structure. We laminate the T -structure with alaminate of K1 and K3 in the orthogonal direction as seen in Figure 1c. Thee�ective tensor of such T 2-structures is found from the iterative procedureKT2 = L(KT ;K 013; n1; !2); KT = L(K2;K13; n2; !1);K 013 = L �K1;K3; n2; � 0� ; K13 = L (K1;K3; n1; �) :The properties depend on four structural parameters: �; � 0; !1; !2 that allvary in [0; 1] and subject to the constraint that �xes p. The T 2-structuresform a class of optimal anisotropic structures between the T -structures andthe isotropic structures of Gibiansky and Sigmund, as is stated the followingtheorem.Theorem 5. For all values of p 2 [0; 1] there exists a family of T 2-structuresoptimal for the bound (8) and with variable anisotropy. The optimal param-eters of optimal structures satisfy the relations� = �; � 0 = !1�



10 N. ALBIN, A. CHERKAEV, AND V. NESIwhere(15) � = k1(k3 � k2)(k2 + k1)(k3 � k1) � 12and(16) (1� 2p�)!1!2 + p�(!1 + !2)� p = 0; p(1��)1� p� � !1; !2 � 1:This construction generates a curve of eigenvalue pairs of e�ective tensorsthat passes through T -structure and the isotropic point of Gibiansky andSigmund.The volume fractions in the optimal laminates are(17) m1 = �(!1(1�!2)+!2(1�!1)); m2 = !1!2; m3 = 1�m1�m2:The e�ective tensors have eigenvalues �1, �2 parameterized by�1 = !1k2(k1 + k3) + (1� !1)k3(k1 + k2)!2(k1 + k3) + (1� !2)(k1 + k2)(18) �2 = !2k2(k1 + k3) + (1� !2)k3(k1 + k2)!1(k1 + k3) + (1� !1)(k1 + k2) :(19)The T 2 structures are extreme in the sense that (10) is satis�ed as equalityeverywhere in 
1.The extreme values of !1 or !2 correspond to the T -structure. On theother hand, when !1 = !2, we obtain an isotropic structure whose volumefractions satisfy the equality m1 = 2�(pm2 �m2) (compare to Gibianskyand Sigmund (2000) formula (49)!). The T 2-structures are a generalizationof both the T -structures and the Gibiansky-Sigmund structure with minimalamount of m1. The parameters !1, !2, � and � 0 are determined based onthe requirements (P1)-(P3) on the �elds inside the phases of an optimalstructure.Recall that we do not �x m2. Instead we �x p = m21�m1 and allow thevolume fractions to vary subject to this constraint. Using this, the naturallimits 0 � !1; !2 � 1 and the values of the volume fractions given in (17),we �nd (16).The relation between the e�ective properties of optimal mixtures is sym-metric to the interchanging !1 $ !2 in spite of the nonsymmetric iterativeprocedure.The set of optimal structures. Combining the extremal T 2-structures withthe coating principle, we obtain a variety of optimal structures because eachT 2-structure can be coated, increasing the amount m1 but keeping relativefraction p. The set of all coated T 2-structures with the given value of pforms a subset of structures optimal for the translation bound (8). This setis illustrated in the eigenvalue plane in Figure 4a for parameters as in (14).The set of optimal structures is bounded by the solid boundary, which isthe union of coated T -structures (the curves between K1 and KT ) and theT 2-structures (the curve passing through KGS). The closed region bounded



A CLASS OF OPTIMAL CONDUCTING LAMINATES 11by the dotted lines represent the previously known optimal structures ofKohn and Milton, and Gibiansky and Sigmund.5. DiscussionCurves of constant volume fraction are indicated in Figure 4a by thedotted lines. In particular the curve passing through KT represents the case
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Figure 5. (left) The bounds (7)-(9) with known optimalpoints indicated by thick lines. (right) a magni�cation of theupper-left corner.section of the curve which includes the isotropic point. Thus, the intersectioncan be described by the most anisotropic point only. For m1 > �(1 �m2)this most anisotropic point is a coated T -structure. For m1 � �(1�m2), itis a T 2-structure. We summarize this in the following theorem.Theorem 6. Let the volume fractions m1, m2 and m3 be given.(i) If m1 > �(1 �m2), then (8) is sharp. Moreover, there exists aset of optimal tensors whose most anisotropic member is that givenby the optimal coated T -structure with the given volume fractions.(ii) If 2�(pm2 �m2) � m1 � �(1 �m2), then (8) is sharp. More-over, there exists a set of optimal tensors whose most anisotropicmember is that given by the optimal T 2-structure satisfying the vol-ume fraction constraints. In particular, the parameters !1 and !2for this most anisotropic structure can be found by solving simulta-neously the equationsm1 = �!1(1� !2) + �!2(1� !1); m2 = !1!2:ReferencesCherkaev, A. (2000). Variational methods for structural optimization, vol-ume 140 of Applied Mathematical Sciences. Springer-Verlag, New York.Cherkaev, A. and Gibiansky, L. (1996). Extremal structures of multiphaseheat conducting composites. Int. J. Solids Structures, 33(18):2609{2623.Francfort, G. A. and Milton, G. W. (1994). Sets of conductivity and elastic-ity tensors stable under lamination. Comm. Pure Appl. Math., 47(3):257{279.Gibiansky, L. V. and Sigmund, O. (2000). Multiphase composites withextremal bulk modulus. J. Mech. Phys. Solids, 48(3):461{498.Grabovsky, Y. (1996). Bounds and extremal microstructures for two-component composites: a uni�ed treatment based on the translationmethod. Proc. Roy. Soc. London Ser. A, 452(1947):919{944.Hashin, Z. and Shtrikman, S. (1962). A variational approach to the theoryof the e�ective magnetic permeability of multiphase materials. J. Appl.Phys., 35.
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