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Abstract

The paper discusses a problem of robust optimal design of elastic structures when the loading is unknown. It is assumed that only an
integral constraint for the loading is given. We suggest to minimize the principal compliance of the domain equal to the maximum of the
stored energy over all admissible loadings. The principal compliance is the maximal compliance under the extreme, worst possible load-
ing. Hence the robust design should optimize the behavior of the structure in the worst possible scenario, which itself depends on the
structure and is subject of optimization. We formulate the problem of robust optimal design as a min–max problem for the energy stored
in the structure. The maximum of the energy is chosen over the constrained class of loadings, while the minimum is taken over the set of
design parameters. We show that the problem for the extreme loading can be reduced to an elasticity problem with mixed nonlinear
boundary condition; this problem may have multiple solutions. The optimization with respect to the designed structure takes into
account the possible multiplicity of extreme loadings so that in the optimal design the strong material is distributed to equally resist
to all extreme loadings. Continuous change of the loading constraint causes bifurcation of the solution of the optimization problem.
We show that an invariance of the constraints under a symmetry transformation leads to a symmetry of the optimal design. Examples
of robust optimal design are demonstrated.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural optimization is a problem of distributing
given materials in the structure to create a stiffest design.
If the applied external force is given, the optimally designed
structure minimizes the elastic energy of a domain. How-
ever, the optimal designs are usually unstable to variations
of the forces. This instability is a direct result of optimiza-
tion: To best resist the given loading, the structure concen-
trates its ability to resist the loading in a certain direction
thus decreasing its ability to sustain loadings in other direc-
tions [8,9,19]. For example, consider a problem of optimal
design of a structure of a cube of maximal stiffness made
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from an elastic material and void; assume that the cube is
supported on its lower side and loaded by a homogeneous
vertical force on its upper side. It is easy to demonstrate,
that the optimal structure is a periodic array of uncon-
nected infinitely thin cylindrical rods. Obviously, this
design does not resist any other but the vertical loading.

To avoid this vulnerability of the optimally designed
structures to variations of loading, we suggest to minimize
the principal compliance of the domain equal to the maxi-
mum of the stored energy over all admissible loadings.
The principal compliance is the maximal compliance under
the extreme, worst possible loading. We formulate the
robust optimal design problem as a min–max problem
for the energy stored in the domain, where the inner max-
imum is taken over the set of admissible loadings and the
minimum is chosen over the design parameters characteriz-
ing the structure. This formulation corresponds to physical
situations when the loadings are not known in advance,
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such as in construction of engineering structures or biolog-
ical materials.

This approach to the structural optimization was dis-
cussed in our papers [13,11,12] and (for the finite-dimen-
sional model) in the papers [21,22]. Various aspects of the
optimal design against partly unknown loadings were stud-
ied in [33,23,32,28,27,38,5,8,26,1,7], see also references
therein. In some cases, the minimax design problem, where
the designed structure is chosen to minimize maximal com-
pliance of the domain, can be formulated as minimization
of the largest eigenvalue of an operator. The minimization
of dominant eigenvalues was considered in a setting of
inverse conductivity problem in [14,15]. The multiplicity of
optimal design that we find in the minimax loading-versus-
design problem is similar to multiplicity of stationary solu-
tions investigated in the engineering problems of the optimal
design against vibration [31,34,24,29] and buckling [35,16].

The introduced principal compliance [12], is an integral
characteristic of an elastic domain, equal to the response
of the domain to the worst (extremal) boundary force from
the given class of loadings; this quantity is a basic charac-
teristic of the domain similar to the capacity, principal
eigenfrequency, or volume. The principal compliance is a
solution of a variational problem, which can be reduced
to an eigenvalue problem, or to a bifurcation problem.
We discuss this in Section 2.

Examples of constraints for admissible loadings and
corresponding variational problems are considered in Sec-
tion 3. Particularly, the variational problem for the princi-
pal compliance with a quadratically constrained class of
loadings is reduced to the Steklov eigenvalue problem.
The principal compliance of the domain in this case is
the reciprocal of the first Steklov eigenvalue. The optimal
loading in the class of forces with the constrained L1 norm,
is a concentrated loading (if such a loading does not lead to
infinite energy). Other constraints such as for the Lp norm,
p > 1, of the loading and inhomogeneous constraints are
considered in [12], it is shown that the Lp norm constraints
result in a nonlinear boundary value problem.

Section 4 considers robust structural optimization which
is formulated as a problem of minimization of the principal
compliance. The optimal design takes into account the
multiplicity of stationary solutions for extreme (most dan-
gerous) loadings; typically, the optimal structure equally
resists several extreme loadings. The set of the extreme
loadings depends on the constraints of the problem. Con-
tinuous change of the constraints leads to modification of
the set of extreme loadings; the optimal structure is chang-
ing in response. This corresponds to bifurcation of the
solution of the optimization problem. Another characteris-
tic feature of the discussed optimization problem is symme-
try of its solution. The invariance of the set of the
constraints for the admissible loadings together with the
corresponding symmetry of the domain, leads to the sym-
metry of the optimally designed structure [12].

Sections 5 and 6 contain two examples of problems of
structural design for uncertain loadings. One example is
design of the optimally supported beam loaded by an
unknown force with fixed mean value. The second example
is a problem of determining the optimal structure of a com-
posite strip loaded by a force deviated from the normal in
an unknown direction. The force is assumed to have a pre-
scribed normal component and an additional component
which is arbitrarily directed and is unknown.

2. The principal compliance of a domain

Consider a domain X with the boundary oX ¼ @0 [ @
filled with a linear anisotropic elastic material, loaded from
its boundary component o by a force f, and fixed on the
boundary component o0. The elastic equilibrium of such
a body is described by a system (see for instance, [36]):

r � r ¼ 0 in X; r ¼ C : �; r ¼ rT;

�ðwÞ ¼ 1

2
ðrwþ ðrwÞTÞ:

ð1Þ

Here C ¼ CðxÞ is the fourth-order stiffness tensor of an
anisotropic inhomogeneous material, w ¼ wðxÞ is the dis-
placement vector, � is the strain tensor, r is the stress ten-
sor, and (:) is convolution of two indices. The above
convolutions read:

� : r ¼
X

i;j

�ijrji; ðC : �Þij ¼
X

k;l

Cijkl�lk:

Eq. (1) is supplemented with the boundary conditions

r � n ¼ f on @; w ¼ 0 on @0; ð2Þ

where n is the normal to the boundary oX. These equations
are the stationary solution of a variational problem,

JðC; f Þ ¼ �min
w:wj@0

¼0

Z
X

PðC; �ðwÞÞdx�
Z
@

w � f ds
� �

¼ max
w:wj@0

¼0

Z
@

w � f ds�
Z

X
PðC; �ðwÞÞdx

� �
; ð3Þ

where P is the density of the elastic energy:

PðC; �ðwÞÞ ¼ 1

2
� : r ¼ 1

2
� : C : �: ð4Þ

The nonnegative functional J is called the compliance of
the domain; (3) states that it is maximal at the elastic equi-
librium. At the equilibrium, the energy stored in the body
equals the work of the applied external forces f,

J0ðC; f Þ ¼
1

2

Z
@

w � f ds ¼
Z

X
PðC; �ðwÞÞdx: ð5Þ

Simultaneously with the elasticity problem, we consider
also a close problem of bending of a Kirchhoff plate (see
for example, [36]). The equilibrium of the plate is described
by the fourth-order equation

rr : Cpl : rrw ¼ f in X ð6Þ

with homogeneous boundary conditions
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w ¼ 0 on oX;
ow
on
¼ 0 on oX; ð7Þ

corresponding to a clamped plate, or

w ¼ 0 on oX; nTðCpl : rrwÞn ¼ 0 on oX; ð8Þ

for simply supported plate. Here, w is the deflection
orthogonal to the plane of the plate, Cpl is the fourth-order
tensor of bending stiffness of the elastic material, rrw is
the Hessian of w, and f is the external loading. Notice that
the force f enters the equation as a right-hand-side term.
The equation of the plate corresponds to maximization of
the functional:

JplðC; f Þ ¼ �
Z

X

1

2
rrw : Cpl : rrw� wf

� �
dx: ð9Þ

The results that we develop further in the paper apply to
both the elasticity (1) and the bending problem (6); there-
fore, we will drop the subscript in JplðC; f Þ, and keep nota-
tion JðC; f Þ for both compliance functionals. If this does
not cause confusion, we use the same notation w to denote
both the displacement in the elasticity problem (1) and the
deflection in the bending problem (6), in spite of the first
one being a vector function, whereas the second one is a
scalar function.

2.1. Admissible loadings

Let F be a set of admissible loadings f. The elastic
energy over a finite domain is assumed to be finite. We
consider integral constraints to describe the set of loadings
F:

F ¼ f :

Z
Df

/ðf Þds ¼ 1

( )
;

Df ¼
@; for problem ð1Þ;
X; for problem ð6Þ;

�
ð10Þ

Here Df is a domain of application of the forces: In the
elasticity problem (1), Df coincides with the part of the
boundary o, whereas for the bending plate problem (6),
Df is the domain X or a part of it. We assume that / is a
convex function of f, with the derivative w : R3 ! R3:

wðf Þ ¼ o/
of
¼ o/

of1

;
o/
of2

;
o/
of3

� �
;

which has an inverse q ¼ w�1.

2.2. Principal compliance

We define the principal compliance of an elastic domain
in a class of loadings as a compliance in the worst possible
loading scenario.

Definition. The principal compliance K of the domain is

K ¼ max
f2F

JðC; f Þ: ð11Þ
The forces that correspond to the principal compliance K
are the extreme or the most dangerous loadings; we denote
them as fD.

KðCÞ ¼ JðC; fDÞP JðC; f Þ 8f 2F: ð12Þ
Consider problem (11) and assume that the loadings are

constrained as in (10). The augmented functional J for the
problem is

J ¼ JðC; f Þ � l
Z

Df

/ðf Þds� 1

 !
;

where l is the Lagrange multiplier. Clearly, maxf2FJ ¼
maxf J . Variation of the augmented functional with respect
to f gives the optimality condition for the extreme
loading(s):

df J ¼
Z

Df

o

of
ð�f � wþ l/ðf ÞÞdf ¼ 0;

or, since df is arbitrary,

w� l
o/
of
¼ 0 on Df :

Solving for the extreme loading(s) fD = f we arrive at the
condition

fD ¼ q
w
l

� �
; ð13Þ

which links the loading fD to the displacement w at the
same boundary point for the elasticity problem (1) or at
the same point in the domain for the bending problem.
Condition (13) together with the first boundary condition
in (2) allows us to exclude f from the boundary conditions,
leading to the boundary value problem for the displace-
ment w. This results in the following problem for the prin-
cipal compliance. The principal compliance K of the
elasticity problems (1 and 2) with the constraint for the
class of loadings (10) equals

K ¼ 1

2

Z
@

wq
w
l

� �
ds; ð14Þ

where w satisfies the elasticity equation (1) in X with the
boundary conditions

r � n ¼ q
1

l
w

� �
on @; w ¼ 0 on @0; ð15Þ

The Lagrange multiplier l is determined from the integral
conditionZ
@

/ q
w
l

� �� �
ds ¼ 1; ð16Þ

and the function q(Æ) is an inverse of w ¼ o/
of .

For the bending problem (6), the derivation is similar.
The principal compliance is the maximum of the functional
(9) upon all loadings bounded by the constraint (10), its
value is the following. The principal compliance K for the
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bending problems (6)–(8) with the constraint for the class
of loadings (10) equals

K ¼ 1

2

Z
X

wq
w
l

� �
dx; ð17Þ

where w satisfies the equation

rr : Cpl : rrw ¼ q
w
l

� �
ð18Þ

with the corresponding homogeneous boundary conditions
(7) or (8), and the function q(Æ) being an inverse of w ¼ o/

of .
The Lagrange multiplier l is determined fromZ

X
/ q

w
l

� �� �
ds ¼ 1: ð19Þ

Indeed, the extreme loading f is related to the displacement
w by a scalar relation w ¼ l/0ðf Þ or f ¼ qðw=lÞ, and the
plate equilibrium is described by Eq. (18).
3. Examples of constraints

3.1. Homogeneous quadratic constraint

Assume that the constraint (10) restricts a weighted L2

norm of f:

1

2

Z
@

f TWf ds ¼ 1 or /ðf Þ ¼ 1

2
f TWf ; ð20Þ

where W(s) is a symmetric positive matrix. In this case, q is
a linear mapping: qðf Þ ¼ W�1f , and the first of the bound-
ary conditions (15) for the extremal loading becomes
linear:

1

l
W�1w� r � n ¼ 0 on @: ð21Þ

The optimality condition states that w and r Æ n are propor-
tional to each other everywhere on the boundary o with the
same tensor of proportionality lW.

The elasticity equation (1) with boundary conditions
(21) form a linear eigenvalue problem that has a nonzero
solution w only if 1

l is one of its discrete eigenvalues [37].
Eigenvalue 1

l relates the displacement on the boundary
and the normal stress. As an eigenvalue problem, the prob-
lem (1) with the boundary conditions (21) is an Euler–
Lagrange equation of a variational problem:

1

l
¼ min

w:wj@¼0

R
X �ðwÞ : C : �ðwÞdsR

@
w �W�1wds

orZ
X
�ðwÞ : C : �ðwÞdx� 1

l

Z
@

w �W�1wds
� �

! min
w:wj@¼0

: ð22Þ

The eigenvalue problem that contains the eigenvalue in the
boundary condition is Steklov eigenvalue problem, and l is
a reciprocal to the Steklov eigenvalue, see [4]. The eigen-
functions are normalized by the condition (20).
Using (20) and (21) in the form w ¼ lWf , we observe
that the second term in (22) is equal to l, thereafter
l = K. Steklov problem has infinitely many real positive
eigenvalues (see [4,25]), but the principal compliance of
the domain corresponds to the dominant eigenvalue,
K ¼ lmax. The dominant eigenfunction is not necessarily
unique; we will demonstrate below that the existence of
many stationary solutions is typical for the problems of
minimization of the principal compliance with respect to
the structure. The dominant eigenfunctions are the extreme
loadings. If the L2-norm of admissible loadings is bounded,
the principal compliance K is a solution of the eigenvalue
problem:

r � r ¼ 0 in X; w ¼ KWr � n on @: ð23Þ

K is a reciprocal to the principal eigenvalue 1
l of the prob-

lem (1), (21).
The problem becomes isomorphic to the problem of the

principal eigenfrequency of the domain, if the kinetic
energy (and the inertia) are concentrated on the boundary:
T ¼ dðx� xbÞwWw, where xb 2 @. In the bending problem
(6), the analogy between the principal compliance and the
principal eigenfrequency of vibrations is complete. The
equilibrium (18) of the optimally loaded plate coincides
with the equation for the magnitude of the deflection of
the oscillating plate,

rr : Cpl : rrw ¼ 1

K
w:
3.2. L1-norm constraint

Consider L1-norm constraint for the class of admissible
loadings assuming that the mean value of loading’s magni-
tude is fixed:Z
@

jf jds ¼
Z
@

ffiffiffiffiffiffiffiffiffiffi
f � f

p
ds ¼ 1: ð24Þ

From engineering viewpoint, this case is probably the most
interesting one: it models the situation when the total
weight applied to the structure is known but the distribu-
tion of the loading over the boundary is uncertain. To
avoid singularity using L1-constraint, we may constrain
the L1þ�-norm of the loading,Z
@

jf j1þ� ds ¼ 1; ð25Þ

where � > 0 is a fixed parameter. This loading can be sup-
ported by a linear elastic material, although the displace-
ment w can indefinitely grow when �! 0. The analysis of
this case gives the optimality condition

f ¼ w
l

����
����
1=� w
jwj

that shows that magnitude of an optimal force either stays
arbitrary close to zero or is very large (of the order of 1=�).



Fig. 1. The force could be applied in arbitrary points along the elastically
supported beam. The mean value of the magnitude of the force is
constrained.
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The integral constraint (25) guarantees that the measure of
the set of large values of f(s) goes to zero when �! 0.

The extremal loading is concentrated in several points,

f ¼
X

i

cinidðx� xiÞ;

where {xi} is the set of points where the force is applied,
xi 2 @, ni : ni ¼ ðnð1Þi ; nð2Þi ; nð3Þi Þ; jnij ¼ 1, are directional vec-
tors of the concentrated loadings, and ci are their intensi-
ties; due to (24), ci belong to the simplex

ci :
X

i

ci ¼ 1; ci P 0: ð26Þ

Further, we show in [12] that the extreme loading is always
applied to a single point. The L1-principal compliance is

K ¼ max
x2@
fkg

maxðxÞg:

where kg
maxðxÞ is the maximal eigenvalue of the 3 · 3 tensor

Green’s function gðx; xÞ of the problem (1) in the point
x 2 o.

4. Robust structural optimization

Robust structural optimization is formulated as a prob-
lem of minimization of the principal compliance. The opti-
mal design takes into account the multiplicity of stationary
solutions for extreme (most dangerous) loadings resulting
in the optimal structure which equally resists several
extreme loadings. Consider an optimal design problem:
Find a layout of elastic materials over the domain that
minimizes the principal compliance K. Such a structure
(stiffness C(x)) corresponds to a solution of the extremal
problem

P min max ¼ min
C2C

KðCÞ; ð27Þ

where C is a class of admissible layouts.
We can show that the optimization problem is reduced

to minimization of a weighted sum of principal compli-
ances. The optimal principal compliance Pmin max equals

P min max ¼ min
C2C

max
fmig:mi>0

Xq

i¼1

miJðC; f̂ iÞ;
X

i

mi ¼ 1; ð28Þ

where q is the number of active extreme loadings. This
problem admits a probabilistic interpretation. Assume that
the optimal loading is a random variable which takes q sta-
tionary values with some probability m1; . . . ; mq. Then the
sum

P
miJðC; fiÞ in (28) is the expectation of the energy.

The optimal design minimizes the expectation of the en-
ergy, meanwhile the loading chooses probabilities
m1; . . . ; mq to maximize it.

Symmetry of the design that minimizes the principal
compliance is a characteristic feature of the optimal design,
which follows from multiplicity of optimal (extreme) load-
ings. If the domain and the class of loadings are invariant
under a symmetry transformation (translation, reflection,
or rotation), then the set of extreme loadings U and the
optimal design are invariant under this transformation as
well. We state the following theorem in [12]. If the domain
X, the boundary component o, and the set F of admissible
loadings are invariant under a symmetry transformation R:
X ¼ RX, @ ¼ R@, and F ¼ RF, then the set of extreme
loadings U and the optimal materials’ layout C are invari-
ant under this transformation: U ¼ RU;C ¼ RC.

The characteristic feature of the optimization problem is
multiplicity of equally dangerous loadings. This closely
reminds the multiplicity of optimal solutions in a problem
of maximization of the minimal eigenfrequency [18]. First,
the multiplicity of optimal eigenvalues in that problem was
observed in a pioneering paper of Olhoff and Rasmussen
[31], then it was investigated in [16,34,35]. Below we show
two examples which highlight and illustrate multiplicity
of extreme loadings and bifurcation of the optimal
solution.
5. Optimal design of a supported beam

Consider a homogeneous elastic beam of the unit length
simply supported at both ends (see Fig. 1), elastically sup-
ported from below by a distributed system of elastic verti-
cal springs with the specific stiffness qðxÞP 0, and loaded
by a distributed nonnegative force f ðxÞP 0. The elastic
equilibrium of the displacement w is described by a one-
dimensional version of (6):

ðEw00Þ00 þ qw ¼ f ; wð0Þ ¼ wð1Þ ¼ 0;

w00ð0Þ ¼ w00ð1Þ ¼ 0; ð29Þ

where E is the Young’s modulus. The compliance is equal
to

J ¼
Z 1

0

fw� E
2
ðw00Þ2 � q

2
w2

� �
dx; ð30Þ

where w is a solution to (29). Assume that the mean value
of the magnitude of the loading (L1-norm constraint) is
equal to one, and the integral stiffness of the supporting
springs is constrained by a constant j.

F ¼ f 2 H�1ð0; 1Þ :

Z 1

0

f dx ¼ 1

� �
;

Q ¼ q 2 H�1ð0; 1Þ :

Z 1

0

qdx ¼ j

� �
:
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Fig. 2. Maximal displacement v(x) as a function of the position of the
applied loading. Top figure corresponds to a saddle-point case, j=E < j1:
The function v(x) is unimodal, the optimal spring and the extreme loading
are both located in the middle of the beam. Center figure shows v(x)
corresponding to j=E in the interval j1 < j=E < j2 when the strong spring
is located in the center of the beam. Maximal displacement v(x) is not
unimodal; design is not optimal. Bottom figure corresponds to j=E in the
same interval j1 < j=E < j2, the maximal displacement v(x) is shown for
optimally designed beam which is supported by two symmetric springs.

Fig. 3. Optimally supported beam for weak spring (top) and for strong
spring (bottom): in this case two strong springs are located symmetrically
with respect to the center of the beam.
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The optimal design problem of minimization of the prin-
cipal compliance by distributing the springs stiffness
becomes:

P min max ¼ min
q2Q

max
f :2F

J

� �
:

Analysing the problem we conclude that the domain, class
of loadings and the boundary conditions are invariant to
the translation x! 1� x, therefore, the design (the springs
stiffness) is symmetric with respect to the center of the
beam,

qðxÞ ¼ qð1� xÞ:

Necessary conditions of optimality show, that the
extreme loading is a delta-function f ðxÞ ¼ dðx� xjÞ applied
at one of the points fx1; x2; . . . ; xpg where the value of w is
maximal. The extreme loading may be applied to different
points symmetric with respect to the center of the beam; the
resulting stiffness must be equal. The stiffness of an optimal
spring is a distribution

qðxÞ ¼
X

i

aidðx� yiÞ;
X

i

ai ¼ j; ai P 0:

Particularly, the optimal positions of the springs satisfy the
necessary conditions of optimality, and therefore the set of
the reinforcement points coincides with the set
fx1; x2; . . . ; xpg. The number p of the critical points depends
on the relative stiffness of the springs j=E.

Accounting for the loading and springs being concen-
trated, we reformulate the problem (30) for the optimal
principal compliance:

P min max ¼ min
a1;...;ap

max
xk

Xp

i¼1

dikwk �
ai

2
w2

i

� 	
�
Z 1

0

E
2
ðw00Þ2 dx

( )
;

ð31Þ

where dik is Dirac function.
The response of the beam due to a force moving along

the beam, can be characterized by the curve, v(x), showing
the maximal displacement due to the force applied at the
point x. Generally, the point of application of the concen-
trated force is different from the point of maximum of the
displacement curve. However, for the optimal forces these
points coincide.

The numerical results demonstrate the following: If the
springs are weak, j=E 6 j1, they are concentrated in the
center of the beam. We are dealing with the saddle-point
case: The most dangerous loading is a concentrated force
applied also in the center (see top Fig. 3). The maximal dis-
placement is a unimodal function of the position of the
loading, with the maximum in the center. There is only
one solution for the optimal applied force and the optimal
position of the spring:

f ðxÞ ¼ dðx� 1=2Þ; qðxÞ ¼ jdðx� 1=2Þ:

The top plot in Fig. 2 shows v(x) for the beam supported by
a weak spring in the center of the beam. One can see that
v(x) is unimodal. The corresponding beam is shown in
Fig. 3.

If the spring becomes stronger, j1 < j=E 6 j2, but is
still located in the center, the maximum of v(x) corresponds
to a noncentral applied force. The equally dangerous load-
ings could be applied in two symmetric eccentric points.
The maximum displacement v(x), shown in Fig. 2 (center),
is not a unimodal function of the position of the moving
applied force; the design is not optimal. The optimal design
for this case (Fig. 2, bottom) corresponds to two equally
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Fig. 4. An infinite composite strip loaded by a force f that could deviate
from the normal direction. If the norm c of the deviation is smaller than a
critical value c1, the optimal composite is a laminate with layers directed
across the strip. If c is greater than c1, the optimal composite is second-
rank laminate with layers oriented along directions / and �/.
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stiff springs located symmetrically with respect to the cen-
ter; the design experiences a bifurcation at the critical value
of j=E ¼ j1.

Optimally supported beam is shown in Fig. 3 (bottom):
two strong springs are located symmetrically to the center
of the beam. The corresponding maximal displacement
function v(x) is shown in Fig. 2 (bottom). The maximal dis-
placement curve becomes unimodal again, with a large
interval of almost constant values in the middle.

Next bifurcation occurs when j further increases, at the
point j=E ¼ j2. Three springs appear after the next bifur-
cation. The number of optimal supporting points increases
and tends to infinity when the springs are much stronger
than the beam, j=E� 1. The optimality conditions

w0ðxiÞ ¼ 0; wðxiÞjf¼fi
¼ constantðiÞ

give the optimal position of the supporting springs xi and
requirement to their stiffnesses ai.

6. Design of composite strip for loading of uncertain

deviation from the normal

Consider an infinite strip X ¼ f�1 < x <1;�1 6
y 6 1g, made from a two-component elastic composite
with arbitrary structure but with fixed fractions mA and
mB ¼ 1� mA of the isotropic components. The stiffness of
the composite Cðx; yÞ is an anisotropic elasticity tensor; it
is assumed that the stiffness can vary only along the strip,
C = constant(y).

Assume that the upper boundary is loaded by some
unknown but uniform loading f,

rðx; 1Þ � N ¼ f 8x;
where N ¼ ð0; 1Þ is the normal vector. Loading f consists of
the fixed component f0 ¼ ð0; 1Þ directed along the normal
and a variable component (deviation) ðfN ; fT Þ, the magni-
tude of the deviation is constrained:

f ¼ ðf0 þ fN ÞN þ fT T ; f 2
N þ f 2

T ¼ c2: ð32Þ
Here T ¼ ð1; 0Þ is the tangent vector and c is the intensity
of the deviation. The constraint (32) can be rewritten as

f ¼ ðf0 þ c cos hÞN þ ðc sin hÞT for y ¼ 1;

where h is the angle of inclination of the deviation of the
loading, see Fig. 4. The lower boundary of the strip is as-
sumed to be loaded by a symmetrically deviated force

f� ¼ �f ¼ �ðf0 þ c cos hÞN þ ðc sinð�hÞÞT for y ¼ �1:

The symmetry of the loadings results in the horizontal
strain being zero,

�xxðx; yÞ ¼ 0; �1 6 y 6 1; ð33Þ
so that the strain tensor has only two, vertical and shear,
nonzero components. The stiffness of the composite C(x)
is an anisotropic tensor that is assumed to vary only along
x coordinate. We consider the problem of optimization of
the principal compliance of the described domain.
Applying the symmetry theorem, we conclude that the
elastic properties of the optimally designed structure do
not vary along the strip, since the design is invariant to
translation x! xþ v. Together with the assumption that
the material properties do not vary with the thickness, this
leads to the conclusion that the elastic properties are uni-
form: the tensor C is constant of x and y. This implies that
the stress field r is constant inside an optimal strip and

ryy ¼ 1þ c cos h; rxy ¼ c sin h: ð34Þ

The material in the optimal strip is orthotropic with main
axes directed along x and y axes since the design is invari-
ant to the reflection x!�x. This implies orthotropy with
the main axes codirected along x; y axes.
6.1. The optimization problem

The energy P of an orthotropic material is computed
either as a function of stresses and compliance tensor
S ¼ fSijg, (stress energy):

PrðS; rÞ ¼
1

2
ðS11r

2
1 þ S22r

2
2 þ 2S12r1r2 þ 2S33r

2
3Þ; ð35Þ

or as a function of strain � and stiffness tensor C ¼ fCijg,

P�ðC; �Þ ¼
1

2
ðC11�

2
1 þ C22�

2
2 þ 2C12�1�2 þ 2C33�

2
3Þ: ð36Þ

Two components r1 ¼ ryy and r3 ¼ rxy of the stress field r
are known (34), and the strain in the xx direction is zero,
(33):

�2 ¼ S12r1 þ S22r2 ¼ 0;

therefore, r2 can be excluded. The elastic energy (36)
becomes

P�ðC; �Þ ¼
1

2
ðC11�

2
1 þ 2C33�

2
3Þ

or, in terms of stress (see (35)),
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PrðS; rÞ ¼
1

2
S11 �

S2
12

S22

� �
r2

1 þ 2S33r
2
3

� �
:

The problem of robust optimal design becomes

P strip ¼ min
C2Gmclosure

max
f2F

PðS; rÞ; ð37Þ

where Gm closure is the set of all possible effective compli-
ance tensors of a microstructure formed from the two given
materials with the compliance tensors SA and SB, taken in
the proportion mA and mB ¼ 1� mA, respectively, see
[8,28]. We reformulate the problem using a sum of
weighted energies formulation, where the minimized func-
tional is taken as a sum of the energies due to the extreme
loadings.

6.2. Laminates of the third rank

The description of the strongest structures [17], that
minimize the sum of the energies due to several loadings,
is known, (see the original papers [2,3,20] and the books
[8,30]); the best structures in 2D are so-called ‘‘laminates
of the third rank’’ shown in Fig. 5. In 3D, they are the sixth
rank laminates [20]. Structural optimization based on using
the third rank composites was effectively developed for
multi-loadings case in [6,10,26]. The effective compliance
tensor S ¼ C�1 of a third rank composite – the symmetric
fourth-order tensor of elasticity – has the representation

S ¼ SA þ mBððSB � SAÞ�1 þ mANÞ�1
; ð38Þ

where SA is the compliance of an enveloping (reinforcing)
material, SB is the compliance of the material in the nu-
cleus, N is the matrix of structural parameters that depends
on the structure of the composite, see [8,30],

N ¼ EA

X3

i¼1

aiPð/iÞ;
X3

i¼1

ai ¼ 1; ai P 0:

Here EA is the Young’s modulus of the A-material, angles
/i are the angles that define the directions of laminates
(directions of reinforcement), P is a tensor product of four
directional vectors zi ¼ ðcos /i; sin /iÞ:
P ð/iÞ ¼ zi � zi � zi � zi: ð39Þ
ai are corresponding relative thicknesses of the reinforcing
layers in the ith direction.
Fig. 5. The schematic picture of the composite of the third rank.
The mentioned symmetry of an optimal composite
requires the orthotropy of the optimal structure. Since
the original materials are isotropic, the structure is ortho-
tropic if the matrix N is orthotropic. This can be achieved
by setting

/2 ¼ �/3 ¼ /; a2 ¼ a3 ¼ a:

Generally, the optimal strip is reinforced by three layers of
strong material; one layer (with relative volume fraction
1� 2a) is directed in y-direction and two other layers (with
equal relative volume fractions a) are symmetrically in-
clined to the angles ±/. In addition, the structure may
degenerate into a single layer (when a = 0) or two symmet-
ric layers (when a ¼ 1

2
) with angles / and �/. Because of

this symmetry, matrix N for an optimal composite becomes

N ¼ ð1� 2aÞP ð0Þ þ aPð/Þ þ aP ð�/Þ: ð40Þ
Having calculated the compliance of third rank compos-

ite, we formulate the structural optimization problem (37)
as an algebraic problem

J strip ¼ min
/;a

max
h

PrðSð/; aÞ; rðhÞÞ: ð41Þ

We notice that though in general case of minimization of
sum of energies corresponding to multiple loadings, the
third-rank laminates are optimal, here the optimal struc-
tures are the second- not the third-rank laminates (see
[12]). Also, the symmetry in this example efficiently reduces
the dimension of the computational problem, but the gen-
eral method works with or without symmetry.

6.3. Numerical example

For the first example, the following values of parameters
were chosen
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Fig. 6. Bifurcation diagram shows the angle of deviation ĥðcÞ of the
extreme, most dangerous loading and the angle /̂ðcÞ of optimal
reinforcement of the second-rank laminated composite. Notice that the
bifurcation parameter c has different critical values for deviation of the
loading h and for the angle of reinforcement /.
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mA ¼ 1� mB ¼ 0:2; EA ¼ 1; EB ¼ 5;

m1 ¼ m2 ¼ 0:3; f 0 ¼ 1:

The relative magnitude c of the variable part of the loading
is the parameter of the problem; the angle h of the optimal
deviation of the extreme loading and the structural param-
eters a and / are determined from the solution of the min–
max optimization problem. We find three regimes:

1. When c < c0 ¼ :31, the extreme loading is vertical,
hopt ¼ 0, and the optimal structure is a laminate with
vertical layers directed across the strip, /opt ¼ 0, see
Fig. 6.

2. At the critical value c0 of the parameter c, the direction
of the extreme deviation undergoes a bifurcation,
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Fig. 8. Pitchfork bifurcation diagram for different ratios of Young’s moduli of m
angle /̂ðcÞ of direction of the optimal reinforcement for the second-rank lamin
extreme loading from the normal.
hopt ¼ �ĥðcÞ. But while c < c1 ¼ :46, the optimal struc-
ture remains the same laminate with layers directed
across the strip, /opt ¼ 0 (Fig. 6).

3. When the magnitude c further increases, c P c1, the
optimal structure bifurcates as well; it becomes a sec-
ond-rank matrix laminate with the angle of reinforce-
ment /opt ¼ �/̂ðcÞ (curve marked / in Fig. 6).

Although the problem has two solutions for the extreme
loading, due to the symmetry, the dependence of the com-
pliance on the parameters / and h is a saddle-point surface,
it is shown in Fig. 7. Indeed, the problem is reformulated
(relaxed) accounting for non-uniqueness of the loading
and for the symmetry in the design.

Fig. 8 summarizes the dependence of the optimal solu-
tion on the ratio of Young’s module of the materials in
the composite. It shows bifurcation diagrams for different
ratios of the Young’s moduli. Qualitatively, the picture
remains the same, but the critical values of the bifurcation
parameter c are different: The larger is the ratio, the smaller
the critical value of c0 and c1 at which the bifurcation
occurs. An interval ðc0; c1Þ decreases with the increase of
the ratio of Young’s moduli.
7. Conclusions

The principal compliance is a basic characteristic of an
elastic body which depends only on the shape of the
domain and on the stiffness of the material. By the proper
normalization of K by kXk and kCk, this quantity is
reduced to dimensionless parameter k:

k ¼ K
jjXjjjjCjj ;
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and can be treated as a basic integral characteristic of the
filled domain alongside with such properties as the princi-
pal eigenfrequency, capacity, etc. Notice, that k depends
on the class of admissible loadings. Therefore, it is able
to provide various characteristics of the domain.

The optimal design aimed to decrease the principal com-
pliance is found by solving a minimax problem; typically,
the problem does not have a saddle point and the optimal
design provides equal minimal compliance for several
extreme loadings. Symmetries and relaxation bring the
problem to a saddle-point type. Depending on the type of
constraints, the extreme loading can be a principal eigen-
function of an eigenvalue problem, a concentrated loading,
or a solution of a bifurcation problem.
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