Happy numbers

Given a number n let $f(n)$ be the sum of the squares of its digits (in base 10). For example $f(26)=2^{2}+6^{2}=40$. A number n is called happy if there exists a k so that $\underbrace{f \circ f \circ \ldots \circ f}_{k \text { times }}(n)=1$. For example, 7 is a happy number because $\underbrace{f \circ f \circ \ldots \circ f}_{5 \text { times }}(7)=1$.

Getting started:

(1) Show that 7 is a happy number.
(2) Show that there are infinitely many happy numbers.
(3) Show that 2 is not a happy number.
(4) Show that there are infinitely many numbers that are not happy.

Getting a better feel:

(1) Find a number k so that $f(n)<n$ for all $n>k$. Show that if $f(n)=n$ then $n<100$.
(2) A sequence of numbers a_{1}, a_{2}, \ldots is called eventually periodic if there exists d and p so that $a_{i+p}=a_{i}$ whenever $i \geq d$. So if we look at the sequence of decimal digits of $\frac{1}{6}=.166666 \ldots$ we get the eventually periodic sequence $1,6,6,6, \ldots$. In this case d can be chosen to be 2 and p can be chosen to be 1 .
Show that if n is not happy then the sequence $f(n), f \circ f(n), f \circ$ $f \circ f(n), \ldots$ is eventually periodic. For an example of the sequence I am talking about, if $n=2$ then the sequence $f(2), f \circ f(2), f \circ f \circ f(2), f \circ f \circ f \circ f(2), \ldots$ is $2,4,16,37, \ldots$
(3) Let's call $f(i), f(i+1), \ldots, f(i+p-1)$ as above the terminating cycle and p the eventual period. Assume that n is not happy and consider the sequence $f(n), f \circ f(n), f \circ f \circ f(n), \ldots$ Can you come up with an upper bound for the eventual period p of this sequence?
(4) Show that if $f(n)=n$ then $n=1$.
(5) Show that if n is not happy then $f(n), f \circ f(n), \ldots$ has a terminating cycle $4,16,37,73,58,89,145,42,20$.

Going further At the start of this worksheet, I mentioned "base 10". When we write the string 134 we are saying it is

$$
1 \cdot 10^{2}+3 \cdot 10^{1}+4 \cdot 10^{0}
$$

We are writing it as a sum of numbers in $\{0,1, \ldots, 8,9\}$ times powers of 10 . We can write numbers in other bases as well. For example, if we want to write a number in base 5 we want to represent it as a sum of numbers in $\{0,1,2,3,4\}$ times powers of 5 . The number that the string 134 represents in base 5 is

$$
1 \cdot 5^{2}+3 \cdot 5^{1}+4 \cdot 5^{0}
$$

More generally the string $d_{k} d_{k-1} \ldots d_{1} d_{0}$ in base m represents the number

$$
d_{k} m^{k}+d_{k-1} m^{k-1}+\ldots+d_{1} m^{1}+d_{0} m^{0}
$$

We request that the numbers d_{0}, d_{1}, \ldots are all in $\{0,1, \ldots, m-2, m-1\}$. If $n=d_{k} d_{k-1} \ldots d_{1} d_{0}$ in base m, that is

$$
n=d_{k} \cdot m^{k}+d_{k-1} \cdot m^{k-1}+\ldots+d_{1} \cdot m+d_{0} \cdot m^{0}
$$

define $f_{m}(n)$ to be $d_{0}^{2}+d_{1}^{2}+\ldots+d_{k-1}^{2}+d_{k}^{2}$. So $f_{5}\left(1 \cdot 5^{2}+3 \cdot 5+4^{2}\right)=$ $2 \cdot 10+6=1 \cdot 5^{2}+0 \cdot 5+1$.
(1) Find a number m and an $n>1$ so that $f_{m}(n)=n$.
(2) Show that if $f_{m}(n)=n$ then n is a 3 digit number in base m. That is $n<m^{3} .\left(m^{3}=1 \cdot m^{3}+0 \cdot m^{2}+0 \cdot m+0\right.$ is the smallest four digit number in base m.)
(3) Can you find infinitely many m so that there exists $n>1$ with $f_{m}(n)=n ?$
(4) Is there any number n that has 3 digits in base m and so that $f_{m}(n)=n$?

A closing remark: Happy numbers have the following remarkable property: There are infinitely many numbers n so that the number of happy numbers less than n is greater than $.18 \cdot n$ and there are infinitely many numbers n so that the number of happy numbers less than n is less than $.12 \cdot n$. In jargon, the set of happy numbers doesn't have density. To find out more about this, see Justin Glimers "On the density of happy numbers," which was published in Integers in 2013. It is also available at: https://arxiv.org/pdf/1110.3836.pdf

