Homework 2

These problems should be handed in.
Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be a complex valued function. Recall that we have defined

$$
\frac{\partial f}{\partial z}=f_{z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-\imath \frac{\partial f}{\partial y}\right)
$$

and

$$
\frac{\partial f}{\partial \bar{z}}=f_{\bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+\imath \frac{\partial f}{\partial y}\right)
$$

Let $g: \mathbb{C} \longrightarrow \mathbb{C}$ be another complex valued function and define h to be the composition $h=f \circ g$.

1. Show that $h_{z}(w)$ and $h_{\bar{z}}(w)$ only depend on $g_{z}(w), g_{\bar{z}}(w), f_{z}(g(w))$ and $f_{\bar{z}}(g(w))$. (Hint: Why does a similar statement hold for the partial derivatives of h with respect to x and y ?)
2. Show that:
(a) $h_{z}=\left(f_{z} \circ g\right) g_{z}+\left(f_{\bar{z}} \circ g\right) \overline{g_{\bar{z}}}$
(b) $h_{\bar{z}}=\left(f_{z} \circ g\right) g_{\bar{z}}+\left(f_{\bar{z}} \circ g\right) \overline{g_{z}}$
(Hint: Use (1) to reduce the calculation to the special functions $f(z)=a z+b \bar{z}$ and $g(z)=c z+d \bar{z}$.)
