Notes and problems on the Riemann integral

We recall the definition of the Riemann integral.

A partition P of an interval [a, b] is a finite sequence $x_0 = a < x_1 < \cdots < x_n = b$. Let $f : [a, b] \longrightarrow \mathbb{R}$ be a function. We define the lower sum of f with respect to the partition P as follows. Let

$$m_i = \inf_{[x_{i-1}, x_i]} f.$$

Then the lower sum is defined by

$$L(f, P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1}).$$

We similarly define the upper sum of f with respect to P by

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

where

$$M_i = \sup_{[x_{i-1}, x_i]} f.$$

Note that $m_i \leq M_i$ for all *i* and therefore $L(f, P) \leq U(f, P)$.

Let \mathcal{P} be the set of all partitions of [a, b]. Then the *lower integral* of f is defined by

$$L_a^b(f) = \sup_{P \in \mathcal{P}} L(f, P)$$

and the *upper integral* of f is defined by

$$U_a^b(f) = \inf_{P \in \mathcal{P}} U(f, P).$$

The function f is Riemann integrable if $L_a^b(f) = U_a^b(f)$ and the Riemann integral of f is

$$\int_a^b f(x)dx = L_a^b(f) = U_a^b(f).$$

Problems.

1. A partition P' is a refinement of P if $P \subseteq P'$. For any refinement P' of P show that $L(f, P') \ge L(f, P)$ and $U(f, P') \le U(f, P)$.

- 2. For any two partitions P and Q show that $L(f, P) \leq U(f, Q)$ and therefore $L_a^b(f) \leq U_a^b(f)$. (Hint: Compare the two sums to the upper and lower sums of a common refinement of P and Q and then use the previous problem.)
- 3. Show that f is Riemann integrable if and only if for all $\epsilon > 0$ there exists a partition P such that $U(f, P) L(f, P) < \epsilon$.
- 4. Show that f is Riemann integrable if and only if there exists a sequence of partitions P_i such that $U(f, P_i) L(f, P_i) \to 0$ as $i \to \infty$. If f is integrable show that

$$\int_{a}^{b} f(x)dx = \lim_{i \to \infty} L(f, P_i).$$

- 5. Let $P = \{x_0 = a < x_1 < \dots < x_n = b\}$ be a partition of [a, b] with $x_i x_{i-1} < w$ for all $i = 1, \dots n$.
 - (a) If $f(x) = c_1 x + c_2$ show that $U(f, P) L(f, P) \le w |c_1| (b-a)$.
 - (b) If f is a differentiable function on [a, b] with $|f'(x)| \le c$ for all $x \in [a, b]$ show that $U(f, P) L(f, P) \le wc(b-a)$.