Lebesgue Measure

An n-cell is a product of n-intervals in \mathbb{R}^{n}. We allow the intervals to be of any type; open, closed or half open. We also allow an interval to be a single point. That is $[a, a]$ is an allowed interval. If $Q=I_{1} \times \cdots \times I_{n}$ is an n-cell and the endpoints of the interval I_{i} are $a_{i}<b_{i}$ then define the measure of Q by

$$
m(Q)=\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right) \cdots\left(b_{n}-a_{n}\right) .
$$

Problem 1 Let Q be an n-cell and let Q_{1}, \ldots, Q_{k} be disjoint n-cells with $Q=\bigcup_{i=1}^{k} Q_{i}$. Show that $m(Q)=\sum_{i=1}^{k} m\left(Q_{i}\right)$.

A subset of \mathbb{R}^{n} is elementary if its a finite union of n-cells. Let \mathcal{E} be the set of all elementary subsets.

Problem 2 If $A, B \in \mathcal{E}$ show that $A \cup B, A \cap B$ and $A-B$ are all in \mathcal{E}.
Problem 3 Show that an elementary set is a finite union of disjoint n-cells.
We can now define the measure of an elementary set. If $A \in \mathcal{E}$ let Q_{1}, \ldots, Q_{k} be disjoint n-cells with $A=\bigcup_{i=1}^{k} Q_{i}$. Then

$$
m(A)=\sum_{i=1}^{k} m\left(Q_{i}\right)
$$

Problem 4 Show that the measure of an elementary set is well defined. That is if $A \in \mathcal{E}$ and Q_{1}, \ldots, Q_{k} and R_{1}, \ldots, R_{ℓ} are two collections of disjoint n-cells with $A=\bigcup_{i=1}^{k} Q_{i}=$ $\bigcup_{i=1}^{\ell} R_{i}$ then

$$
\sum_{i=1}^{k} m\left(Q_{i}\right)=\sum_{i=1}^{\ell} m\left(R_{i}\right) .
$$

Problem 5 Let A and B be elementary sets. Show that

$$
m(A)+m(B)=m(A \cup B)+m(A \cap B) .
$$

Proposition 1 Given any $A \in \mathcal{E}$ and any $\epsilon>0$ there exists an open $U \in \mathcal{E}$ and a closed $F \in \mathcal{E}$ with $F \subset A \subset U$ and $m(U)-\epsilon \leq m(A) \leq m(F)+\epsilon$.

Proof. Let Q_{1}, \ldots, Q_{k} be a disjoint collection of n-cells such that $A=\bigcup Q_{i}$. For each Q_{i} we can find an open n-cell, U_{i} and a closed n-cell, F_{i}, such that $F_{i} \subset Q_{i} \subset U_{i}$ and $m\left(U_{i}\right)-\epsilon / k \leq m\left(Q_{i}\right) \leq m\left(F_{i}\right)-\epsilon / k$. Then $U=\bigcup U_{i}$ and $F=\bigcup F_{i}$ are the desired U and F.

We can now define the measure of an arbitrary subset of \mathbb{R}^{n}. If $A \subset \mathbb{R}^{n}$ define

$$
m^{*}(A)=\inf _{\substack{A \subset \cup_{i=1}^{\infty} A_{i} \\ A_{i} \in \mathcal{E} \text { is open }}} \sum_{i=1}^{\infty} m\left(A_{i}\right)
$$

If A is an elementary set then this gives a new way of defining the measure of A. We need to see that both ways give the same answer.

Proposition 2 If $A \in \mathcal{E}$ then $m^{*}(A)=m(A)$.
Proof. By Proposition 1 for all $\epsilon>0$ there is an open $U \in \mathcal{E}$ such that $A \subset U$ and $m(A) \geq m(U)-\epsilon$. Then $m(U) \geq m^{*}(A)$ so $m(A) \geq m^{*}(A)-\epsilon$. As this is true for arbitrary $\epsilon>0$ we must have $m(A) \geq m^{*}(A)$.

Applying Proposition 1 again we have a closed n-cell F with $F \subset A$ and $m(A) \leq$ $m(F)+\epsilon / 2$. By the definition of $m^{*}(A)$ we can also find a countable collection of open elementary sets A_{i} such that $A \subset \bigcup A_{i}$ and $m^{*}(A) \geq \sum m\left(A_{i}\right)-\epsilon / 2$. The set F is closed and bounded so it is compact. It is also covered by the open set A_{i} so there is a finite subset of the A_{i} with $F \subset \bigcup_{i=1}^{k} A_{k}$ and therefore

$$
m(F) \leq m\left(\bigcup_{i=1}^{k} A_{i}\right) \leq \sum_{i=1}^{k} m\left(A_{i}\right) \leq \sum_{i=1}^{\infty} m\left(A_{i}\right)
$$

Combing the inequalities we have

$$
m(A) \leq m(F)+\epsilon / 2 \leq \sum_{i=1}^{\infty} m\left(A_{i}\right)+\epsilon / 2 \leq m^{*}(A)+\epsilon .
$$

As this holds for all $\epsilon>0$ we have $m(A) \leq m^{*}(A)$ finishing the proof.

Proposition 3 If $A=\bigcup_{i=1}^{\infty} A_{i}$ then $m(A) \leq \sum_{i=1}^{\infty} m\left(A_{i}\right)$.
Proof. We can assume the sum is finite for otherwise the proposition is obviously true. Fix an $\epsilon>0$. Let $A_{i j}$ be open elementary sets such that $A_{i} \subset \bigcup_{j=1}^{\infty} A_{i j}$ and $m\left(A_{i}\right) \geq \sum_{j=1}^{\infty} m\left(A_{i j}\right)-\epsilon / 2^{i}$. Since

$$
A \subset \bigcup_{i=1}^{\infty} A_{i} \subset \bigcup_{i=1}^{\infty}\left(\bigcup_{j=1}^{\infty} A_{i j}\right)
$$

and there are a countable number of $A_{i j}$ we have

$$
m(A) \leq \sum_{i, j=1}^{\infty} m\left(A_{i j}\right)=\sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty} m\left(A_{i j}\right)\right) \leq \sum_{i=1}^{\infty} m\left(A_{i}\right)+\sum_{i=1}^{\infty} \epsilon / 2^{i}=\sum_{i=1}^{\infty} m\left(A_{i}\right)+\epsilon .
$$

Since ϵ was arbitrary we have $m(A) \leq \sum_{i=1}^{\infty} m\left(A_{i}\right)$ as desired.
Define the symmetric difference of two sets A and B by

$$
S(A, B)=(A-B) \cup(B-A) .
$$

We then define a distance between two sets by

$$
d(A, B)=m(S(A, B))
$$

We can use $d($,$) to define a notion of convergence for sets. Namely A_{i} \rightarrow A$ if the $d\left(A_{i}, A\right) \rightarrow 0$ as $i \rightarrow \infty$. Note that, unlike convergence for points, it can happen that $A_{i} \rightarrow A$ and $A_{i} \rightarrow A^{\prime}$ but $A \neq A^{\prime}$.

Problem 6 Show that

$$
\begin{aligned}
& S\left(A_{1} \cup A_{2}, B_{1} \cup B_{2}\right) \\
& S\left(A_{1} \cap A_{2}, B_{1} \cap B_{2}\right) \quad \subset S\left(A_{1}, B_{1}\right) \cup S\left(A_{2}, B_{2}\right) \\
& S\left(A_{1}-A_{2}, B_{1}-B_{2}\right)
\end{aligned}
$$

and that

$$
\begin{aligned}
& d\left(A_{1} \cup A_{2}, B_{1} \cup B_{2}\right) \\
& d\left(A_{1} \cap A_{2}, B_{1} \cap B_{2}\right) \quad \leq d\left(A_{1}, B_{1}\right)+d\left(A_{2}, B_{2}\right) . \\
& d\left(A_{1}-A_{2}, B_{1}-B_{2}\right)
\end{aligned}
$$

Also show that

$$
S(A, C) \subset S(A, B) \cup S(B, C)
$$

and that

$$
d(A, C) \leq d(A, B)+d(B, C)
$$

Lemma 4 1. For any two sets A, B we have $|m(A)-m(B)| \leq d(A, B)$.
2. If $A_{i} \rightarrow A$ then $m\left(A_{i}\right) \rightarrow m(A)$.

Proof of (a). Without loss of generality we assume $m(A) \geq m(B)$. By the previous problem

$$
d(A, \emptyset) \leq d(A, B)+d(B, \emptyset)
$$

Since $d(X, \emptyset)=m(X)$ for any set X and $m(A) \geq m(B)$ we have

$$
0 \leq m(A)-m(B) \leq d(A, B)
$$

or $|m(A)-m(B)| \leq d(A, B)$.
(b). By (a), $\left|m(A)-m\left(A_{i}\right)\right| \leq d\left(A, A_{i}\right)$. Since $d\left(A, A_{i}\right) \rightarrow 0$ we have $m\left(A_{i}\right) \rightarrow m(A)$.

Define

$$
\mathfrak{M}_{F}=\left\{A \subset \mathbb{R}^{n} \mid \text { there exists } A_{i} \in \mathcal{E} \text { with } A_{i} \rightarrow A\right\}
$$

and

$$
\mathfrak{M}=\left\{A \subset \mathbb{R}^{n} \mid \text { there exists } A_{i} \in \mathfrak{M}_{F} \text { with } A=\bigcup_{i=1}^{\infty} A_{i}\right\}
$$

Proposition 5 Let A, B be in \mathfrak{M}_{F}. Then

1. $A \cup B \in \mathfrak{M}_{F}$;
2. $A \cap B \in \mathfrak{M}_{F}$;
3. $A-B \in M_{F}$;
4. $m(A \cup B)=m(A)+m(B)-m(A \cap B)$.

Proof of (a)-(c). Since A and B are in \mathfrak{M}_{F} we have A_{i} and B_{i} in \mathcal{E} with $A_{i} \rightarrow A$ and $B_{i} \rightarrow B$. By Problem $2, A_{i} \cup B_{i}, A_{i} \cap B_{i}$ and $A_{i}-B_{i}$ are all in \mathcal{E}. An application of Problem 6 implies that $A_{i} \cup B_{i} \rightarrow A \cup B, A_{i} \cap B_{i} \rightarrow A \cap B$ and $A_{i}-B_{i} \rightarrow A-B$.
(d). Since the A_{i} and B_{i} are in \mathcal{E} we have

$$
m\left(A_{i}\right)+m\left(B_{i}\right)=m\left(A_{i} \cup B_{i}\right)+m\left(A_{i} \cap B_{i}\right)
$$

by Problem 5. As $i \rightarrow \infty$ this becomes

$$
m(A)+m(B)=m(A \cup B)+m(A \cap B)
$$

by (b) of Lemma 4.

Lemma 6 Let $A=\bigcup_{i=1}^{\infty} A_{i}$ where the A_{i} are pairwise disjoint and in \mathfrak{M}_{F}. Then

$$
m(A)=\sum_{i=1}^{\infty} m\left(A_{i}\right)
$$

Proof. We have already seen that $m(A) \leq \sum_{i=1}^{\infty} m\left(A_{i}\right)$ so we only need to reverse the inequality. By (1) of Lemma 5 the finite union $B_{k}=\bigcup_{i=1}^{k} A_{i}$ is in \mathfrak{M}_{F} since the A_{i} are in \mathfrak{M}_{F}. Next we apply (4) of Lemma 5 to see that $m\left(B_{k}\right)=\sum_{i=1}^{k} m\left(A_{i}\right)$. Since $B_{k} \subset A$ we have $\sum_{i=1}^{k} m\left(A_{i}\right)=m\left(B_{k}\right) \leq m(A)$. As all the terms in the series $\sum_{i=1}^{\infty} m\left(A_{i}\right)$ are non-negative and its partial sums are bounded above by $m(A)$ we have that the series converges and $\sum_{i=1}^{\infty} m\left(A_{i}\right) \leq m(A)$.

Lemma 7 Let A be a set in \mathfrak{M}. Then $m(A)<\infty$ if and only if $A \in \mathfrak{M}_{F}$.
Proof. If $A \in \mathfrak{M}_{F}$ then there exists a $B \in \mathcal{E}$ such that $d(A, B)<\infty$. Since $A \subset B \cup S(A, B)$ and $m(B)<\infty$ this implies that $m(A)<\infty$.

Now assume that $m(A)<\infty$. Since $A \in \mathfrak{M}$ there are $A_{i} \in \mathfrak{M}_{F}$ with $A=\bigcup_{i=1}^{\infty} A_{i}$. Let $B_{k}=\bigcup_{i=1}^{k} A_{i}$. For $i>1$ we define $A_{i}^{\prime}=B_{i}-B_{i-1}$ and for $i=1$ we define $A_{1}^{\prime}=A_{1}$. Applying (1) and (3) of Lemma 5 we see that the B_{i} and A_{i}^{\prime} are in \mathfrak{M}_{F}. The A_{i}^{\prime} are disjoint and their union is A so $m(A)=\sum_{i=1}^{\infty} m\left(A_{i}^{\prime}\right)$ by Lemma 6 . We also have $B_{k} \rightarrow A$ since

$$
d\left(A, B_{k}\right)=m\left(S\left(A, B_{k}\right)\right)=m\left(\bigcup_{i=k+1}^{\infty} A_{i}^{\prime}\right)=\sum_{i=k+1}^{\infty} m\left(A_{i}^{\prime}\right)
$$

and the sum on the right limits to 0 as $k \rightarrow \infty$ since it is the tail of a convergent series. Note that the last equality is an application of Lemma 6.

Each B_{i} is in \mathfrak{M}_{F} so we can find $E_{i} \in \mathcal{E}$ with $d\left(B_{i}, E_{i}\right) \leq 2^{-i}$. Then

$$
d\left(A, E_{i}\right) \leq d\left(A, B_{i}\right)+d\left(B_{i}, E_{i}\right) \leq d\left(A, B_{i}\right)+2^{-i}
$$

The right side of the inequality limits to 0 since $B_{i} \rightarrow A$ and $2^{-i} \rightarrow 0$ and therefore $E_{i} \rightarrow A$ and A is in \mathfrak{M}_{F}.

Theorem 8 If $A \in \mathfrak{M}$ and $A_{i} \in \mathfrak{M}$ with the A_{i} disjoint and $A=\bigcup_{i=1}^{\infty} A_{i}$ then

$$
m(A)=\sum_{i=1}^{\infty} m\left(A_{i}\right)
$$

Proof. If $m\left(A_{i}\right)<\infty$ for all i then by Lemma $7, A_{i}$ is in \mathfrak{M}_{F} for all i and the theorem follows from Lemma 6. If $m\left(A_{i}\right)=\infty$ for some i then $m(A) \geq m\left(A_{i}\right)$ is also infinite and again the equality holds.

Theorem 9 1. If $A_{i} \in \mathfrak{M}$ then $\bigcup_{i=1}^{\infty} A_{i}$ is in \mathfrak{M}.
2. If A and B are in \mathfrak{M} then $A \cap B$ is in \mathfrak{M}.
3. If A and B are in \mathfrak{M} then $A-B$ is in \mathfrak{M}.

Proof of (1). Since A_{i} is in \mathfrak{M} there are $A_{i j} \in \mathfrak{M}_{F}$ with $A_{i}=\bigcup_{j=1}^{\infty} A_{i j}$. Since a countable collection of countable sets is countable there are countably many $A_{i j}$. Therefore $A=\bigcup_{i, j=1}^{\infty} A_{i j}$ is in \mathfrak{M}.
(2) and (3). Let A_{i} and B_{i} be countable collections of sets in \mathfrak{M}_{F} whose unions are A and B, respectively. Then each $A_{i} \cap B_{j}$ is in \mathfrak{M}_{F} by Lemma 5 and by (1) we have that

$$
A_{i} \cap B=\bigcup_{j=1}^{\infty} A_{i} \cap B_{j}
$$

is in \mathfrak{M}. Another application of (1) then gives us that

$$
A \cap B=\bigcup_{i=1}^{\infty} A_{i} \cap B
$$

is in \mathfrak{M}.
For (3) we note that

$$
A-B=\bigcup_{i=1}^{\infty} A_{i}-B
$$

Since $A_{i}-B=A_{i}-\left(A_{i} \cap B\right)$ is in \mathfrak{M} the union is also in \mathfrak{M}.

