
Notes and problems on infinite sets and countability

A set X is infinite if there exists a map from X to X that is injective but not
surjective.

Theorem 1 If X is infinite there is an injective map from N to X.

Proof. Let φ : X → X be injective but not surjective. We inductively define
an injective map ψ : N → X as follows. Define ψ(1) to be an element of X\φ(X).
Now assume ψ has been defined on {1, . . . , n} and that ψ(k) ∈ φk−1(X)\φk(X) for
k ∈ {1, . . . , n}. Now define ψ(n+ 1) to be an element of φk(X)\φk+1(X).

This defines ψ on all of N. The map is injective since

(φn(X)\φn+1(X)) ∩ (φm(X)\φm+1(X)) = ∅

if n 6= m. 1

A set X is countable if there exists a bijection from N to X.

Problem 1 Show that:

• Z is countable.

• The union of two countable sets is countable.

Theorem 2 The product of two countable sets is countable.

Proof. We just need to show that N×N is countable. We can write N×N in a list:

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (4, 1), (2, 3), (3, 2), (4, 1), . . .
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Problem 2 Explicitly write down a bijection from N to N× N.

Theorem 3 An infinite subset of a countable set is countable.
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Proof. We can assume that the countable set is N. Let A be an infinite subset of N.
Every subset of N has a least element. We use this fact to inductively define a bijection
ψ : N → A.

Define ψ(1) to be the least element of A and let A1 = A\{ψ(1)}. Now assume we
have defined ψ(k) and Ak for k ∈ {1, . . . , n}. Then we inductively define ψ(n+ 1) to be
the least element of An and define An+1 = An\{ψ(n)}. This define an injective map ψ
from N to A.

We need to show that ψ is surjective. We claim that ψ(n) ≥ n. We again use
induction. Clearly ψ(1) ≥ 1 since 1 is the least element of N and ψ(1) ∈ A ⊆ N. Now
assuming that ψ(n) ≥ n we will show that ψ(n+ 1) ≥ n+ 1. Note that ψ(n) is strictly
less than any element of An so ψ(n) < ψ(n+ 1) or ψ(n) + 1 ≤ ψ(n+ 1). Since ψ(n) ≥ n
we have ψ(n+ 1) ≥ n+ 1 as desired.

Since ψ(n) ≥ n for all n ∈ N we have n 6∈ Am for n ≤ m. If n ∈ A and n 6∈ An then
we must have ψ(m) = n for some m < n proving that ψ is surjective. 3

Theorem 4 Let S(X) be the set of all subsets of a set X. Then there is an injective
map from X to S(X) but there is no surjective map from X to S(X). In particular there
are infinite sets that are not countable.

Proof. The map x 7→ {x} is an injective map from X to S(X).
Now we see there is no surjective map. Let ψ : X → S(X) be a map and define a

susbet A by
A = {x|x 6∈ ψ(x)}.

We claim that A is not in the image of ψ.
We work by contradiction and suppose there is an x ∈ X such that ψ(x) = A. There

are two cases.
Case 1: Suppose x is in A. Then x ∈ ψ(X) = A so x 6∈ A which is a contradiction.
Case 2: Suppose x is not in A. Then x 6∈ ψ(X) = A so x ∈ A which is again a

contradiction.
Therefore there does not exist an x ∈ X with ψ(x) = A and ψ is not surjective. 4

We’d also like to prove that the real numbers are not countable. We first give a
definition of a real numbers. Our definition is not the usual one but it is convenient for
showing that R is not countable.

A real number is a function f : Z → {0, 1, . . . 9} with the following properties:

1. There exits an N > 0 such f(n) = 0 if n > N ;

2. For every n such that f(n) = 9 there is an m < n such that f(m) 6= 9.
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Here is an example. There real number 32.71 is represented by the function f with
f(1) = 3, f(0) = 2, f(−1) = 7, f(−2) = 1 and f(n) = 0 for n 6∈ {, 0,−1,−2}. A more
complicated example is the number 1/7. This number is represented by a function f with
f(−1) = 1, f(−2) = 4, f(−3) = 2, f(−4) = 8, f(−5) = 5, f(−6) = 7, f(n) = f(n + 6)
if n < −6 and f(n) = 0 if n ≥ 0.

Theorem 5 R is uncountable.

Proof. Let φ be a map from N to R and let fn = φ(n). We will show that φ is not
surjective. Define g ∈ R by setting g(n) to be some element of {0, 1, . . . , 8}\{fn(n)} if
n < 0 and g(n) = 0 if n ≥ 0. Then g 6= fn for any n ∈ N since g(n) 6= fn(n). Therefore
φ is not surjectve. 5

The number f ∈ R eventually periodic if there exists and N ∈ Z and a k ∈ N such
that f(n) = f(n− k) if n < N . The period of f is k.

Problem 3 Show that f is rational if and only if f is eventually periodic. (Hint: To
show that and eventually periodic f is rational show 10kf − f is rational where k is
the period of f . It is harder to show that a rational number has a eventually periodic
decimal expansion is harder.)

If f and g are real numbers we define f > g if there exists an n0 ∈ Z such that
f(n) = g(n) for all n > n0 and f(n0) > g(n0).

Problem 4 Let f0 and f1 be real numbers. Show that there exists a rational number
g0 and an irrational number g1 such that f0 < gi < f1 for i = 1, 2.
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