Notes and problems on infinite sets and countability

A set X is infinite if there exists a map from X to X that is injective but not surjective.

Theorem 1 If X is infinite there is an injective map from \mathbb{N} to X.
Proof. Let $\phi: X \rightarrow X$ be injective but not surjective. We inductively define an injective map $\psi: \mathbb{N} \rightarrow X$ as follows. Define $\psi(1)$ to be an element of $X \backslash \phi(X)$. Now assume ψ has been defined on $\{1, \ldots, n\}$ and that $\psi(k) \in \phi^{k-1}(X) \backslash \phi^{k}(X)$ for $k \in\{1, \ldots, n\}$. Now define $\psi(n+1)$ to be an element of $\phi^{k}(X) \backslash \phi^{k+1}(X)$.

This defines ψ on all of \mathbb{N}. The map is injective since

$$
\left(\phi^{n}(X) \backslash \phi^{n+1}(X)\right) \cap\left(\phi^{m}(X) \backslash \phi^{m+1}(X)\right)=\emptyset
$$

if $n \neq m$.
A set X is countable if there exists a bijection from \mathbb{N} to X.
Problem 1 Show that:

- \mathbb{Z} is countable.
- The union of two countable sets is countable.

Theorem 2 The product of two countable sets is countable.
Proof. We just need to show that $\mathbb{N} \times \mathbb{N}$ is countable. We can write $\mathbb{N} \times \mathbb{N}$ in a list:

$$
(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(4,1),(2,3),(3,2),(4,1), \ldots
$$

Problem 2 Explicitly write down a bijection from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$.

Theorem 3 An infinite subset of a countable set is countable.

Proof. We can assume that the countable set is \mathbb{N}. Let A be an infinite subset of \mathbb{N}. Every subset of \mathbb{N} has a least element. We use this fact to inductively define a bijection $\psi: \mathbb{N} \rightarrow A$.

Define $\psi(1)$ to be the least element of A and let $A_{1}=A \backslash\{\psi(1)\}$. Now assume we have defined $\psi(k)$ and A_{k} for $k \in\{1, \ldots, n\}$. Then we inductively define $\psi(n+1)$ to be the least element of A_{n} and define $A_{n+1}=A_{n} \backslash\{\psi(n)\}$. This define an injective map ψ from \mathbb{N} to A.

We need to show that ψ is surjective. We claim that $\psi(n) \geq n$. We again use induction. Clearly $\psi(1) \geq 1$ since 1 is the least element of \mathbb{N} and $\psi(1) \in A \subseteq \mathbb{N}$. Now assuming that $\psi(n) \geq n$ we will show that $\psi(n+1) \geq n+1$. Note that $\psi(n)$ is strictly less than any element of A_{n} so $\psi(n)<\psi(n+1)$ or $\psi(n)+1 \leq \psi(n+1)$. Since $\psi(n) \geq n$ we have $\psi(n+1) \geq n+1$ as desired.

Since $\psi(n) \geq n$ for all $n \in \mathbb{N}$ we have $n \notin A_{m}$ for $n \leq m$. If $n \in A$ and $n \notin A_{n}$ then we must have $\psi(m)=n$ for some $m<n$ proving that ψ is surjective.

Theorem 4 Let $\mathcal{S}(X)$ be the set of all subsets of a set X. Then there is an injective map from X to $\mathcal{S}(X)$ but there is no surjective map from X to $\mathcal{S}(X)$. In particular there are infinite sets that are not countable.

Proof. The map $x \mapsto\{x\}$ is an injective map from X to $\mathcal{S}(X)$.
Now we see there is no surjective map. Let $\psi: X \rightarrow \mathcal{S}(X)$ be a map and define a susbet A by

$$
A=\{x \mid x \notin \psi(x)\} .
$$

We claim that A is not in the image of ψ.
We work by contradiction and suppose there is an $x \in X$ such that $\psi(x)=A$. There are two cases.

Case 1: Suppose x is in A. Then $x \in \psi(X)=A$ so $x \notin A$ which is a contradiction.
Case 2: Suppose x is not in A. Then $x \notin \psi(X)=A$ so $x \in A$ which is again a contradiction.

Therefore there does not exist an $x \in X$ with $\psi(x)=A$ and ψ is not surjective. 4
We'd also like to prove that the real numbers are not countable. We first give a definition of a real numbers. Our definition is not the usual one but it is convenient for showing that \mathbb{R} is not countable.

A real number is a function $f: \mathbb{Z} \rightarrow\{0,1, \ldots 9\}$ with the following properties:

1. There exits an $N>0$ such $f(n)=0$ if $n>N$;
2. For every n such that $f(n)=9$ there is an $m<n$ such that $f(m) \neq 9$.

Here is an example. There real number 32.71 is represented by the function f with $f(1)=3, f(0)=2, f(-1)=7, f(-2)=1$ and $f(n)=0$ for $n \notin\{, 0,-1,-2\}$. A more complicated example is the number $1 / 7$. This number is represented by a function f with $f(-1)=1, f(-2)=4, f(-3)=2, f(-4)=8, f(-5)=5, f(-6)=7, f(n)=f(n+6)$ if $n<-6$ and $f(n)=0$ if $n \geq 0$.

Theorem $5 \mathbb{R}$ is uncountable.
Proof. Let ϕ be a map from \mathbb{N} to \mathbb{R} and let $f_{n}=\phi(n)$. We will show that ϕ is not surjective. Define $g \in \mathbb{R}$ by setting $g(n)$ to be some element of $\{0,1, \ldots, 8\} \backslash\left\{f_{n}(n)\right\}$ if $n<0$ and $g(n)=0$ if $n \geq 0$. Then $g \neq f_{n}$ for any $n \in \mathbb{N}$ since $g(n) \neq f_{n}(n)$. Therefore ϕ is not surjectve.

The number $f \in \mathbb{R}$ eventually periodic if there exists and $N \in \mathbb{Z}$ and a $k \in \mathbb{N}$ such that $f(n)=f(n-k)$ if $n<N$. The period of f is k.

Problem 3 Show that f is rational if and only if f is eventually periodic. (Hint: To show that and eventually periodic f is rational show $10^{k} f-f$ is rational where k is the period of f. It is harder to show that a rational number has a eventually periodic decimal expansion is harder.)

If f and g are real numbers we define $f>g$ if there exists an $n_{0} \in \mathbb{Z}$ such that $f(n)=g(n)$ for all $n>n_{0}$ and $f\left(n_{0}\right)>g\left(n_{0}\right)$.

Problem 4 Let f_{0} and f_{1} be real numbers. Show that there exists a rational number g_{0} and an irrational number g_{1} such that $f_{0}<g_{i}<f_{1}$ for $i=1,2$.

