Notes and problems on compactness

Let \mathcal{O} be a collection of open sets in \mathbb{R}^{n}. Then \mathcal{O} is an open cover of a set $A \subset \mathbb{R}^{n}$ if $A \subset \bigcup_{U \in \mathcal{O}} U$.

A set K is compact if every open cover has a finite subcover. That is K is compact if for every open cover \mathcal{O} there are sets $U_{1}, \ldots, U_{k} \in \mathcal{O}$ such that

$$
K \subset \bigcup_{i=1}^{k} U_{i} .
$$

Theorem 1 A compact set is closed.
Proof. We will prove the contrapositive. Assume that A is not closed. We will construct an open cover that has no finite subcover. Since A is not closed there exists a sequence $\left\{x_{i}\right\}$ in A that converges to some $x \notin A$. Note that

$$
\left(\bigcup_{i=1}^{\infty}\left\{x_{i}\right\}\right) \bigcup\{x\}
$$

is closed set so its complement, which we denote U, is open. Let \mathcal{O} be the collection of balls $B_{d\left(x_{i}, x\right) / 2}\left(x_{i}\right)$ and the set U. Then \mathcal{O} is an open cover of A. We will show that \mathcal{O} has not finite subcover.

Let \mathcal{O}^{\prime} be a finite subcollection of the open sets in \mathcal{O}. Since \mathcal{O}^{\prime} contains only finite many sets there exists an N such that if $i>N$ then $B_{d\left(x_{i}, x\right) / 2}\left(x_{i}\right)$ is not in \mathcal{O}^{\prime}. Let $\epsilon=$ $\min \left\{d\left(x_{1}, x\right) / 2, \ldots, d\left(x_{N}, x\right) / 2\right\}$. Since $x_{i} \rightarrow x$ there exists an n_{0} such that $d\left(x_{n_{0}}, x\right)<\epsilon$. By the triangle inequality $d\left(x_{i}, x\right) \leq d\left(x_{i}, x_{n_{0}}\right)+d\left(x_{n_{0}}, x\right)$ and after rearranging this becomes $d\left(x_{i}, x_{n_{0}}\right) \geq d\left(x_{i}, x\right)-d\left(x_{n_{0}}, x\right)$. If $i \leq N$ then $d\left(x_{i}, x\right) \geq 2 \epsilon$ so we have $d\left(x_{i}, x_{n_{0}}\right)>2 \epsilon-\epsilon=\epsilon$. In particular $x_{n_{0}} \notin B_{\epsilon}\left(x_{i}\right) \subset B_{d\left(x_{i}, x\right) / 2}\left(x_{i}\right)$. Since $x_{n_{0}}$ is also not in U the open sets in \mathcal{O}^{\prime} cannot cover A and \mathcal{O} has no finite subcover.

Theorem 2 If A is a subset of K, A is closed and K is compact then A is compact.
Proof. Let \mathcal{O} be an open cover of A. Let \mathcal{O}^{\prime} be all of the open sets in \mathcal{O} and the open set A^{c}. Then \mathcal{O}^{\prime} is an open cover of K and therefore there are finitely many open sets U_{1}, \ldots, U_{n}, each in \mathcal{O}^{\prime}, that cover K. If A^{c} is not one of the U_{i} then all of the U_{i} are in \mathcal{O} and they are a finite subcover. If A^{c} is one of the U_{i}, say U_{n}, then U_{1}, \ldots, U_{n-1} are all in \mathcal{O}. But U_{1}, \ldots, U_{n-1} are also a finite subcover of A because if $x \in A \subset K$ then $x \in U_{i}$ for some i since the U_{i} cover K. Since $x \notin U_{n}=A^{c}$ we must have $x \in U_{i}$ for some $i \leq n-1$ and therefore the U_{1}, \ldots, U_{n-1} cover A.

Theorem 3 Let K_{i} be non-empty compact sets with $K_{i+1} \subset K_{i}$. Then

$$
\bigcap_{i=1}^{\infty} K_{i} \neq \emptyset .
$$

Proof. We assume the intersection is empty and we will obtain a contradiction. The sets K_{i} are closed and hence compact so the sets $U_{i}=K_{i}^{c}$ are open. Since

$$
\bigcup_{i=1}^{\infty} U_{i}=\bigcup_{i=1}^{\infty} K_{i}^{c}=\left(\bigcap_{i=1}^{\infty} K_{i}\right)^{c}=\emptyset^{c}=\mathbb{R}^{n} \supset K_{1}
$$

the collection $\left\{U_{i}\right\}$ is an open cover of K_{1}. Since

$$
\bigcup_{i=1}^{n} U_{i}=U_{n}=\left(K_{n}\right)^{c}
$$

no finite subcollection of the U_{i} covers K_{1}. This contradicts the compactness of K_{1} so the intersection must be non-empty.

Theorem 4 Let $I_{n}=\left[a_{n}, b_{n}\right]$ be a sequence of nested intervals, i.e. $I_{n+1} \subset I_{n}$ for all n. Show that

$$
\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset
$$

Proof. Let n and m be positive integers with $n \leq m$. Then $I_{n} \subset I_{m}$ so $a_{n} \leq a_{m} \leq$ $b_{m} \leq b_{n}$. In particular $a_{i}<b_{j}$ for all i and j. This implies that

$$
a=\sup \left\{a_{i}\right\} \leq b_{i}
$$

for all i. By the definition of the supremum we also have $a \geq a_{i}$ for all i so $a \in I_{i}$ for all i and the intersection is non-empty.

A closed n-cell is a product of closed intervals. That is

$$
Q=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]
$$

is a closed n-cell.
Problem 1 Show that a nested family of closed n-cells has a non-empty intersection.

Theorem 5 A closed n-cell Q is compact.
Proof. We will assume Q is not compact. Then there exists an open cover, \mathcal{O}, of Q that contains no finite subcover. We will construct a sequence of nested, closed n-cells $Q_{0} \supset Q_{1} \supset Q_{2} \ldots$ with the property that for each Q_{i} the collection \mathcal{O} is a cover with no finite subcover and such that $\operatorname{diam}\left(Q_{i}\right) \rightarrow 0 .{ }^{1}$

Assuming we have constructed the Q_{i} we can finish the proof. By Problem 1 the intersection

$$
Q_{\infty}=\bigcap_{i=0}^{\infty} Q_{i}
$$

is non-empty. We claim that Q_{∞} contains only one point. Let x and y be points in Q_{∞}. Since $\operatorname{diam}\left(Q_{i}\right) \rightarrow 0$ for $\epsilon>0$ there exists an k such that $\operatorname{diam}\left(Q_{k}\right)<\epsilon$. Both x and y are in Q_{k} so $d(x, y)<\epsilon$ and as ϵ is arbitrary we must have $d(x, y)=0$. Therefore $x=y$ and Q_{∞} contains only one point which we label q.

Let U be an open set in the collection \mathcal{O} with $q \in U$. Since U is open there exists a $\delta>0$ such that $B_{\delta}(q) \subset U$. Again using the fact that $\operatorname{diam}\left(Q_{i}\right) \rightarrow 0$ we can find an m such that $\operatorname{diam}\left(Q_{m}\right)<\delta$. By the definition of diameter, if A is a set with $d>$ $\operatorname{diam}(A)$ and $x \in A$ then $A \subset B_{d}(x)$. In particular, $Q_{m} \subset B_{\delta}(q) \subset U$. This gives us a contradiction since $\{U\}$ is a finite subcover of Q_{m}.

Now we need to construct the Q_{i}. We will do so inductively. We begin by setting $Q_{0}=Q$. By assumption \mathcal{O} has no finite subcover of Q_{0}. The n-cell Q_{0} is the product of n-intervals. We can assume the longest interval has length ℓ.

Now assume we have constructed nested, closed n-cells $Q_{0} \subset Q_{1} \subset \cdots \subset Q_{k-1}$ such that \mathcal{O} has no finite subcover on any of the Q_{i} and the length of the longest side of Q_{i} is $2^{-i} \ell$. To choose Q_{n} we subdivide Q_{k-1} into 2^{n} closed n-cells which we label $Q_{k, 1}, \ldots, Q_{k, 2^{n}}$. The $Q_{k, i}$ are of the following form. The n-cell Q_{n-1} is the product of n intervals, $\left[a_{1}, b_{1}\right], \ldots,\left[a_{n}, b_{n}\right]$. Let c_{i} be the midpoint of $\left[a_{i}, b_{i}\right]$. Then each $Q_{k, i}$ is a product $I_{1} \times \cdots \times I_{n}$ with each I_{j} either the interval $\left[a_{j}, c_{j}\right]$ or the interval $\left[c_{j}, b_{j}\right]$. For each I_{j} there are two choices of intervals and there are n intevrals I_{j} so there are exactly 2^{n} possible $Q_{k, i}$. Note that $Q_{k-1}=\bigcup Q_{k, i}$ so if \mathcal{O} has a finite subcover for each the $Q_{k, i}$ then \mathcal{O} has a finite subcover on Q_{k-1}. Since we are assuming this is not true there is some $Q_{k, i_{k}}$ such that \mathcal{O} doesn't have a finite subcover on $Q_{k, i_{k}}$. Let $Q_{k}=Q_{k, i_{k}}$.

To finish the construct of the Q_{i} we need to calculate the length of the longest interval in product Q_{k}. This is easy to do since the length of the intervals in the product that forms Q_{k} are exactly half the length of the intervals in Q_{k-1}. Therefore the length of the longest interval is $2^{-1} \times 2^{-(k-1)} \ell=2^{-k} \ell$ and we have inductively found nested, closed n-cells Q_{i} with the length of the longest interval in each Q_{i} exactly $2^{-i} \ell$. An application

[^0]of the triangle inequality shows that $\operatorname{diam}\left(Q_{i}\right) \leq n 2^{-i} \ell$ so $\operatorname{diam}\left(Q_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. 5

Problem 2 Let x_{n} be a sequence with no convergent subsequence. Show that the set $\left\{x_{1}, x_{2}, \ldots\right\}$ is closed

Problem 3 A point x is isolated in a set $A \subset \mathbb{R}^{n}$ if there exists an $\epsilon>0$ such that $B_{\epsilon}(x) \bigcap A=\{x\}$. Show that x is isolated if and only if there doesn't exists a sequence of distinct points $x_{i} \in A$ with $x_{i} \rightarrow x$.

Theorem 6 Let K be a subset of \mathbb{R}^{n}. The following are equivalent:

1. K is closed and bounded;
2. K is compact;
3. Every sequence in K has a subsequence that converges in K.

Proof. $(\mathbf{1} \Rightarrow \mathbf{2})$ A bounded set is contained in some closed n-cell Q. By Theorem 5. Since K is a closed subset of a compact set K is compact by Theorem 2 .
$(\mathbf{2} \Rightarrow \mathbf{3})$ Let x_{n} be a sequence in K. If the sequence has a convergent subsequence then the limit is in K since K is compact and therefore closed. In this case we are done.

Now we assume the sequence has no convergent subsequence and we will obtain a contradiction. Then by Problem 2 the set $C=\left\{x_{1}, x_{2}, \ldots\right\}$ is closed. By Theorem 2, C is also compact. Problem 3 implies that every point in C is isolated. In particular, for each x_{i} there is an ϵ_{i} such that $B_{\epsilon_{i}}\left(x_{i}\right) \bigcap C=\left\{x_{i}\right\}$. The collection

$$
\mathcal{O}=\left\{B_{\epsilon_{1}}\left(x_{1}\right), B_{\epsilon_{2}}\left(x_{2}\right), \ldots\right\}
$$

is an open cover of C. However if we remove any of the $B_{\epsilon_{i}}\left(x_{i}\right)$ from \mathcal{O} we no longer have an open cover since x_{i} is not in any of the open subsets. Therefore \mathcal{O} has no finite subcover, contradicting the compactness of C.
$(\mathbf{3} \Rightarrow \mathbf{1})$ We will prove the contrapositive. If K is not closed there exists a sequence $\left\{x_{i}\right\}$ in K such that $x_{i} \rightarrow x$ but $x \notin K$. Every subsequence $\left\{x_{i}\right\}$ will then also converge to x so $\left\{x_{i}\right\}$ has no subsequence that converges in K.

If K is not bounded, for each i we can find an $x_{i} \in K$ such that $d\left(x_{i}, 0\right)>i$. Given an i choose j such that $j_{0}>d\left(x_{i}, 0\right)+1$. Then for all $j>j_{0}, d\left(x_{i}, x_{j}\right) \geq d\left(x_{j}, 0\right)-d\left(x_{i}, 0\right)>$ $j_{0}-d\left(x_{i}, 0\right)>1$. This implies that $\left\{x_{i}\right\}$ has no Cauchy, and therefore no convergent, subsequence.

We now define the Cantor set, C, in a way somewhat different than was done in class. Define

$$
C=\left\{x \in[0,1] \left\lvert\, x=\sum_{i=1}^{\infty} \frac{a_{i}}{3^{i}}\right. \text { where } a_{i} \in\{0,2\}\right\} .
$$

Some examples of points in C are $2 / 3$ and $2 / 9$. It is less obvious, but $1 / 3$ is also in C since $1 / 3=\sum_{i=2}^{\infty} 2 / 3^{i}$.

Problem 4 Show that the Cantor set is:

1. closed;
2. has no interior;
3. has no isolated points;
4. is uncountable.

[^0]: ${ }^{1}$ The diameter of a set A is defined to be $\operatorname{diam}(A)=\inf \{d \mid$ if $x, y \in A$ then $d(x, y) \leq d\}$.

