Notes and problems on compactness

Let \mathcal{O} be a collection of open sets in \mathbb{R}^n . Then \mathcal{O} is an *open cover* of a set $A \subset \mathbb{R}^n$ if $A \subset \bigcup_{U \in \mathcal{O}} U$.

A set K is *compact* if every open cover has a finite subcover. That is K is compact if for every open cover \mathcal{O} there are sets $U_1, \ldots, U_k \in \mathcal{O}$ such that

$$K \subset \bigcup_{i=1}^k U_i.$$

Theorem 1 A compact set is closed.

Proof. We will prove the contrapositive. Assume that A is not closed. We will construct an open cover that has no finite subcover. Since A is not closed there exists a sequence $\{x_i\}$ in A that converges to some $x \notin A$. Note that

$$\left(\bigcup_{i=1}^{\infty} \{x_i\}\right) \bigcup \{x\}$$

is closed set so its complement, which we denote U, is open. Let \mathcal{O} be the collection of balls $B_{d(x_i,x)/2}(x_i)$ and the set U. Then \mathcal{O} is an open cover of A. We will show that \mathcal{O} has not finite subcover.

Let \mathcal{O}' be a finite subcollection of the open sets in \mathcal{O} . Since \mathcal{O}' contains only finite many sets there exists an N such that if i > N then $B_{d(x_i,x)/2}(x_i)$ is not in \mathcal{O}' . Let $\epsilon = \min\{d(x_1,x)/2,\ldots,d(x_N,x)/2\}$. Since $x_i \to x$ there exists an n_0 such that $d(x_{n_0},x) < \epsilon$. By the triangle inequality $d(x_i,x) \leq d(x_i,x_{n_0}) + d(x_{n_0},x)$ and after rearranging this becomes $d(x_i,x_{n_0}) \geq d(x_i,x) - d(x_{n_0},x)$. If $i \leq N$ then $d(x_i,x) \geq 2\epsilon$ so we have $d(x_i,x_{n_0}) > 2\epsilon - \epsilon = \epsilon$. In particular $x_{n_0} \notin B_{\epsilon}(x_i) \subset B_{d(x_i,x)/2}(x_i)$. Since x_{n_0} is also not in U the open sets in \mathcal{O}' cannot cover A and \mathcal{O} has no finite subcover.

Theorem 2 If A is a subset of K, A is closed and K is compact then A is compact.

Proof. Let \mathcal{O} be an open cover of A. Let \mathcal{O}' be all of the open sets in \mathcal{O} and the open set A^c . Then \mathcal{O}' is an open cover of K and therefore there are finitely many open sets U_1, \ldots, U_n , each in \mathcal{O}' , that cover K. If A^c is not one of the U_i then all of the U_i are in \mathcal{O} and they are a finite subcover. If A^c is one of the U_i , say U_n , then U_1, \ldots, U_{n-1} are all in \mathcal{O} . But U_1, \ldots, U_{n-1} are also a finite subcover of A because if $x \in A \subset K$ then $x \in U_i$ for some i since the U_i cover K. Since $x \notin U_n = A^c$ we must have $x \in U_i$ for some $i \leq n-1$ and therefore the U_1, \ldots, U_{n-1} cover A.

Theorem 3 Let K_i be non-empty compact sets with $K_{i+1} \subset K_i$. Then

$$\bigcap_{i=1}^{\infty} K_i \neq \emptyset.$$

Proof. We assume the intersection is empty and we will obtain a contradiction. The sets K_i are closed and hence compact so the sets $U_i = K_i^c$ are open. Since

$$\bigcup_{i=1}^{\infty} U_i = \bigcup_{i=1}^{\infty} K_i^c = \left(\bigcap_{i=1}^{\infty} K_i\right)^c = \emptyset^c = \mathbb{R}^n \supset K_1,$$

the collection $\{U_i\}$ is an open cover of K_1 . Since

$$\bigcup_{i=1}^{n} U_i = U_n = (K_n)^c$$

no finite subcollection of the U_i covers K_1 . This contradicts the compactness of K_1 so the intersection must be non-empty.

Theorem 4 Let $I_n = [a_n, b_n]$ be a sequence of nested intervals, i.e. $I_{n+1} \subset I_n$ for all n. Show that

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$

Proof. Let n and m be positive integers with $n \leq m$. Then $I_n \subset I_m$ so $a_n \leq a_m \leq b_m \leq b_n$. In particular $a_i < b_j$ for all i and j. This implies that

$$a = \sup\{a_i\} \le b_i$$

for all *i*. By the definition of the supremum we also have $a \ge a_i$ for all *i* so $a \in I_i$ for all *i* and the intersection is non-empty.

A *closed n-cell* is a product of closed intervals. That is

$$Q = [a_1, b_1] \times \dots \times [a_n, b_n]$$

is a closed n-cell.

Problem 1 Show that a nested family of closed *n*-cells has a non-empty intersection.

Theorem 5 A closed n-cell Q is compact.

Proof. We will assume Q is not compact. Then there exists an open cover, \mathcal{O} , of Q that contains no finite subcover. We will construct a sequence of nested, closed *n*-cells $Q_0 \supset Q_1 \supset Q_2 \ldots$ with the property that for each Q_i the collection \mathcal{O} is a cover with no finite subcover and such that diam $(Q_i) \rightarrow 0$.¹

Assuming we have constructed the Q_i we can finish the proof. By Problem 1 the intersection

$$Q_{\infty} = \bigcap_{i=0}^{\infty} Q_i$$

is non-empty. We claim that Q_{∞} contains only one point. Let x and y be points in Q_{∞} . Since diam $(Q_i) \to 0$ for $\epsilon > 0$ there exists an k such that diam $(Q_k) < \epsilon$. Both x and y are in Q_k so $d(x, y) < \epsilon$ and as ϵ is arbitrary we must have d(x, y) = 0. Therefore x = y and Q_{∞} contains only one point which we label q.

Let U be an open set in the collection \mathcal{O} with $q \in U$. Since U is open there exists a $\delta > 0$ such that $B_{\delta}(q) \subset U$. Again using the fact that $\operatorname{diam}(Q_i) \to 0$ we can find an m such that $\operatorname{diam}(Q_m) < \delta$. By the definition of diameter, if A is a set with d > $\operatorname{diam}(A)$ and $x \in A$ then $A \subset B_d(x)$. In particular, $Q_m \subset B_{\delta}(q) \subset U$. This gives us a contradiction since $\{U\}$ is a finite subcover of Q_m .

Now we need to construct the Q_i . We will do so inductively. We begin by setting $Q_0 = Q$. By assumption \mathcal{O} has no finite subcover of Q_0 . The *n*-cell Q_0 is the product of *n*-intervals. We can assume the longest interval has length ℓ .

Now assume we have constructed nested, closed *n*-cells $Q_0 \,\subset Q_1 \,\subset \cdots \,\subset Q_{k-1}$ such that \mathcal{O} has no finite subcover on any of the Q_i and the length of the longest side of Q_i is $2^{-i}\ell$. To choose Q_n we subdivide Q_{k-1} into 2^n closed *n*-cells which we label $Q_{k,1}, \ldots, Q_{k,2^n}$. The $Q_{k,i}$ are of the following form. The *n*-cell Q_{n-1} is the product of *n* intervals, $[a_1, b_1], \ldots, [a_n, b_n]$. Let c_i be the midpoint of $[a_i, b_i]$. Then each $Q_{k,i}$ is a product $I_1 \times \cdots \times I_n$ with each I_j either the interval $[a_j, c_j]$ or the interval $[c_j, b_j]$. For each I_j there are two choices of intervals and there are *n* intervals I_j so there are exactly 2^n possible $Q_{k,i}$. Note that $Q_{k-1} = \bigcup Q_{k,i}$ so if \mathcal{O} has a finite subcover for each the $Q_{k,i}$ then \mathcal{O} has a finite subcover on Q_{k-1} . Since we are assuming this is not true there is some Q_{k,i_k} such that \mathcal{O} doesn't have a finite subcover on Q_{k,i_k} . Let $Q_k = Q_{k,i_k}$.

To finish the construct of the Q_i we need to calculate the length of the longest interval in product Q_k . This is easy to do since the length of the intervals in the product that forms Q_k are exactly half the length of the intervals in Q_{k-1} . Therefore the length of the longest interval is $2^{-1} \times 2^{-(k-1)}\ell = 2^{-k}\ell$ and we have inductively found nested, closed *n*-cells Q_i with the length of the longest interval in each Q_i exactly $2^{-i}\ell$. An application

¹The diameter of a set A is defined to be diam $(A) = \inf\{d | \text{if } x, y \in A \text{ then } d(x, y) \le d\}.$

of the triangle inequality shows that diam $(Q_i) \leq n2^{-i}\ell$ so diam $(Q_i) \to 0$ as $i \to \infty$.

Problem 2 Let x_n be a sequence with no convergent subsequence. Show that the set $\{x_1, x_2, ...\}$ is closed

Problem 3 A point x is *isolated* in a set $A \subset \mathbb{R}^n$ if there exists an $\epsilon > 0$ such that $B_{\epsilon}(x) \bigcap A = \{x\}$. Show that x is isolated if and only if there doesn't exists a sequence of distinct points $x_i \in A$ with $x_i \to x$.

Theorem 6 Let K be a subset of \mathbb{R}^n . The following are equivalent:

- 1. K is closed and bounded;
- 2. K is compact;
- 3. Every sequence in K has a subsequence that converges in K.

Proof. $(1 \Rightarrow 2)$ A bounded set is contained in some closed *n*-cell Q. By Theorem 5. Since K is a closed subset of a compact set K is compact by Theorem 2.

 $(2 \Rightarrow 3)$ Let x_n be a sequence in K. If the sequence has a convergent subsequence then the limit is in K since K is compact and therefore closed. In this case we are done.

Now we assume the sequence has no convergent subsequence and we will obtain a contradiction. Then by Problem 2 the set $C = \{x_1, x_2, ...\}$ is closed. By Theorem 2, C is also compact. Problem 3 implies that every point in C is isolated. In particular, for each x_i there is an ϵ_i such that $B_{\epsilon_i}(x_i) \cap C = \{x_i\}$. The collection

$$\mathcal{O} = \{B_{\epsilon_1}(x_1), B_{\epsilon_2}(x_2), \dots\}$$

is an open cover of C. However if we remove any of the $B_{\epsilon_i}(x_i)$ from \mathcal{O} we no longer have an open cover since x_i is not in any of the open subsets. Therefore \mathcal{O} has no finite subcover, contradicting the compactness of C.

 $(3 \Rightarrow 1)$ We will prove the contrapositive. If K is not closed there exists a sequence $\{x_i\}$ in K such that $x_i \to x$ but $x \notin K$. Every subsequence $\{x_i\}$ will then also converge to x so $\{x_i\}$ has no subsequence that converges in K.

If K is not bounded, for each i we can find an $x_i \in K$ such that $d(x_i, 0) > i$. Given an i choose j such that $j_0 > d(x_i, 0) + 1$. Then for all $j > j_0$, $d(x_i, x_j) \ge d(x_j, 0) - d(x_i, 0) >$ $j_0 - d(x_i, 0) > 1$. This implies that $\{x_i\}$ has no Cauchy, and therefore no convergent, subsequence. We now define the Cantor set, C, in a way somewhat different than was done in class. Define

$$C = \left\{ x \in [0,1] | x = \sum_{i=1}^{\infty} \frac{a_i}{3^i} \text{ where } a_i \in \{0,2\} \right\}.$$

Some examples of points in C are 2/3 and 2/9. It is less obvious, but 1/3 is also in C since $1/3 = \sum_{i=2}^{\infty} 2/3^i$.

Problem 4 Show that the Cantor set is:

- 1. closed;
- 2. has no interior;
- 3. has no isolated points;
- 4. is uncountable.