
Notes and problems on compactness

Let O be a collection of open sets in Rn. Then O is an open cover of a set A ⊂ Rn

if A ⊂
⋃

U∈O
U .

A set K is compact if every open cover has a finite subcover. That is K is compact
if for every open cover O there are sets U1, . . . , Uk ∈ O such that

K ⊂
k⋃

i=1

Ui.

Theorem 1 A compact set is closed.

Proof. We will prove the contrapositive. Assume that A is not closed. We will
construct an open cover that has no finite subcover. Since A is not closed there exists a
sequence {xi} in A that converges to some x 6∈ A. Note that( ∞⋃

i=1

{xi}

)⋃
{x}

is closed set so its complement, which we denote U , is open. Let O be the collection of
balls Bd(xi,x)/2(xi) and the set U . Then O is an open cover of A. We will show that O
has not finite subcover.

Let O′ be a finite subcollection of the open sets in O. Since O′ contains only finite
many sets there exists an N such that if i > N then Bd(xi,x)/2(xi) is not in O′. Let ε =
min{d(x1, x)/2, . . . , d(xN , x)/2}. Since xi → x there exists an n0 such that d(xn0 , x) < ε.
By the triangle inequality d(xi, x) ≤ d(xi, xn0) + d(xn0 , x) and after rearranging this
becomes d(xi, xn0) ≥ d(xi, x) − d(xn0 , x). If i ≤ N then d(xi, x) ≥ 2ε so we have
d(xi, xn0) > 2ε− ε = ε. In particular xn0 6∈ Bε(xi) ⊂ Bd(xi,x)/2(xi). Since xn0 is also not
in U the open sets in O′ cannot cover A and O has no finite subcover. 1

Theorem 2 If A is a subset of K, A is closed and K is compact then A is compact.

Proof. Let O be an open cover of A. Let O′ be all of the open sets in O and the
open set Ac. Then O′ is an open cover of K and therefore there are finitely many open
sets U1, . . . , Un, each in O′, that cover K. If Ac is not one of the Ui then all of the Ui

are in O and they are a finite subcover. If Ac is one of the Ui, say Un, then U1, . . . , Un−1

are all in O. But U1, . . . , Un−1 are also a finite subcover of A because if x ∈ A ⊂ K then
x ∈ Ui for some i since the Ui cover K. Since x 6∈ Un = Ac we must have x ∈ Ui for
some i ≤ n− 1 and therefore the U1, . . . , Un−1 cover A. 2
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Theorem 3 Let Ki be non-empty compact sets with Ki+1 ⊂ Ki. Then

∞⋂
i=1

Ki 6= ∅.

Proof. We assume the intersection is empty and we will obtain a contradiction. The
sets Ki are closed and hence compact so the sets Ui = Kc

i are open. Since

∞⋃
i=1

Ui =
∞⋃
i=1

Kc
i =

( ∞⋂
i=1

Ki

)c

= ∅c = Rn ⊃ K1,

the collection {Ui} is an open cover of K1. Since

n⋃
i=1

Ui = Un = (Kn)c

no finite subcollection of the Ui covers K1. This contradicts the compactness of K1 so
the intersection must be non-empty. 3

Theorem 4 Let In = [an, bn] be a sequence of nested intervals, i.e. In+1 ⊂ In for all n.
Show that

∞⋂
n=1

In 6= ∅.

Proof. Let n and m be positive integers with n ≤ m. Then In ⊂ Im so an ≤ am ≤
bm ≤ bn. In particular ai < bj for all i and j. This implies that

a = sup{ai} ≤ bi

for all i. By the definition of the supremum we also have a ≥ ai for all i so a ∈ Ii for all
i and the intersection is non-empty. 4

A closed n-cell is a product of closed intervals. That is

Q = [a1, b1]× · · · × [an, bn]

is a closed n-cell.

Problem 1 Show that a nested family of closed n-cells has a non-empty intersection.
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Theorem 5 A closed n-cell Q is compact.

Proof. We will assume Q is not compact. Then there exists an open cover, O, of Q
that contains no finite subcover. We will construct a sequence of nested, closed n-cells
Q0 ⊃ Q1 ⊃ Q2 . . . with the property that for each Qi the collection O is a cover with no
finite subcover and such that diam(Qi) → 0.1

Assuming we have constructed the Qi we can finish the proof. By Problem 1 the
intersection

Q∞ =
∞⋂
i=0

Qi

is non-empty. We claim that Q∞ contains only one point. Let x and y be points in Q∞.
Since diam(Qi) → 0 for ε > 0 there exists an k such that diam(Qk) < ε. Both x and y
are in Qk so d(x, y) < ε and as ε is arbitrary we must have d(x, y) = 0. Therefore x = y
and Q∞ contains only one point which we label q.

Let U be an open set in the collection O with q ∈ U . Since U is open there exists
a δ > 0 such that Bδ(q) ⊂ U . Again using the fact that diam(Qi) → 0 we can find
an m such that diam(Qm) < δ. By the definition of diameter, if A is a set with d >
diam(A) and x ∈ A then A ⊂ Bd(x). In particular, Qm ⊂ Bδ(q) ⊂ U . This gives us a
contradiction since {U} is a finite subcover of Qm.

Now we need to construct the Qi. We will do so inductively. We begin by setting
Q0 = Q. By assumption O has no finite subcover of Q0. The n-cell Q0 is the product of
n-intervals. We can assume the longest interval has length `.

Now assume we have constructed nested, closed n-cells Q0 ⊂ Q1 ⊂ · · · ⊂ Qk−1

such that O has no finite subcover on any of the Qi and the length of the longest side
of Qi is 2−i`. To choose Qn we subdivide Qk−1 into 2n closed n-cells which we label
Qk,1, . . . , Qk,2n . The Qk,i are of the following form. The n-cell Qn−1 is the product of
n intervals, [a1, b1], . . . , [an, bn]. Let ci be the midpoint of [ai, bi]. Then each Qk,i is a
product I1 × · · · × In with each Ij either the interval [aj , cj ] or the interval [cj , bj ]. For
each Ij there are two choices of intervals and there are n intevrals Ij so there are exactly
2n possible Qk,i. Note that Qk−1 =

⋃
Qk,i so if O has a finite subcover for each the Qk,i

then O has a finite subcover on Qk−1. Since we are assuming this is not true there is
some Qk,ik such that O doesn’t have a finite subcover on Qk,ik . Let Qk = Qk,ik .

To finish the construct of the Qi we need to calculate the length of the longest interval
in product Qk. This is easy to do since the length of the intervals in the product that
forms Qk are exactly half the length of the intervals in Qk−1. Therefore the length of the
longest interval is 2−1 × 2−(k−1)` = 2−k` and we have inductively found nested, closed
n-cells Qi with the length of the longest interval in each Qi exactly 2−i`. An application

1The diameter of a set A is defined to be diam(A) = inf{d|if x, y ∈ A then d(x, y) ≤ d}.
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of the triangle inequality shows that diam(Qi) ≤ n2−i` so diam(Qi) → 0 as i →∞. 5

Problem 2 Let xn be a sequence with no convergent subsequence. Show that the set
{x1, x2, . . . } is closed

Problem 3 A point x is isolated in a set A ⊂ Rn if there exists an ε > 0 such that
Bε(x)

⋂
A = {x}. Show that x is isolated if and only if there doesn’t exists a sequence

of distinct points xi ∈ A with xi → x.

Theorem 6 Let K be a subset of Rn. The following are equivalent:

1. K is closed and bounded;

2. K is compact;

3. Every sequence in K has a subsequence that converges in K.

Proof. (1 ⇒ 2) A bounded set is contained in some closed n-cell Q. By Theorem
5. Since K is a closed subset of a compact set K is compact by Theorem 2.

(2 ⇒ 3) Let xn be a sequence in K. If the sequence has a convergent subsequence
then the limit is in K since K is compact and therefore closed. In this case we are done.

Now we assume the sequence has no convergent subsequence and we will obtain a
contradiction. Then by Problem 2 the set C = {x1, x2, . . . } is closed. By Theorem 2, C
is also compact. Problem 3 implies that every point in C is isolated. In particular, for
each xi there is an εi such that Bεi(xi)

⋂
C = {xi}. The collection

O = {Bε1(x1), Bε2(x2), . . . }

is an open cover of C. However if we remove any of the Bεi(xi) from O we no longer
have an open cover since xi is not in any of the open subsets. Therefore O has no finite
subcover, contradicting the compactness of C.

(3 ⇒ 1) We will prove the contrapositive. If K is not closed there exists a sequence
{xi} in K such that xi → x but x 6∈ K. Every subsequence {xi} will then also converge
to x so {xi} has no subsequence that converges in K.

If K is not bounded, for each i we can find an xi ∈ K such that d(xi, 0) > i. Given an
i choose j such that j0 > d(xi, 0)+1. Then for all j > j0, d(xi, xj) ≥ d(xj , 0)−d(xi, 0) >
j0 − d(xi, 0) > 1. This implies that {xi} has no Cauchy, and therefore no convergent,
subsequence. 6
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We now define the Cantor set, C, in a way somewhat different than was done in class.
Define

C =

{
x ∈ [0, 1]|x =

∞∑
i=1

ai

3i
where ai ∈ {0, 2}

}
.

Some examples of points in C are 2/3 and 2/9. It is less obvious, but 1/3 is also in C
since 1/3 =

∑∞
i=2 2/3i.

Problem 4 Show that the Cantor set is:

1. closed;

2. has no interior;

3. has no isolated points;

4. is uncountable.
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