Notes on length and conformal metrics

We recall how to measure the Euclidean distance of an arc in the plane. Let α : $[a, b] \longrightarrow \mathbb{R}^{2}$ be a smooth $\left(C^{1}\right)$ arc. That is $\alpha(t)=(x(t), y(t))$ where $x(t)$ and $y(t)$ are smooth real valued functions. Then the length of α is the integral

$$
|\alpha|=\int_{a}^{b}\left|\alpha^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

Note that if α is only piecewise smooth we can still define $|\alpha|$. In particular if α is piecewise smooth the derivative α^{\prime} will be defined at all but finitely many points in the interval $[a, b]$ so the above integral still makes sense.

Many formulas become simpler by using complex notation. That is we think of α as a map to \mathbb{C} by setting $\alpha(t)=x(t)+\imath y(t)$. Then $\alpha^{\prime}(t)=x^{\prime}(t)+\imath y^{\prime}(t)$ is also a complex number. Thought of as a complex number the absolute value of $\alpha(t)$ gives us the same answer: $\left|\alpha^{\prime}(t)\right|=\sqrt{x^{\prime}(t)^{2}+\imath y^{\prime}(t)}$. Note that the using the books notation we have

$$
|\alpha|=\int_{\alpha}|d z|=\int_{a}^{b}\left|\alpha^{\prime}(t)\right| d t
$$

Let Ω be an open subset of \mathbb{R}^{2} that contains the image of α and let $f: \Omega \longrightarrow \mathbb{R}^{2}$ be a smooth function. We then have a new path define by $\bar{\alpha}=f \circ \alpha$. To calculate the length of $\bar{\alpha}$ we use the chain rule. In particular, if $f(x, y)=(u(x, y), v(x, y))$ then $\bar{\alpha}^{\prime}(t)$, written as a column vector, is

$$
\bar{\alpha}^{\prime}(t)=\left(\begin{array}{ll}
u_{x}(\alpha(t)) & u_{y}(\alpha(t)) \\
v_{x}(\alpha(t)) & v_{y}(\alpha(t))
\end{array}\right)\binom{x^{\prime}(t)}{y^{\prime}(t)} .
$$

We can think of f has a complex function by setting $z=x+\imath y$ and $f=u+v v$. If f is holomorphic we really see the advantage of using complex notation. The CauchyRiemann equations tell us that $u_{x}=v_{y}$ and $v_{x}=-u_{y}$. Furthermore the complex derivative of f is $f^{\prime}=u_{x}+\imath v_{x}$. If we treat $\bar{\alpha}^{\prime}(t)$ as a complex number we see that

$$
\begin{aligned}
\bar{\alpha}^{\prime} & =u_{x} x^{\prime}-v_{x} y^{\prime}+\imath\left(v_{x} x^{\prime}+u_{x} y^{\prime}\right) \\
& =\left(u_{x}+\imath v_{x}\right)\left(x^{\prime}+\imath y^{\prime}\right) .
\end{aligned}
$$

That is we have $\bar{\alpha}^{\prime}(t)=f^{\prime}(\alpha(t)) \alpha^{\prime}(t)$. This gives a very simple formula for the length of $\bar{\alpha}$:

$$
|\bar{\alpha}|=\int_{a}^{b}\left|f^{\prime}(\alpha(t)) \| \alpha^{\prime}(t)\right| d t
$$

We say that f is an isometry of the Euclidean metric if the length of every path α is equal to the length of the path $\bar{\alpha}=f \circ \alpha$. Clearly f is an isometry if $\left|f^{\prime}\right| \equiv 1$. In fact
it is not hard to see that this is also a necessary condition since if $\left|f^{\prime}(z)\right|<1$ at z then by continuity this will be true in a neighborhood U of z. For any path α whose image is contained in U we will then have that $\bar{\alpha}$ is shorter than α. We can make a similar argument if $\left|f^{\prime}(z)\right|>1$ at z.

In a homework problem we saw that any holomorphic function that had a constant absolute vale must be constant. In class we will soon see that the derivative, f^{\prime}, of a holomorphic function is also holomorphic. For now we take this as an assumption. Therefore if $\left|f^{\prime}(z)\right| \equiv 1$ then $f^{\prime}(z) \equiv c$ where $|c|=1$ and f must be of the form $f(z)=c z+d$ where d is an arbitrary complex number.

It is often useful to use alternative definitions of a distance. In particular if Ω is again an open subset of \mathbb{R}^{2} let $\lambda: \Omega \longrightarrow \mathbb{R}$ be a positive function. We can define the length of α with respect to λ by

$$
|\alpha|_{\lambda}=\int_{a}^{b}\left|\alpha^{\prime}(t)\right| \lambda(\alpha(t)) d t
$$

If we have two different metrics defined by functions λ and ρ we can then discuss whether f is an isometry from the λ-metric to the ρ-metric. To measure the length $\bar{\alpha}$ in the ρ-metric we have the formula

$$
|\bar{\alpha}|_{\rho}=\int_{a}^{b}\left|\bar{\alpha}^{\prime}(t)\right| \rho(\bar{\alpha}(t)) d t=\int_{a}^{b}\left|f^{\prime}(\alpha(t))\right|\left|\alpha^{\prime}(t)\right| \rho(f(\alpha(t))) d t .
$$

For this to be the same as the λ-length of α for all paths α we need to have

$$
\left|f^{\prime}(\alpha(t))\right| \rho(f(\alpha(t)))=\lambda(\alpha(t))
$$

or

$$
\left|f^{\prime}(z)\right| \rho(f(z))=\lambda(z)
$$

Note that this formula gives us a way for defining a metric. In particular if $\rho \equiv 1$ then the ρ-metric is just the standard Euclidean metric. If we define λ by setting

$$
\lambda(z)=\left|f^{\prime}(z)\right|
$$

then f will be an isometry from the λ-metric to the Euclidean metric. If we define λ by

$$
\lambda(z)=\left|f^{\prime}(z)\right| \rho(f(z))
$$

then f is an isometry from λ-metric to the ρ-metric.
One very useful metric that we will work with is the hyperbolic metric. It is defined on the upper half plane of \mathbb{C} which we define as

$$
\mathbb{H}^{2}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}
$$

The hyperbolic metric is $\lambda_{\mathbb{H}^{2}}(z)=\frac{1}{\operatorname{Im} z}$. The isometries of the hyperbolic metric are linear fractional transformations that preserve the upper half plane. Namely let

$$
T(z)=\frac{a z+b}{c z+d}
$$

where $a, b, c, d \in \mathbb{R}$ and $a d-b c=1$. Then

$$
T^{\prime}(z)=\frac{1}{(c z+d)^{2}}
$$

We also need to calculate $\operatorname{Im} T(z)$:

$$
\begin{aligned}
2 \imath \operatorname{Im} T(z) & =T(z)-\overline{T(z)} \\
& =\frac{a z+b}{c z+d}-\overline{\left(\frac{a z+b}{c z+d}\right)} \\
& =\frac{a z+b}{c z+d}-\frac{a \bar{z}+b}{c \bar{z}+d} \\
& =\frac{(a z+b)(c \bar{z}+d)-(a \bar{z}+b)(c z+d)}{|c z+d|^{2}} \\
& =\frac{(a d-b c)(z-\bar{z})}{|c z+d|^{2}} \\
& =\frac{2 \imath \operatorname{Im} z}{|c z+d|^{2}}
\end{aligned}
$$

and therefore

$$
\operatorname{Im} T(z)=\frac{\operatorname{Im} z}{|c z+d|^{2}}
$$

We then have

$$
\begin{aligned}
\left|T^{\prime}(z)\right| \lambda_{\mathbb{H}^{2}}(T(z)) & =\frac{1}{|c z+d|^{2}} \frac{1}{\operatorname{Im} T(z)} \\
& =\frac{1}{|c z+d|^{2}} \frac{|c z+d|^{2}}{\operatorname{Im} z} \\
& =\frac{1}{\operatorname{Im} z} \\
& =\lambda_{\mathbb{H}^{2}}(z)
\end{aligned}
$$

so $T(z)$ is an isometry for the hyperbolic metric.
We can use the metric λ to define a distance function on the region Ω. Let $\mathcal{P}\left(z_{0}, z_{1}\right)$ be the set of piecewise smooth paths in Ω from z_{0} to z_{1}. We then define

$$
d_{\lambda}\left(z_{0}, z_{1}\right)=\inf _{\gamma \in \mathcal{P}\left(z_{0}, z_{1}\right)}|\alpha|_{\lambda}
$$

It is easy to check that d_{λ} satisfies the properties of a distance function:

1. Clearly $d_{\lambda}\left(z_{0}, z_{1}\right)=d_{\lambda}\left(z_{1}, z_{0}\right)$ since by reversing directions any path from z_{0} to z_{1} becomes a path from z_{1} to z_{0} of the same length.
2. It is also easy to check the triangle inequality. (Here it is important that we are allowing piecewise smooth paths.) If we concatenate a path from z_{0} to z_{1} with a path from z_{1} to z_{1} we obtain a path from z_{0} to z_{2}. In particular if there is a path of length ℓ_{0} from z_{0} to z_{1} and a path of length ℓ_{1} from z_{1} to z_{2} then there is a path of length $\ell_{0}+\ell_{1}$ from z_{0} to z_{1}. This implies that

$$
d_{\lambda}\left(z_{0}, z_{2}\right) \leq d\left(z_{0}, z_{1}\right)+d\left(z_{1}, z_{2}\right)
$$

3. Finally we need to see that $d\left(z_{0}, z_{1}\right)=0$ iff $z_{0}=z_{1}$. The function λ is continuous and positve so for any z_{0} there is an $\epsilon>0$ and an $r>0$ so that on the Euclidean disk of radius r such that $\lambda>\epsilon$ on the disk. Let α be a path from z_{0} to z_{1}. If α is contained in this Euclidean disk then $|\alpha|_{\lambda}>\epsilon|\alpha| \geq \epsilon d\left(z_{0}, z_{1}\right)>0$ if $z_{0} \neq z_{1}$. If α is not contained in the disk there is a sub-path α^{\prime} connecting z_{0} to the boundary of the disk so $|\alpha|_{\lambda} \geq\left|\alpha^{\prime}\right|_{\lambda} \geq \epsilon r>0$. In particular if $z_{1} \neq z_{1}$ is in the disk then $d_{\lambda}\left(z_{0}, z_{1}\right) \geq \epsilon d\left(z_{0}, z_{1}\right)>0$ and if z_{1} is not in the disk then $d\left(z_{0}, z_{1}\right) \geq \epsilon r>0$ so $d\left(z_{0}, z_{1}\right)>0$ if $z_{0} \neq z_{1}$. It is clear that $d\left(z_{0}, z_{1}\right)=0$ if $z_{1}=z_{0}$.

The distance function makes $\left(\Omega, d_{\lambda}\right)$ into a metric space and we will be able to use all the properties of metric spaces to study it. We also note if $\rho \leq \lambda$ defines another metric on Ω then $d_{\rho}\left(z_{0}, z_{1}\right) \leq d_{\lambda}\left(z_{0}, z_{1}\right)$ for all points $z_{0}, z_{1} \in \Omega$.

Problems

1. Let Δ be the unit disk in \mathbb{C}. Construct a linear fraction transformation $S: \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ that takes Δ to the upper half plane.
2. Define a metric ρ on Δ by the formula

$$
\rho(z)=\frac{2}{1-|z|^{2}} .
$$

Show that S is an isometry from the ρ-metric to the hyperbolic metric $\lambda_{\mathbb{H}^{2}}$. In particular, the metric ρ on Δ is another representation of the hyperbolic metric. To emphasize this we write ρ as $\rho_{\mathbb{H}^{2}}$.
3. The $f(z)=z^{2}$ take Δ to itself. Show that for any two points $z_{0} \neq z_{1}$ in Δ we have

$$
d_{\rho_{\mathrm{H}^{1} 2}}\left(f\left(z_{0}\right), f\left(z_{1}\right)\right) \leq d_{\rho_{\mathrm{H}^{2}}}\left(z_{0}, z_{1}\right) .
$$

4. Define a metric on \mathbb{C} by $\sigma(z)=\frac{2}{1+|z|^{2}}$. Given a point $z \in \mathbb{C}$ find a linear fractional transformation R with $R(0)=z, R(\infty)=-\frac{1}{\bar{z}}$ and such that R is an isometry for σ-metric.

Comments: Problem 3 is an example of a very important and much more general phenomenom. In particular any holomorphic map that takes Δ into itself will be a contraction of the hyperbolic metric. This is essentially the Schwarz Lemma which we will (soon!) prove in class.

