
Notes on length and conformal metrics

We recall how to measure the Euclidean distance of an arc in the plane. Let α :
[a, b] −→ R2 be a smooth (C1) arc. That is α(t) = (x(t), y(t)) where x(t) and y(t) are
smooth real valued functions. Then the length of α is the integral

|α| =
∫ b

a
|α′(t)|dt =

∫ b

a

√
x′(t)2 + y′(t)2dt.

Note that if α is only piecewise smooth we can still define |α|. In particular if α is
piecewise smooth the derivative α′ will be defined at all but finitely many points in the
interval [a, b] so the above integral still makes sense.

Many formulas become simpler by using complex notation. That is we think of α as
a map to C by setting α(t) = x(t) + ıy(t). Then α′(t) = x′(t) + ıy′(t) is also a complex
number. Thought of as a complex number the absolute value of α(t) gives us the same
answer: |α′(t)| =

√
x′(t)2 + ıy′(t). Note that the using the books notation we have

|α| =
∫

α
|dz| =

∫ b

a
|α′(t)|dt.

Let Ω be an open subset of R2 that contains the image of α and let f : Ω −→ R2

be a smooth function. We then have a new path define by ᾱ = f ◦ α. To calculate the
length of ᾱ we use the chain rule. In particular, if f(x, y) = (u(x, y), v(x, y)) then ᾱ′(t),
written as a column vector, is

ᾱ′(t) =
(

ux(α(t)) uy(α(t))
vx(α(t)) vy(α(t))

) (
x′(t)
y′(t)

)
.

We can think of f has a complex function by setting z = x + ıy and f = u + ıv. If
f is holomorphic we really see the advantage of using complex notation. The Cauchy-
Riemann equations tell us that ux = vy and vx = −uy. Furthermore the complex
derivative of f is f ′ = ux + ıvx. If we treat ᾱ′(t) as a complex number we see that

ᾱ′ = uxx′ − vxy′ + ı(vxx′ + uxy′)
= (ux + ıvx)(x′ + ıy′).

That is we have ᾱ′(t) = f ′(α(t))α′(t). This gives a very simple formula for the length of
ᾱ:

|ᾱ| =
∫ b

a
|f ′(α(t))||α′(t)|dt.

We say that f is an isometry of the Euclidean metric if the length of every path α
is equal to the length of the path ᾱ = f ◦ α. Clearly f is an isometry if |f ′| ≡ 1. In fact
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it is not hard to see that this is also a necessary condition since if |f ′(z)| < 1 at z then
by continuity this will be true in a neighborhood U of z. For any path α whose image
is contained in U we will then have that ᾱ is shorter than α. We can make a similar
argument if |f ′(z)| > 1 at z.

In a homework problem we saw that any holomorphic function that had a constant
absolute vale must be constant. In class we will soon see that the derivative, f ′, of
a holomorphic function is also holomorphic. For now we take this as an assumption.
Therefore if |f ′(z)| ≡ 1 then f ′(z) ≡ c where |c| = 1 and f must be of the form
f(z) = cz + d where d is an arbitrary complex number.

It is often useful to use alternative definitions of a distance. In particular if Ω is again
an open subset of R2 let λ : Ω −→ R be a positive function. We can define the length of
α with respect to λ by

|α|λ =
∫ b

a
|α′(t)|λ(α(t))dt.

If we have two different metrics defined by functions λ and ρ we can then discuss
whether f is an isometry from the λ-metric to the ρ-metric. To measure the length ᾱ in
the ρ-metric we have the formula

|ᾱ|ρ =
∫ b

a
|ᾱ′(t)|ρ(ᾱ(t))dt =

∫ b

a
|f ′(α(t))||α′(t)|ρ(f(α(t)))dt.

For this to be the same as the λ-length of α for all paths α we need to have

|f ′(α(t))|ρ(f(α(t))) = λ(α(t))

or
|f ′(z)|ρ(f(z)) = λ(z).

Note that this formula gives us a way for defining a metric. In particular if ρ ≡ 1 then
the ρ-metric is just the standard Euclidean metric. If we define λ by setting

λ(z) = |f ′(z)|

then f will be an isometry from the λ-metric to the Euclidean metric. If we define λ by

λ(z) = |f ′(z)|ρ(f(z))

then f is an isometry from λ-metric to the ρ-metric.
One very useful metric that we will work with is the hyperbolic metric. It is defined

on the upper half plane of C which we define as

H2 = {z ∈ C : Im z > 0}.

2



The hyperbolic metric is λH2(z) = 1
Im z . The isometries of the hyperbolic metric are

linear fractional transformations that preserve the upper half plane. Namely let

T (z) =
az + b

cz + d

where a, b, c, d ∈ R and ad− bc = 1. Then

T ′(z) =
1

(cz + d)2
.

We also need to calculate Im T (z):

2ı Im T (z) = T (z)− T (z)

=
az + b

cz + d
−

(
az + b

cz + d

)
=

az + b

cz + d
− az + b

cz + d

=
(az + b)(cz + d)− (az + b)(cz + d)

|cz + d|2

=
(ad− bc)(z − z)

|cz + d|2

=
2ı Im z

|cz + d|2

and therefore
Im T (z) =

Im z

|cz + d|2
.

We then have

|T ′(z)|λH2(T (z)) =
1

|cz + d|2
1

Im T (z)

=
1

|cz + d|2
|cz + d|2

Im z

=
1

Im z
= λH2(z)

so T (z) is an isometry for the hyperbolic metric.
We can use the metric λ to define a distance function on the region Ω. Let P(z0, z1)

be the set of piecewise smooth paths in Ω from z0 to z1. We then define

dλ(z0, z1) = inf
γ∈P(z0,z1)

|α|λ.

It is easy to check that dλ satisfies the properties of a distance function:
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1. Clearly dλ(z0, z1) = dλ(z1, z0) since by reversing directions any path from z0 to z1

becomes a path from z1 to z0 of the same length.

2. It is also easy to check the triangle inequality. (Here it is important that we are
allowing piecewise smooth paths.) If we concatenate a path from z0 to z1 with a
path from z1 to z1 we obtain a path from z0 to z2. In particular if there is a path
of length `0 from z0 to z1 and a path of length `1 from z1 to z2 then there is a path
of length `0 + `1 from z0 to z1. This implies that

dλ(z0, z2) ≤ d(z0, z1) + d(z1, z2).

3. Finally we need to see that d(z0, z1) = 0 iff z0 = z1. The function λ is continuous
and positve so for any z0 there is an ε > 0 and an r > 0 so that on the Euclidean
disk of radius r such that λ > ε on the disk. Let α be a path from z0 to z1. If α is
contained in this Euclidean disk then |α|λ > ε|α| ≥ εd(z0, z1) > 0 if z0 6= z1. If α
is not contained in the disk there is a sub-path α′ connecting z0 to the boundary
of the disk so |α|λ ≥ |α′|λ ≥ εr > 0. In particular if z1 6= z1 is in the disk then
dλ(z0, z1) ≥ εd(z0, z1) > 0 and if z1 is not in the disk then d(z0, z1) ≥ εr > 0 so
d(z0, z1) > 0 if z0 6= z1. It is clear that d(z0, z1) = 0 if z1 = z0.

The distance function makes (Ω, dλ) into a metric space and we will be able to use
all the properties of metric spaces to study it. We also note if ρ ≤ λ defines another
metric on Ω then dρ(z0, z1) ≤ dλ(z0, z1) for all points z0, z1 ∈ Ω.

Problems

1. Let ∆ be the unit disk in C. Construct a linear fraction transformation S : Ĉ −→ Ĉ
that takes ∆ to the upper half plane.

2. Define a metric ρ on ∆ by the formula

ρ(z) =
2

1− |z|2
.

Show that S is an isometry from the ρ-metric to the hyperbolic metric λH2 . In
particular, the metric ρ on ∆ is another representation of the hyperbolic metric.
To emphasize this we write ρ as ρH2 .

3. The f(z) = z2 take ∆ to itself. Show that for any two points z0 6= z1 in ∆ we have

dρH2 (f(z0), f(z1)) ≤ dρH2 (z0, z1).
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4. Define a metric on C by σ(z) = 2
1+|z|2 . Given a point z ∈ C find a linear fractional

transformation R with R(0) = z, R(∞) = −1
z and such that R is an isometry for

σ-metric.

Comments: Problem 3 is an example of a very important and much more general
phenomenom. In particular any holomorphic map that takes ∆ into itself will be a
contraction of the hyperbolic metric. This is essentially the Schwarz Lemma which we
will (soon!) prove in class.
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