Math 6220

Homework 1
January 262007

Problem 1.1.4.3

Given: $|a|=1$ or $|b|=1$
By the definition of the absolute value of complex numbers, we observe that $|\bar{a}|=|a|=a \bar{a}=1,|\bar{b}|=|b|=b \bar{b}=1$,

$$
\begin{aligned}
& \Rightarrow\left|\frac{a-b}{1-a b}\right|=\left|\frac{a-b}{a \bar{a}-a b}\right|=\left|\frac{a-b}{\bar{a}(a-b)}\right|=\frac{1}{|\bar{a}|}\left|\frac{a-b}{a-b}\right|=1 \\
& \Rightarrow\left|\frac{a-b}{1-\bar{a} b}\right|=\left|\frac{a-b}{b-\bar{a} b}\right|=\frac{1}{|b|}\left|\frac{a-b}{b-\bar{a}}\right|=\left|\frac{a-b}{b-\bar{a}}\right|=1 \\
& \text { since }\left|\frac{a-b}{\bar{a}-\bar{b}}\right|^{2}=\frac{(a-b)(\bar{a}-\bar{b})}{(\bar{a}-\bar{b})(\bar{a}-\bar{b})}=\frac{(a-b)(\bar{a}-\bar{b})}{(\bar{a}-\bar{b})(a-b)}=1
\end{aligned}
$$

Problem 1.1.5.1
Prove that $\left|\frac{a-b}{1-\bar{a} b}\right|<1$ if $|a|<1$ and $|b|<1$.

Solution :

$$
\begin{aligned}
a \bar{a}(1-b \bar{b}) & <1-b \bar{b} \\
a \bar{a}-a \bar{a} b \bar{b} & <1-b \bar{b} \\
a \bar{a}+b \bar{b} & <1+a \bar{a} b \bar{b} \\
a \bar{a}-a \bar{b}-\bar{a} b+b \bar{b} & <1-a \bar{b}-\bar{a} b+a \bar{a} b \bar{b} \\
(a-b)(\bar{a}-\bar{b}) & <(1-\bar{a} b)(1-a \bar{b}) \\
|a-b|^{2} & <|1-\bar{a} b|^{2}
\end{aligned}
$$

Problem 1.2.1.2

Prove that the points a_{1}, a_{2}, a_{3} are the vertices of an equilateral triangle if and only if $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}$.
Proof:
(\Rightarrow) To make our lives easier, we shift the center of our arbitrary equilateral triangle $\triangle\left[a_{1} a_{2} a_{3}\right]$ to the origin. We do this by letting $z_{0}=\frac{a_{1}+a_{2}+a_{3}}{3}$ be our center of mass and subtracting this point from each vertex. Notice that the distance from z_{0} to each a_{i} is a constant length r and the angle between each point is $\frac{2 \pi}{3}$. That is,

$$
\begin{aligned}
& a_{1}-z_{0}=r e^{i \theta} \\
& a_{2}-z_{0}=r e^{i(\theta+2 \pi / 3)} \\
& a_{2}-z_{0}=r e^{i(\theta-2 \pi / 3)}
\end{aligned}
$$

It is easy to see that $\left(a_{1}-z_{0}\right)^{2}=\left(a_{2}-z_{0}\right)\left(a_{3}-z_{0}\right)$, and by plugging in $z_{0}=\frac{a_{1}+a_{2}+a_{3}}{3}$, we get the desired $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}$.
(\Leftarrow) We can begin by simplifying the problem via shifting the vertex a_{1} to the origin. The triangle in question is now $\triangle\left[(0)\left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right)\right]$. Then

$$
\begin{aligned}
a_{1}^{2}+a_{2}^{2}+a_{3}^{2}-a_{1} a_{2}-a_{2} a_{3}-a_{3} a_{1}=0 & \Leftrightarrow\left(a_{2}-a_{1}\right)^{2}+\left(a_{3}-a_{1}\right)^{2}=\left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right) \\
& \Leftrightarrow \frac{a_{2}-a_{1}}{a_{3}-a_{1}}+\frac{a_{3}-a_{1}}{a_{2}-a_{1}}=1 \\
& \Leftrightarrow x+\frac{1}{x}=1 \\
& \Leftrightarrow x^{2}-x+1=0 \\
& \Leftrightarrow \frac{a_{2}-a_{1}}{a_{3}-a_{1}}=x=e^{ \pm i \pi / 3} .
\end{aligned}
$$

This is sufficient to show $\triangle\left[(0)\left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right)\right]$, and thus $\triangle\left[a_{1} a_{2} a_{3}\right]$ is an equilateral triangle.

Problem 1.2.2.4

Since h is not a multiple of $n, \omega^{h} \neq 1$.
Using the formula of the geometric series, we have

$$
1+\omega^{h}+\cdots+\omega^{h(n-1)}=\frac{1-\omega^{h n}}{1-\omega^{h}} .
$$

Hence, $1+\omega^{h}+\cdots+\omega^{h(n-1)}=0$ if and only if $\omega^{h n}=1$ and this is true since $h \in \mathbb{Z}$. Indeed,

$$
\omega^{h n}=\left(\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}\right)^{h n}=\cos 2 \pi h+i \sin 2 \pi h=1 .
$$

