Final exam notes for Math 3210

Limits. Let $\left\{a_{n}\right\}$ be a sequence. Then

$$
\lim a_{n}=a
$$

if for all $\epsilon>0$ there exists an N such that if $n>N$ then $\left|a_{n}-a\right|<\epsilon$. If no such a exists then the sequence is divergent. The sequence a_{n} is Cauchy if for all $\epsilon>0$ there exists an $N>0$ such that if $n, m>N$ then $\left|a_{n}-a_{m}\right| \leq \epsilon$.

Theorem 0.1 A sequence is convergent if and only if it is Cauchy.

Theorem 0.2 Every bounded sequence of real numbers has a convergent subsequence.

Theorem 0.3 Suppose $a_{n} \rightarrow a, b_{n} \rightarrow b, c$ is a real number and k a natural number. Then

1. $c a_{n} \rightarrow c a$;
2. $a_{n}+b_{n} \rightarrow a+b$;
3. $a_{n} b_{n} \rightarrow a b$;
4. $a_{n} / b_{n} \rightarrow a / b$ if $b \neq 0$ and $b_{n} \neq 0$ for all n;
5. $a_{n}^{k} \rightarrow a^{k}$;
6. $a_{n}^{1 / k} \rightarrow a^{1 / k}$ if $a_{n} \geq 0$ for all n.

If A is a subset of \mathbb{R} the $a=\sup A$ if $a \geq x$ for all $x \in A$ and $a^{\prime} \geq x$ for all $x \in A$ then $x \leq y$. We define $\inf A$ be reversing the inequalities. If we allow $+\infty$ and $-\infty$ the $\sup A$ and $\inf A$ always exist.

Let $\left\{a_{n}\right\}$ be a sequence and define $i_{n}=\inf \left\{a_{k}: k \geq n\right\}$ and $s_{n}=\sup \left\{a_{k}: k \geq n\right\}$. Then

$$
\liminf a_{n}=\lim i_{n}
$$

and

$$
\limsup a_{n}=\lim s_{n} .
$$

Continuity. Let $f: D \longrightarrow \mathbb{R}$ be a function defined on a domain $D \subset \mathbb{R}$. Then

$$
\lim _{x \rightarrow a} f=b
$$

if for all $\epsilon>0$ there exists a $\delta>0$ such that if for all $x \in D$ with $0<|x-a|<\delta$ then $|f(x)-b|<\epsilon$. The function f is continuous at a if

$$
\lim _{x \rightarrow a} f=f(a)
$$

There is a theorem similar Theorem 0.3 for limits of functions.
The function f is uniformly continuous if for all $\epsilon>0$ there exists a $\delta>0$ such that if $x, y \in D$ and $|x-y|<\delta$ then $|f(x)-f(y)|<\epsilon$.

Theorem 0.4 Let $f:[a, b] \longrightarrow \mathbb{R}$ be continuous. Then there exits $a c$ and d in $[a, b]$ such that $f(x) \leq f(c)$ and $f(x) \geq f(d)$ for all $x \in[a, b]$.

Theorem 0.5 (Intermediate Value Theorem) Let $f:[a, b] \longrightarrow \mathbb{R}$ be continuous. If y is between $f(a)$ and $f(b)$ then there exists $a x \in[a, b]$ such that $f(c)=y$.

Theorem 0.6 Let $f:[a, b] \longrightarrow \mathbb{R}$ be continuous. Then f is uniformly continuous.
A sequence of functions $f_{n}: D \longrightarrow \mathbb{R}$ converges uniformly to $f: D \longrightarrow \mathbb{R}$ if for all $\epsilon>0$ there exists an $N>0$ such that if $n>N$ then $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in D$.

Theorem 0.7 Let $f_{n}: D \longrightarrow \mathbb{R}$ be continuous. If $f_{n} \rightarrow f$ uniformly then f is continuous.

Derivatives. Define the derivative $f^{\prime}(a)$ of the function f at a by

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

if it exists.
Differentiation rules (abbreviated):

1. $(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$;
2. $(f g)(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)$;
3. $(f / g)(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g^{2}(a)}$;
4. $(f \circ g)^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)$

Theorem 0.8 (Mean Value Theorem) Let $f:[a, b] \longrightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). Then there exists a $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem 0.9 (L'Hôpital's Rule) If $f(x), g(x) \rightarrow 0$ or $f(x), g(x) \rightarrow \infty$ as $x \rightarrow a$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Integrals. Let $P=\left\{x_{0}=a<x_{1}<\cdots<x_{n-1}<x_{n}=b\right\}$ be a partition of $[a, b]$ and for $k=1, \ldots, n$ set

$$
M_{k}=\sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\} \text { and } m_{k}=\inf \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}
$$

We then define the upper and lower sums for P by

$$
U(f, P)=\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right)
$$

and

$$
L(f, P)=\sum_{k=1}^{n} m_{k}\left(x_{k}-x_{k-1}\right)
$$

We define the upper and lower integrals by

$$
U_{a}^{b}(f)=\inf \{U(f, P): P \text { is a partition of }[0,1]\}
$$

and

$$
L_{a}^{b}(f)=\sup \{L(f, P): P \text { is a partion of }[0,1]\}
$$

Then f is integrable if $L_{a}^{b}(f)=U_{a}^{b}(f)$ and we write

$$
\int_{a}^{b} f(x) d x=L_{a}^{b}(f)=U_{a}^{b}(f)
$$

Theorem $0.10 f$ is integrable \Longleftrightarrow for all $\epsilon>0$ there exist a partition P such that $U(f, P)-$ $L(f, P)<\epsilon \Longleftrightarrow$ there exists partitions P_{n} such that $U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \rightarrow 0$.

Properties of integrals (abbreviated):

1. $\int c f=c \int f$ if $c \in \mathbb{R}$;
2. $\int f+\int g=\int f+g$;
3. $\left|\int f\right| \leq \int|f|$;
4. $\int_{a}^{b} f(g(t)) g^{\prime}(t) d t=\int_{g(a)}^{g(b)} f(u) d u ;$
5. $\int_{a}^{b} f(x) g^{\prime}(x) d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime}(x) g(x) d x$

Theorem 0.11 (Fundamental Theorems of Calculus)
1.

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

2. Define

$$
F(x)=\int_{a}^{x} f(t) d t
$$

If f is continuous at x then $F^{\prime}(x)=f(x)$.
Series. Let $\left\{a_{n}\right\}$ be a sequence. Then the series $\sum_{k=0}^{\infty} a_{k}$ converges if the sequence of partial sums $s_{n}=\sum_{k=0}^{n} a_{k}$ converges. If $\sum_{k=0}^{\infty}\left|a_{k}\right|$ converges then the series $\sum_{k=0}^{\infty} a_{k}$ converges absolutely. If $\sum_{k=0}^{\infty}\left|a_{k}\right|$ doesn't converge but $\sum_{k=0}^{\infty} a_{k}$ does then the series converges conditionally.

Tests for convergence and divergence:

1. If $\sum_{k=0}^{\infty} a_{n}$ converges then $a_{n} \rightarrow 0$.
2. If $a_{n} \geq\left|b_{n}\right|$ and $\sum_{k=0}^{\infty} a_{k}$ converges then $\sum_{k=0}^{\infty} b_{k}$ converges absolutely.
3. Let $\left\{a_{n}\right\}$ be a sequence with $0 \leq a_{n+1} \leq a_{n}$ and let $f:[0, \infty) \longrightarrow \mathbb{R}$ be a non-increasing function such that $f(n)=a_{n}$. Then $\sum_{k=1}^{\infty} a_{k}$ converges \Longleftrightarrow

$$
\int_{1}^{\infty} f(t) d t
$$

converges. If $\sum_{k=1}^{\infty} a_{k}$ converges then

$$
\int_{1}^{\infty} f(x) d x-a_{1} \leq \sum_{k=1}^{\infty} a_{k} \leq \int_{1}^{\infty} f(x) d x
$$

4. Let $\rho=\limsup \left|a_{n}\right|^{1 / n}$. Then $\sum_{k=0}^{\infty} a_{k}$ converges absolutely if $\rho<1$ and diverges if $\rho>1$.
5. Let $\rho=\lim \left|a_{n+1}\right| /\left|a_{n}\right|$ if it exists. Then $\sum_{k=0}^{\infty} a_{k}$ converges absolutely if $\rho<1$ and diverges if $\rho>1$.
6. Let $\left\{a_{n}\right\}$ be a sequence with $0 \leq a_{n+1} \leq a_{n}$. Then $\sum_{k=0}^{\infty}(-1)^{k} a_{k}$ converges $\Longleftrightarrow a_{n} \rightarrow 0$. Let $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ be a power series and let

$$
R=\frac{1}{\lim \sup \left|c_{k}\right|^{1 / k}}
$$

Then the power series converges on any interval $(r-a, r+a)$ where $r<R$.

