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Drilling short geodesics in hyperbolic 3-manifolds

K. Bromberg1

Abstract

We give an expository account of the deformation theory of geometrically
finite, 3-dimensional hyperbolic cone-manifolds and its application to three clas-
sical conjectures about Kleinian groups.

1. Introduction

In a series of papers ([HK98, HK02, HK]), Hodgson and Kerckhoff developed a defor-
mation theory for 3-dimensional hyperbolic cone-manifolds which they used to prove
various important results about closed and finite volume hyperbolic 3-manifolds. This
deformation theory was extended to infinite volume, geometrically finite hyperbolic
cone-manifolds in [Br2, Br04]. In this setting the deformation theory has had a num-
ber of applications to classical conjectures about Kleinian groups.

Here is an example of a basic problem that can be addressed via the deformation
theory. Let (M,g) be a geometrically finite hyperbolic 3-manifold that contains a
simple closed geodesic γ . Let M̂ = M\γ be the complement of γ . There will be then
be a unique, geometrically finite, complete hyperbolic metric ĝ on M̂ such that the
conformal boundaries of (M,g) and (M̂, ĝ) agree. We have the following theorem

Theorem 1.1 ([BB04]). For each K > 1 there exists an ` > 0 such that if the length
of γ in (M,g) is less then ` then there exists a K-bi-Lipschitz map

φ : (M\T,g) −→ (M̂\T̂, ĝ)

where T and T̂ are Margulis tubes about γ and the rank two cusp, respectively.

We call such a theorem a “drilling theorem” for we have drilled the geodesic γ out
of the hyperbolic manifold (M,g).

The way we obtain geometric control of the metric ĝ is to interpolate between
g and ĝ using hyperbolic cone-metrics. The Hodgson-Kerckhoff deformation theory
gives means to bound the change in geometry as this one-parameter family of metrics
varies. The first part of this paper will be an exposition of this deformation theory
emphasizing the most geometric parts. For an expository account of Hodgson and
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Kerckhoff’s work see [HK03]. To keep this paper somewhat self-contained there is
some necessary overlap between the two papers.

In the second part of the paper we will apply the deformation theory to a collection
of classical conjectures in Kleinian groups: the density conjecture, density of cusps
on the boundary of quasiconformal deformation spaces and the ending lamination
conjecture. Rather than discussing these conjectures in their full generality we will
restrict to the special case of a Bers’ slice. This will allow us to demonstrate how the
deformation theory plays a role in approaching the conjectures in a simpler setting.

Acknowledgments. This paper is an expanded version of a talk given at the work-
shop on Spaces of Kleinian groups and Hyperbolic 3-manifolds held at the Newtown
Institute in August 2003. The author would like to thank Caroline Series, Yair Minsky
and Makoto Sakuma for organizing the workshop and their solicitation of this article.

The author would also like to thank his collaborator, Jeff Brock, with whom he did
much of the work described in this paper.

2. Deformations of hyperbolic metrics

We will begin by examing the various different ways one can study a family of hy-
perbolic metrics: as Riemannian metrics, as (G,X)-structures and as representations
of the fundamental group in the space of hyperbolic isometries. We will see the ad-
vantages of each viewpoint and the connections between the different viewpoints. A
reference for this material is §1 and §2 of [HK98].

In the final subsection we will discuss complex projective structures on surfaces.
These arise naturally as the boundary of hyperbolic 3-manifolds and will play an im-
portant role in the extension of the Hodgson-Kerckhoff deformation theory to infinite
volume and geometrically finite hyperbolic cone-manifolds.

2.1. One-parameter families of metrics

We start with a family of metrics, gt : V ×V −→ R, on a finite dimensional vector
space V . For each t there is a unique ηt ∈ hom(V,V ) such that

dgt(v,w)

dt
= 2gt(v,ηt(w)). (2.1)

Since gt is symmetric, ηt is self-adjoint, i.e.

gt(ηt(v),w) = gt(v,ηt(w)).

We measure the size of ηt using the metric gt . Let {e1, . . . ,en} be an orthonormal
basis for V in the gt metric. Then define the norm of ηt by the formula

‖ηt‖2 = ∑gt(ηt(ei),ηt(ei)). (2.2)
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For any v,w ∈V we then have

gt(v,ηt(w)) ≤ 2‖ηt‖gt(v,w).

By integrating (2.1) we see that if ‖ηt‖ ≤ K for all t ∈ [0,T ] then

e−2KT g0(v,v) ≤ gT (v,v) ≤ e2KT g0(v,v).

In particular the identity map on V is a KT -bi-Lipschitz map from the g0-metric to
gT -metric.

The trace of ηt is the divergence and it is the derivative of the volume. The traceless
part of ηt is the strain and it measures the change in the conformal structure.

2.2. Metrics on a manifold

Now we apply the above work to a family of metrics, gt , on a differentiable manifold
M. In this setting ηt is a one-parameter family in hom(T M,T M). Let ‖ηt(p)‖ be
the pointwise norm of ηt . Let φt : (M,g0) −→ (M,gt) be the identity map on M. If
‖ηt(p)‖ ≤ K for all p ∈ M and all t ∈ [0,T ] then φt is a KT -bi-Lipschitz diffeomor-
phism.

The identity map on M may not have the smallest bi-Lipschitz constant of all maps
from (M,g0) to (M,gt). In particular for an arbitrary family of metrics there is no rea-
son to hope that we can control the norm of ηt . The driving idea behind the Hodgson-
Kerckhoff deformation theory is to find one-parameter families of hyperbolic metrics
gt where the derivative ηt is a harmonic strain field. As we will see below, this extra
structure will allow us to control the norm of ηt .

2.3. Hyperbolic metrics on a manifold

Let H (M) be the space of all hyperbolic metrics on M. Two metrics g and h in H (M)

are equivalent if there is a diffeomorphism ψ : M −→ M isotopic to the identity such
that h = ψ∗g. Given two equivalence classes of metrics we want to find an efficient
path between them. That is we want to find a path gt that minimizes the derivative ηt .
The last statement can be interpreted in a number of ways. For example, we could try
to minimize the pointwise or L2-norm of ηt . However, if M is not compact then both of
these norms can and will be infinite. Our efficient paths will have two properties. First,
they will be divergence free so that ηt is a strain field. Second they will be harmonic.
We will not formally define harmonic. Informally, one can think of a harmonic strain
field as locally minimizing the L2-norm (see Appendix B of [Mc96]).

A harmonic strain field satisfies the following important equation:

Theorem 2.1. Let (M,g) be a compact hyperbolic manifold with boundary and let η
be a harmonic strain field. Then

∫

M
‖η‖2 +‖∇η‖2 =

∫

∂ M
∗∇η ∧η . (2.3)
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This formula is very important because it allows us to compute the L2-norm of
a strain field by only knowing information on the boundary. We also note that η is
harmonic if it satisfies (2.3) for all compact submanifolds.

Another feature of harmonic strain fields is that they satisfy a mean value inequal-
ity:

Theorem 2.2. Let (M,g) be a hyperbolic manifold and η a harmonic strain field. If
B is a ball in M of radius R > π√

2
centered at p then

‖η(p)‖ ≤ 3
√

2(B)

4π f (R)

√∫

B
‖η‖2dV

where f (R) = cosh(R)sin(
√

2R)−
√

2sinh(R)cos(
√

2r).

Together, Theorems 2.1 and 2.2 will allow us to get pointwise bounds on the the
norm of η , at least for points in the thick part of (M,g).

2.4. Developing maps

Another way to think of a hyperbolic structure is as a (G,X)-structure, where X is
hyperbolic space and G the group of hyperbolic isometries. A (G,X) structure is an
atlas of charts to X with transition maps which are restrictions of elements of G. A
(G,X)-structure determines a developing map and a holonomy representation.

Here’s how it works for a hyperbolic 3-manifold: A developing map is a local
diffeomorphism,

D : M̃ −→ H
3,

and the holonomy representation is a representation of the fundamental group,

ρ : π1(M) −→ PSL2C = Isom+(H3).

The developing map commutes with the action of the fundamental group where the
fundamental groups acts on M̃ as deck transformations and on H3 via the holonomy
representation. That is

D(γ(x)) = ρ(γ)D(x) (2.4)

for all γ ∈ π1(M). Let g̃ be the pull back of the hyperbolic metric. Then (2.4) implies
that g̃ is equivariant and descends to a hyperbolic metric g on M.

Conversely, a hyperbolic manifold, (M,g), determines a developing map and holon-
omy representation. The developing map is unique up to post-composition with hy-
perbolic isometries. If we post-compose the developing with an isometry α ∈ PSL2C

then we conjugate the holonomy by α .
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Given a smooth family of hyperbolic metrics (M,gt ), there is a smooth family of
developing maps Dt , and holonomy representations ρt . The derivative of the devel-
oping maps determines a family of vector fields vt on M̃ in the following way. For a
point x ∈ M̃, Dt(x) is smooth path in H3. Let vt(x) be the pull-back, via Dt , of the
tangent vector of this path at time t. These vector fields are not equivariant. However,
they do satisfy the following automorphic property. For all γ ∈ π1(M) the difference,
γ∗vt − vt , is an infinitesimal isometry in the g̃t -metric. That is, the flow of the vector
field γ∗vt − vt is an isometry. This follows directly from differentiating (2.4).

The automorphic vector fields vt , lead to the connection between the developing
maps and the derivative, ηt , of the metrics gt . The covariant derivative, ∇t vt , is an ele-
ment of hom(T M̃,T M̃). Let sym∇t vt be its symmetric part. The covariant derivative
of an infinitesimal isometry is skew. Therefore, the automorphic property of vt implies
that sym∇t vt is equivariant and descends to an element of hom(T M,T M). By noting
that the derivative dgt(v,w)

dt is the Lie derivative Lvt gt(v,w) we see that sym∇t vt = ηt .

2.5. Holonomy representations

Let R(M) be the space of representations of π1(M) in PSL2C. We are only interested
in representations up to conjugacy so we would like to study the quotient of R(M)

under the action of PSL2C by conjugacy. Unfortunately, this quotient may not be a
nice object. For instance it may not even by Hausdorff. Instead one takes the Mum-
ford quotient of R(M) which we denote R(M). The Mumford quotient is an algebraic
variety and its Zariski tangent space at a representation ρ is the cohomology group
H1(π1(M);Adρ). It will turn out, that at all points were are interested in, R(M) is
simply the topological quotient of R(M) by conjugacy. Furthermore, at these points
R(M) will be a differentiable manifold and the the Zariski tangent space will be nat-
urally identified with the differentiable tangent space. For this reason we will ignore
the distinction between the Mumford quotient and the topological quotient.

By differentiating a smooth family of representations ρt we can see how the dif-
ferentiable tangent space at each ρt is identified with H1(π1(M);Adρt). Let γ be an
element of π1(M). Then ρt(γ) is a smooth path in PSL2C. Each tangent space of
PSL2C is canonically identified with the Lie algebra sl2C. Therefore the derivative ρ̇t

can be thought of as a map
ρ̇t : π1(M) −→ sl2C

for each t. This map satisfies the cocyle condition

ρ̇t(γβ ) = ρ̇t(γ)+Adρt(γ)ρ̇t(β )

for all γ and β in π1(M) and therefore determines a cohomology class in H1(π1(M);Adρt).

We also remark that ρ̇t(γ) corresponds to the vector field γ∗vt − vt . The latter
vector field is identified with an element of sl2C by pushing forward γ∗vt − vt via Dt .
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This push foward is an infinitesimal isometry on H3 and the space of infinitesimal
isometries of H3 is canonically identified with sl2C.

2.6. Complex projective structures

A complex projective structure on a surface S is an atlas of charts to the Riemann
sphere, Ĉ, where the transition maps are restrictions of elements of PSL2C. A projec-
tive structure is another example of (G,X)-structure where G = PSL2C and X = Ĉ.
Let P(S) be the space of projective structures on S. Since the action of PSL2C is con-
formal, a projective structure also determines a conformal structure on S so there is a
map

P(S) −→ T (S)

where T (S) is the Teichmüller space of marked conformal structures on S. One is
often interested in the space of projective structures with a fixed conformal structure
X . We denote the space of such structures P(X).

Elements of PSL2C take round circles in Ĉ to round circles. Therefore, there is
a well defined notion of a round circle on a projective structure. A conformal map
f between two projective structures Σ and Σ′ will distort these round circles. The
Schwarzian derivative, S f , measures this distortion. We will not give an exact defini-
tion of S f although we will describe an infinitesimal version below. We will however
state the key properties of the Schwarzian derivative that we will use. First, S f is a
holomoprhic quadratic differential on X . The quotient of the absolute value of a holo-
morphic quadratic differential and a metric is a function. Using the unique hyperbolic
metric on X we can take the sup-norm of this function to a define the sup-norm, ‖S f‖∞,
of the Schwarzian. This determines a metric on P(X) by setting d(Σ,Σ′) = ‖S f‖∞.
Furthermore, given any holomorphic quadratic differential Φ on X there is a projec-
tive structure Σ′ such that for the conformal map f : Σ −→ Σ′, S f = Φ. Therefore P(X)

is isomorphic to the vector space Q(X) of holomorphic quadratic differentials on X .

A projective structure is Fuchsian if it is the quotient of a round disk in Ĉ. There is
a unique Fuchsian projective structure, ΣF , in each P(X). We will often be interested
in the distance between an arbitrary projective structure Σ ∈ P(X) and this unique
Fuchsian projective structure. We therefore let ‖Σ‖F = d(Σ,ΣF ).

As with any (G,X)-structure, a projective structure Σ on S determines a developing
map

D : S̃ −→ Ĉ

and a holonomy representation

ρ : π1(S) −→ PSL2C

satisfying (2.4). Now let Σt be a smooth path of projective structures in P(X). Then
there is a smooth path of developing maps Dt which determine vector fields vt on S̃.
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The developing maps, Dt , can be chosen to be conformal maps from X̃ to Ĉ which
will make the vectors fields vt conformal on X̃ .

Let v(z) be a conformal vector field on a domain in Ĉ. Then v(z) = f (z) ∂
∂ z where

f is a holomorphic function. A conformal vector field is projective if its flow consists
of elements of PSL2C. The space of projective fields is the Lie algebra sl2C and v(z)
will be projective if and only if f (z) is a quadratic polynomial. At each point z in
the domain let s(z) be the unique projective vector field that best approximates v at
z. Note that s(z) is obtained by taking the first three terms of the Taylor series of f
at z. Differentiating s(z) we obtain an sl2C-valued 1-form which can be canonically
associated with a holomorphic quadratic differential. This quadratic differential is the
Schwarzian derivative, Sv, of the vector field v.

We now return to our path of projective structures Σt in P(X). The Schwarzian
derivative of the conformal vector fields vt will be equivariant and therefore Svt will
be a holomorphic quadratic differential on X . The norm ‖Svt‖∞ is the infinitesimal
version of the metric on P(X) and if we can bound it for all t we bound the distance
between Σ0 and Σ1.

We need one final fact about projective structures. The holonomy representation
defines a map from P(S) to the space R(S) of representations of π1(S) in PSL2C mod-
ulo conjugacy. We the have the following theorem.

Theorem 2.3 ([Hej75, Ea80, Hub80]). The holonomy map

hol : P(S) −→ R(S)

is a holomorphic, local homeomorphism.

3. Hyperbolic cone-manifolds

3.1. Geometrically finite hyperbolic cone-manifolds

Let N be a compact manifold with boundary, C a collection of simple closed curves
in the interior of N and M the interior of N\C . Let g be a complete metric on the
interior of N that is a smooth Riemannian metric on M. We say that g is a hyperbolic
cone-metric if the following holds: First g is a hyperbolic metric on M. Second, for
points on C the metric has the form

dr2 + sinh2 rdθ 2 + cosh2 rdz2

where θ is measured modulo some cone-angle α . Note that the cone-angle must be
locally constant on C . Therefore there is a cone-angle associated to each component
of C .

Since the metric g is complete the boundary ∂N consists of tori and higher genus
surfaces. Let ∂0N denote the higher genus components of the boundary. To develop a
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good deformation theory we need to assume that there metric g has certain asymptotic
behavior as we approach ∂0N. We say that a hyperbolic, cone-metric g is geometri-
cally finite if the hyperbolic structure extends to a projective structure on ∂0N. More
explicitly g is geometrically finite if for each p ∈ ∂0N there exists an open neighbor-
hood of p in N and a map ψ : V −→ H3 ∪ Ĉ that is a homeomorphism onto its image
and is an isometry on V ∩ intM. The restriction of ψ to V ∩∂0N will determine an atlas
of charts to Ĉ. Since hyperbolic isometries of H

3 extend to projective transformations
of Ĉ this atlas will determine a projective structure on ∂0N.

Let GF(N,C ) be equivalence classes of geometrically finite hyperbolic cone-
manifolds on the pair (N,C ). If g is a hyperbolic cone-metric on (N,C ) we refer
to the induced projective structure on ∂0N as the projective boundary. The projective
structure induces a conformal structure on ∂0N. This is the conformal boundary.

Note that the round circles in the projective boundary are the boundary at infinity
of hyperbolic planes in the hyperbolic manifold. As the 3-dimensional hyperbolic
metric deforms these planes will not stay totally geodesic. This will be detected by
the change in the projective boundary.

3.2. Deformations of hyperbolic cone-manifolds

A meridian for the pair (N,C ) is a simple closed curve γ ⊂ intN that bounds a disk in
N which intersects C in a single point. Each component of C has a unique meridian up
to homotopy in M = intN\C . Furthermore if ρ is the holonomy of a cone-manifold
structure on (N,C ) then ρ(γ) will be elliptic (or the identity if the cone angle is a
multiple of 2π) for all meridians γ .

On the other hand there certainly will be representations where not all meridians
are elliptic. For this reason we let Re(M) be the subset of R(M) where the meridians
are elliptic or the identity. We then have the following theorem which is essentialy
due to Thurston ([Th79]).

Theorem 3.1. The holonomy map

hol : GF(N,C ) −→ Re(M)

is a local homeomorphism.

With this theorem our next goal is to give a local parameterization of R(M). To do
this we first need to define parameters. This local parameterization will be of a neigh-
borhood in R(M), not just a neighborhood in Re(M). These more general represen-
tations also have geometric signifigance. They correspond to Thurston’s generalized
Dehn surgery singularities. We will not explain the geometry of these singularities
here.

Let
LM : R(M) −→ C

k
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be the holomorphic map which assigns to each representation the k-tuple of complex
lengths of the k-meridians of (N,C ). This is our first set of parameters.

The second set of parameters comes from the conformal boundary. Given a com-
ponent S of ∂0N we can define a map from GF(N,C ) to the Teichmüller space T (S).
This map assigns to each geometrically finite cone-manifold the conformal boundary
structure on S. If ρ ∈ R(M) is the holonomy of a cone-manifold in GF(N,C ) then by
pre-composing this map with hol−1, we obtain a map ∂S from a neighborhood of ρ in
Re(M) to T (S). Here we choose the unique branch of hol−1 that takes ρ to the given
geometrically finite cone-manifold. There is then a unique holomorphic extension of
∂S to a neighborhood of ρ in R(M).

Repeating the construction for each component of ∂0N and combining the maps
we have a single map

∂ : R(M) −→ T (∂0N).

Strictly speaking ∂ is only defined for a neighborhood of ρ in R(M). We also note
that there are examples of distinct geometrically finite hyperbolic cone-manifolds with
the same holonomy representation. When this happens each manifold will define a
different boundary map ∂ .

Now we combine our two parameters. Define

Φ : R(M) −→ C
k ×T (∂0N)

by Φ(ρ) = (LM (ρ),∂ (ρ)).

Theorem 3.2 ([HK98, HK, Br2]). Let ρ be the holonomy of a geometrically finite
cone-manifold. If the cone-angle is ≤ 2π or the tube radius of the singular locus is
≥ sinh−1 1/

√
2 then the map Φ is a holomorphic local homeomorphism.

Skecth of proof of theorem 3.2. By a theorem of Thurston

dimC R(M) ≥ k +dimC T (∂0N).

Since the map Φ is holomorphic if we can show that the derivative, Φ∗, is injective at
ρ then Φ will be a local homeomorphism at ρ .

The first step in proving this injectivity is a Hodge theorem: Any tangent vector
of R(M) at ρ that is in the kernel of ∂∗ is represented by a harmonic strain field η on
(M,gα ). Note there are some subtle issues to proving this Hodge theorem since our
manifold is not compact and the metric is not complete. In particular, the harmonic
strain field η is only unique after making some choice of boundary conditions for the
solution.

Next we would like to calculate the L2-norm of η on M. Theorem 2.1 tells how to
calculate the L2-norm of a harmonic strain field on a compact manifold with bound-
ary. We can obtain a similar formula for harmonic strain fields on a geometrically
finite manifold if the strain field fixes the conformal boundary. Analytically this is



10 Bromberg

equivalent to ∂∗η = 0 where ∂∗ is the tangent map of the boundary map ∂ from R(M)
to T (∂0N). The pointwise norm of such conformal deformations will decay expo-
nentially and the boundary term in (2.3) will limit to zero for surfaces exiting the
geometrically finite end. This allows us to calculate the L2-norm of η even on the
non-compact geometrically finite ends. In particular, we have

∫

M\U
‖η‖2 +‖∇η‖2 =

∫

∂U
∗∇η ∧η

where U is tubular neighborhood of the singular locus, even though M\U is not com-
pact. Note that in general the L2-norm will be infinite on all of M.

The final step is to calculate the boundary term. This is done in the following way.
In a tubular neighborhood of the singular locus we can decompose η as the sum of
two strain fields, η = η0 + ηc. The first term, η0, is an explicit model deformation
completely determined by the derivatives of the complex lengths of the components
of the singular locus and the meridians. The second term, ηc, is a correction term. It
does not affect the complex length of the singular locus or the meridians. In particular,
there is a vector field v on a tubular neighborhood of the singular locus such that
ηc = sym∇v.

The advantage of this decomposition is that we can now decompose the boundary
term: ∫

∂U
∗∇η ∧η =

∫

∂U
∗∇η0 ∧η0 +

∫

∂U
∗∇ηc ∧ηc. (3.1)

The first term on the right can be calculated explicitly and will be non-positive if
(LM )∗η = 0. The hard work is to show that the second term will always be non-
positive. Together this implies if Φ∗η = 0 then η ≡ 0 and therefore Φ∗ is injective.

The following is a simple corollary of Theorem 3.1 and 3.2.

Corollary 3.3. Let Mα be a geometrically finite cone-manifold with cone angle α
whose singular locus has a tubular neighborhood of radius ≥ sinh−1√2. Then, for t
near α , there exists a one-parameter family of cone-manifolds Mt with cone-angle t
and conformal boundary fixed.

We now set some notation that will be used throughout the rest of the paper. For
any essential simple closed curve γ in M, Lγ (t) is the the length of γ in Mt and Lγ(t) is
the complex length of γ . The imaginary part of Lγ(t) is denoted Θγ(t). For the special
case of the singular locus, LC (t) is the the sum of the lengths of all the components
of the singular locus. Let Ut(R) be the union of the R-tubular neighborhoods of the
components of the singular locus. The n components of the conformal boundary are
denoted X1, . . . ,Xn. The corresponding components of the projective boundary of Mt

are denoted Σ1
t , . . . ,Σn

t .

The next theorem is key in controlling the geometry of the one-parameter family
of cone-manifolds Mt .
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Theorem 3.4. The one parameter family of cone-manifolds Mt can be realized by
metrics gt with derivatives ηt such that ηt is a harmonic strain field outside of a
radius 1 tube of the singular locus and

∫

Mt\Ut (R)
‖ηt‖2 +‖∇tηt‖2 ≤ 2LC (t)

t2 sinh2 R

for all R ≥ 1.

Skecth of proof of theorem 3.4. The proof has two parts: The construction of the met-
rics gt and the estimate on the L2-norm of the strain field ηt . We will skip the first part
and focus on the second.

The bound on the L2-norm of ηt follows the same pattern as the completion of the
proof of Theorem 3.2. For each t we decompose ηt in Ut as ηt = η0 +ηc where η0 is
a model deformation and ηc is a correction term. We have the same decomposition of
the boundary term as in (3.1) and once again the correction term makes a non-positive
contribution. The one difference we have is that the cone angle is now decreasing and
so the term coming from the model deformation will be positive. However, we can
make an explicit calculation to bound this positve number and see that

∫

∂Ut (R)
∗∇tη0 ∧η0 ≤

2LC (t)
t2 sinh2 R

which gives the theorem.

We remark that the only significance of the tube radius 1 in the above theorem is
that 1 > sinh−1 1/

√
2.

4. The drilling theorems

We call the process of decreasing the cone angle “drilling”. In the three drilling the-
orems that follow we control various geometric quantites as we drill. Note that these
drilling theorems only apply where the one-parameter family of cone-manifolds Mt

is defined. To be useful we need to know that we can drill the cone-angle a definite
amount, say from 4π to 2π or 2π to 0. As we will see one consequence of the drilling
theorems is that under certain conditions we can drill this definite amount.

In the first drilling theorem we estimate how the lengths of geodesics change as
we drill.

Theorem 4.1 ([Br04]). For each L > 0 there exists an ε > 0 and an A > 0 such that
if γ is a simple closed curve in M with Lγ (α) ≤ L and LC (α) ≤ ε then

e−ALC (α)Lγ (α) ≤ Lγ(t) ≤ eALC (α)Lγ(α)

and
(1−ALC (α))Θγ (α) ≤ Θγ(t) ≤ (1+ALC (α))Θγ (α)

for all t ≤ α .
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Skecth of proof of theorem 4.1. To prove the first statement we need to bound the
derivative L′

γ (t). There are two cases. The first case is when the length of γ is bounded
but not very short. In this case γ will be in the thick part of Mt . We then use the
L2-bounds given by Theorem 3.4 along with Theorem 2.2 to find a pointwise bound
on ηt for all points on γ . This, in turn, bounds the derivative.

The second case is when γ is very short. By a version of the Margulis Lemma, γ
will have a large tubular neighborhood U . We decompose ηt on U into a model term,
η0, and a correction term, ηc, as before. A bound on the L2-norm of the model will
bound the derivative L′

γ(t). The model term, η0, is like a deformation of a component
of the singular locus that does not change the cone angle. As in the proof of Theorem
3.2 this determines the sign of the boundary term. However, in this case the sign
will be positive since the torus ∂U has the opposite orientation of the boundary torus
in Theorem 3.2. This is because we are calculating the L2-norm on U rather than
its complement. The sign of the boundary term for ηc will also be positive for the
same reason. This last fact, together with Theorem 3.4 gives the desired bound on the
L2-norm of η0 on U .

The second statement of the theorem is proved by a similar method.

In the next drilling theorem we bound the change in the projective boundary of Mt

as we drill. This should be thought of as controlling the geometry of the geometrically
finite ends.

Theorem 4.2 ([Br04]). There exists a C depending only on α , the injectivity radius
of the unique hyperbolic metric on X i and ‖Σi

α‖F such that

d(Σi
α ,Σi

t) ≤CLC (α)

for all t ≤ α .

Skecth of proof of theorem 4.2. The derivative of the path Σi
t in P(X) is a path of

quadratic differentials Φi
t in Q(X i). We will bound the size of Φi

t .

A embedded round disk D in Σi
t bounds an embedded half space H in Mt . The first

step is to show that a bound on the L2-norm of ηt on H implies a bound on the sup
norm of Φi

t with respect to the hyperbolic metric on D. The proof of this fact follows
our previous theme. We decompose the harmonic strain field ηt into a model term, η0,
completely determined by Φi

t and a correction term ηc. Once again the L2-norm of ηt
on H is the sum of the L2-norms of η0 and ηc so Theorem 3.4 bounds the L2-norm of
η0. Since η0 is explicitly determined by Φi

t this bounds the sup norm of Φi
t .

Notice that we have only bounded the sup norm with respect to the hyperbolic
metric on D, not with respect to the hyperbolic metric on X i. To finish the proof we
need to compare the two metrics. In particular for every point z we can find a disk
D containing z where the ratio of the two metrics is bounded by constants depending
only on the injectivity radius of X i and ‖Σi

t‖F .

Together, the previous two results give enough control to prevent any degeneration
as the cone angle decreases. In particular we have the following theorem:
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Theorem 4.3 ([Br04]). For any α > 0 there exists an ` > 0 such that if Mα is a
geometrically finite cone-manifold with LC (α) ≤ ` and tube radius > sinh−1 1/

√
2

then the one parameter family is defined for all t ∈ [0,α ].

The final drilling theorem is also the strongest. Theorem 1.1 is a special case. It
essentially implies the previous two drilling theorems although the dependence of the
constants on the length of the singular locus is not so clear.

Theorem 4.4 ([BB04]). For any K > 1 there exists an ` > 0 depending only on K and
α such that the following holds. If LC (α) ≤ ` there is for each t ∈ [0,α ] a standard
neighborhood Tt(C ) of the singular locus C and a K-bi-Lipschitz diffeomorphism of
pairs

ht : (Mα\Tα(C ),∂Tα (C )) −→ (Mt ,Tt (C ),∂Tt (C )).

Skecth of proof of theorem 4.4. Recall that in Theorem 3.4 we constructed a family of
metrics, Mt = (M,gt), whose derivative was the harmonic strain fields ηt . For points
in the thick part of Mt the combination of Theorems 3.4 and 2.2 bound the pointwise
norm of ηt . Therefore, on the thick part of Mα the identity map on M is a K-bi-
Lipschitz map from (M,gα) to (M,gt) when the singular locus is sufficiently short.

We are left to extend ht to the thin parts of Mα which will be a collection of
Margulis tubes. This is done by hand. The maps ht are K-bi-Lipschitz on the boundary
of these Margulis tubes and we build an explicit extension of this map inside the tube.
The construction is somewhat tedious and we will not describe it here.

5. Geometric inflexibility

A nice application of the boundary formula of Theorem 2.1 is to show exponential
decay of the L2-norm. Essentially, the formula shows that the L2-norm of a harmonic
strain field on the 3-manifold is equal to its L2-norm on the boundary. A function
whose integral equals its boundary values will be exponential. This leads to the expo-
nential decay of harmonic strain fields. Here is the precise theorem:

Theorem 5.1 ([BB]). Let M be a complete hyperbolic 3-manifold with boundary and
η a harmonic strain field on M that has finite L2-norm. Let M(t) be the subset of M
consisting of the points that are distance t or greater from ∂M. Then

∫

M(t)
‖η‖2 +‖∇η‖2 ≤ e−2t

∫

M
‖η‖2 +‖∇η‖2.

Skecth of proof of theorem 5.1. The first step is to see that Theorem 2.1 applies to M
and M(t) to get ∫

M(t)
‖η‖2 +‖∇η‖2 =

∫

∂ M(t)
∗∇η ∧η

even thought M(t) is not compact. The second fact we need is the following inequality

‖η‖2 +‖∇η‖2 ≥ 2‖∗∇η ∧η‖.
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Now let
f (t) =

∫

M(t)
‖η‖2 +‖∇η‖2

which we can rewrite as

f (T ) =

∫ ∞

T

∫

∂ M(t)
(‖η‖2 +‖∇η‖2)dAdt

where dA is the area form on ∂M(t). Differentiating we have

− f ′(t) =

∫

∂ M(t)
(‖η‖2 +‖∇η‖2)dA

≥ 2
∫

∂ M(t)
∗∇η ∧η

≥ 2 f (t).

Integrating both sides of the final inequality gives the theorem.

McMullen has proven a similar theorem, using entirely different methods, for har-
monic strain fields arising from quasi-conformal deformations of complete hyperbolic
3-manifolds. He calls his theorem ”geometric inflexibilty” which we follow.

One application of the geometric inflexibility theorem is stronger versions of the
drilling theorems. For example, the bounds on the change in length of a closed
geodesic given by Theorem 4.1 will decay exponentially in the distance of the geodesic
from the singular locus.

To apply geometric inflexibility to Theorem 4.2 we need another definition. A
geometrically finite cone-manifold will have a convex core which will be a subman-
ifold with boundary consisting of convex surfaces. There will be one component of
the boundary the convex core facing each component of the projective boundary. For
γ a closed geodesic and Σ a component of the projective boundary let d(γ ,Σ) be the
shortest distance from γ to the component of the boundary of the convex core facing
Σ.

Theorem 5.2. There exists C1 and C2 depending only on α , the injectivity radius of
the unique hyperbolic metric X i and ‖Σi

α‖∞ such that

d(Σi
α ,Σi

t ) ≤C1e−C2d(C ,Σi
α )LC (α)

for all t ≤ α .

6. Applications to the Bers’ slice

A Kleinian group is a discrete subgroup of PSL2C. Here we will restrict to the spe-
cial class of Kleinian groups that arise as the image of holonomy representations of
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projective structures on a closed surface S. The advantage of restricting to this class is
that we can use the topology and metric on the space of projective structures to study
the family of Kleinian groups.

For a more precise definition let U(X) be the set of projective structures in P(X)

whose developing map is injective. For every projective Σ ∈ U(X) the image of the
holonomy representation ρ(π1(S)) will act properly discontinuously on the image of
the developing map, D(S̃). Since the developing map is injective, D(S̃) will be an open
topological disk in Ĉ. A group that acts properly discontinuously on a open subset of
Ĉ will be discrete and therefore ρ(π1(S)) is a Kleinian group.

A Kleinian group is quasifuchsian if it acts properly discontinuously on two dis-
joint open disks in Ĉ. Let T (X) be the subset of U(X) where the image of the holon-
omy representation is quasifuchsian. The space T (X) is a Bers’ slice of the space of
all quasifuchsian groups. Let ρ be the holonomy of a projective structure in T (X)

and let Ω be the open disk, disjoint from D(S̃), on which ρ(π1(S)) acts properly dis-
continuously. Then Ω/ρ(π1(S)) defines a projective structure and hence a conformal
structure on S̄, where S̄ is the oriented surface S with the orientation reversed. This
defines a map T (X) −→ T (S̄) which we call the Bers’ isomorphism for reasons that
the following Theorem make apparent.

Theorem 6.1 ([Bers60]). The map T (X) −→ T (S̄) is a homeomorphism.

The Bers’ slice, T (X), is the simplest example of a quasi-conformal deforma-
tion space. The above theorem implies that T (X) is canonically identified with Te-
ichmüller space. Since U(X) is bounded in P(X) the closure T (X) is a compactifica-
tion of Teichmüller space.

In what follows we will continually refer to various objects determined by a pro-
jective structure Σ in U(X). First there is the holonomy representation ρ . Since its
image is a Kleinian group isomorphic to π1(S) the quotient H3/ρ(π1(S)) is a hyper-
bolic 3-manifold M homotopy equivalent to S. By the previous theorem if Σ is in
T (X) it will also determine a conformal structure Y in T (S̄). If we are examining se-
quences of projective structures we will add indices and decorations to Σ. These will
be promoted to all the corresponding objects.

We now state three conjectures about these spaces. Note that all of these conjec-
tures have versions that apply to more general families of Kleinian groups.

The first two conjecture are from Bers’ seminal paper [Bers70] which began the
study of the the space U(X).

The following conjecture is usually called the Bers’ density conjecture:

Conjecture 6.2 ([Bers70]). U(X) = T (X)

A projective structure in ∂T (X) = T (X)\T (X) is a cusp if the image of the holon-
omy representation contains cusps.
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PSfrag replacements

Σ ∈ T (X) ⊂U(X)

Y ∈ T (S̄)

M = H3/ρ(π1(S))

Figure 1: A quasifuchian manifold

Conjecture 6.3 ([Bers70]). Cusps are dense in the boundary of T (X).

The final conjecture we will state is Thurston’s ending lamination conjecture. To
do so we need to define an ending lamination. We will put off doing this till later and
at this point simply state that to each Σ ∈U(X) we can define an end invariant which
is determined by the hyperbolic manifold M.

Conjecture 6.4. An element of U(X) is uniquely determined by its end-invariant.

We note that all three of these conjecture are now known to be true. In fact the
ending lamination conjecture implies the previous two conjectures. Our purpose here
is to describe how the deformation theory developed in this paper can be used to
approach these conjectures. At present this approach still has significant gaps (at least
for the first and third conjecture) but if completed it would provide new proofs of all
three conjectures.

6.1. The Bers’ density conjecture

In its most general form, the density conjecture states that every finitely generated
Kleinian group is a limit of geometrically finite Kleinian groups. Very recently this
complete version of the conjecture has been proven. To do so one needs to com-
bine a number of results: the ending lamination conjecture ([Min02, BCM04]), tame-
ness ([Bon86], [Ag04], [CG04]) and various theorems on limits of Kleinian groups
([Th, Osh90, Brk00, KS02]). Although we will only address a very special case of
the density conjecture here, the methods described apply in greater generality (see
[BB04]).
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Conjecture 6.2 was the original version of the density conjecture. In [Br02] we
proved the following result:

Theorem 6.5. Let Σ be a projective structure in U(X) such that the image of the
holonomy has no parabolics. Then Σ ∈ T (X).

The theorem is proved in two cases. Let M = H3/ρ(π1(S)) be the quotient hy-
perbolic 3-manifold. Then M has bounded geometry if there is a lower bound on the
length of any closed geodesic in M. Otherwise M has unbounded geometry. Minsky
proved Theorem 6.5 when M has bounded geometry. Our contribution was the case
when M has unbounded geometry. We will give a brief sketch of the proof, emphasiz-
ing those parts that use the deformation theory we have described in this paper.

The starting point is the following tameness theorem of Bonahon:

Theorem 6.6 ([Bon86]). The manifold M is homeomorphic to S× (0,1).

A simple closed curve γ in S×(0,1) is unknotted if it is isotopic to a simple closed
curve on S×{1/2}.

Theorem 6.7 ([Br02]). Let γ be an unknotted, simple closed geodesic in M and as-
sume that the product structure is chosen such that γ lies on S×{1/2}. Then there is
a geometrically finite hyperbolic cone-manifold Mγ with the following properties:

(i) The singular locus has a single component with cone angle 4π .

(ii) The length of the singular locus in Mγ is equal to the length of γ in M. The tube
radius of the singular locus in Mγ is greater than or equal to the tube radius of
γ in M.

(iii) M and Mγ are isometric on S× (0,1/2).

The construction of Mγ is similar to the construction of grafting of complex pro-
jective structures. Although we will not go through it here, it is not difficult. The
proof that Mγ is geometrically finite is more involved. For a proof in the above case
see [Br02]. A proof in a more general setting can be found in [BB04]. An expository
account can be found in [BB03].

To apply Theorem 6.7 we use the following theorem of Otal:

Theorem 6.8 ([Ot95, Ot03]). There exists an εunknot > 0 depending only on the genus
of S such that if γ is a closed geodesic in M of length less than ε then γ is unknotted.

Now assume that M has unbounded geometry. Then there exists a sequence of
closed geodesics γi whose lengths limits to zero. In particular we can assume that
Lγi(M) ≤ min{εunknot , `} for all γi where ` is the constant in Theorem 4.3. Then for
each γi, Theorem 6.7 gives us a cone-manifold Mi with cone-angle 4π . Furthermore,
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by (3) of Theorem 6.7 the component of the projective boundary on S×{0} of Mi will
be the original projective structure Σ.

Next we apply Theorem 4.3 to decrease the cone-angle to 2π obtaining a quasi-
fuschsian manifold M′

i . Let Σi be the S×{0} component of the projective boundary
of M′

i . By Theorem 4.2 there exists a C such that d(Σ,Σi) ≤CLγi(Mi) = CLγi(M) and
therefore Σi → Σ, as desired. This completes the sketch of the proof of Theorem 6.5
in the case of unbounded geometry.

What if M has bounded geometry? As we have already mentioned Minsky proved
Theorem 6.5 in this case. He did so by proving the ending lamination conjecture
for manifolds with bounded geometry. One might hope to find a direct approach to
Conjecture 6.2 based on the methods outlined here.

There are two problems. First, there may not be a sequence of unknotted geodesics.
Second, even if we are fortunate enough to have a sequence of unknotted geodesics
the singular locus in the corresponding cone-manifolds will not be short and we won’t
be able to apply Theorem 4.3.

We can circumvent the first problem by lifting to a cover. The second problem is
more serious. For a cone-manifold whose singular locus is not short to guarantee that
the manifold can be deformed to cone angle zero we need to assume the the singular
locus has a large tubular neighborhood. In particular we have the following theorem
whose proof is beyond the scope of this paper:

Theorem 6.9. Given any α ,L > 0 there exists an R > 0 such that the following holds.
Let Mα be a geometrically finite hyperbolic cone-manifold with cone angle α and
LC (α) ≤ L and assume that the singular locus has a tube radius ≥ R. Then the one-
parameter family Mt exists for all t ∈ [0,α ].

The next theorem allows us to circumvent both above problems by lifting to a
cover. It is direct corollary of Theorems 2.1 and 4.3 of [FG01].

Theorem 6.10. Let γ be a closed geodesic in a hyperbolic 3-manifold M with M home-
ophic S×(0,1). Given R > 0, M has a finite cover M̂ for which γ has a homeomorphic
lift γ̂ that is unknotted and has a tubular neighborhood of radius > R.

The tradeoff is that we are now working in a cover instead of with the original
manifold. Because of this we can only prove that the projective structure lies in the
boundary of the universal Teichmüller space. We now define this space. Let P(1)

be the space of bounded, holomorphic quadratic differentials on the unit disk ∆ in Ĉ.
Given Φ ∈ P(1) there exists a locally conformal map f : ∆ −→ Ĉ with S f = Φ. This
f is unique up to post-composition by elements of PSL2C. Let U(1) ⊂ P(1) be those
quadratic differentials where f is injective (or univalent in the language of complex
analysis) and let T (1) ⊂ U(1) be those quadratic differentials where f extends to
a quasi-conformal homeomorphism of all of Ĉ. The space T (1) is usually called
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the universal Teichmüller space because all Teichmüller spaces T (X) embed in T (1).
That is if Σ is a projective structure in P(X) the the universal cover, Σ̃, is a projective
structure in P(1) and the map taking Σ to Σ̃ is an isometry.

Bers2 made the following conjecture:

Conjecture 6.11. U(1) = T (1)

This conjecture is known to be false. Counterexamples where found by Gehring
([Geh78]) and later Thurston ([Th86]). However, we can prove the following theorem

Theorem 6.12. Let Σ∈U(X) be a projective structure whose holonomy does not have
parabolics. Then Σ̃ ∈ T (1).

Proof. In the course of proving Theorem 6.6, Bonahon shows that M has a sequence
of closed geodesics γi with bounded length and d(γi,Σ) → ∞. (Recall that d(γi,Σ) is
the distance from the component of the convex core boundary facing Σ to γi.) Now, for
each γi, apply Theorem 6.10 to obtain a cover to which we can apply both Theorem
6.7 and Theorem 6.9. That is, in the cover, γi lifts to an unknotted geodesic γ̂i along
which we can graft to obtain a geometrically finite cone-manifold M̂i. The tube radius
of singular locus will be sufficiently large so that we can decrease the cone angle to
2π and obtain a quasifuchsian manifold M̂′

i .

Let Σ̂i be the corresponding cover of the projective structure Σ. Then Σ̂i is a com-
ponent of the projective boundary of the cone-manifold M̂i. After the cone-manifold
deformation this projective structure deforms to a projective structure Σ̂′

i. By Theorem
5.2 we have

d(Σ̂i, Σ̂′
i) ≤ e−kd(Σ̂i,γ̂i)Lγi(M̂i). (6.1)

Now d(Σ̂i, γ̂i) = d(Σ,γ) which limits to zero and Lγ̂i(M̂i) = Lγi(M) is bounded so the
left hand side of (6.1) limits to zero. Therefore Σ̃i → Σ̃ = Σ̃i in U(1) as desired.

6.2. Cusps are dense

The conjugacy classes of parabolics in ρ(π1(S)) correspond to disjoint simple closed
curves on S. In particular there are at most 3g− 3 conjugacy classes. A cusp whose
holonomy has this maximal number of conjugacy classes of parabolics is called a
maximal cusp. McMullen proved the following strong version of Conjecture 6.3.

Theorem 6.13 ([Mc91]). Maximal cusps are dense on the boundary of T (X).

Proof. Our proof will follow McMullen’s except that we will replace his key estimate
with Theorem 4.2. The part of the argument that we copy can be found on p. 221 of
[Mc91].

2Conjectures 6.2 and 6.11 are labelled Conjectures II and I in [Bers70]. After stating Conjecture II Bers
remarks “This would, of course, be a consequence of Conjecture I”. This is not obvious to this author.
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The first step is to note that projective structures whose holonomy does not have
parabolics are dense in ∂T (X). Let Σ be such a projective structure. To prove the the-
orem we need to show that Σ is approximated by maximal cusps. To do this McMullen
finds projective structures Σi ∈ T (X) that limit to Σ with the following property: The
projective structures Σi correspond to conformal structures Yi ∈ T (S̄). For each Yi there
is a pants decompositions Pi such that LPi(Yi)→ 0 where the length is measured in the
unique hyperbolic metric on Yi.

On Yi we may assume that LPi(Yi) ≤ 1
2 min(εunknot , `) where ` is the constant in

Theorem 4.3. By Bers’ inequality ([Bers70]) this implies that LPi(Mi)≤min(εunknot , `)
where Mi is the quasifuchsian hyperbolic manifold determined by Σi. Now view Mi as
a cone-manifold with singular locus Pi and cone angle 2π . Since LPi(Mi) ≤ ` we can
decrease the cone angle of Mi to zero to obtain a manifold M′

i with rank two cusps.
The projective structure Σi is a component of the projective boundary of Mi and it
deforms to a projective structure Σ′

i. By Theorem 4.2

d(Σi,Σ′
i) ≤ KLPi(Mi)

and therefore
lim
i→∞

Σ′
i = lim

i→∞
Σi = Σ.

What remains to show is that the Σ′
i are maximal cusps. Let M̂i be the cover of M′

i
corresponding to the boundary component Σ′

i. Since LPi(Mi) ≤ εunknot , the geodesic
representative of Pi is unknotted in Mi and therefore M′

i is homeomorphic to S× (0,1)
with the curves Pi removed from the halfway surface S ×{1/2}. Therefore M̂i is
homeomorphic to S× (0,1) and every curve in Pi will be parabolic. This implies that
Σ′

i is a maximal cusp.

There are versions of the density of cusps for more general quasiconformal de-
formation spaces in [CCHS03] and [CH04]. Both of these papers are generalizations
of McMullen’s methods. We note that our methods can also be used to prove these
generalizations. See §8 of [Br04].

6.3. The ending lamination conjecture

The ending lamination conjecture is a classification of Kleinian groups isomorphic
to a fixed group. The complete conjecture has recently be proven by Brock, Canary
and Minsky ([Min02, BCM04]), completing a program of Minsky. In this section we
will discuss an alternate approach to the conjecture. The approach is motivated by a
theorem of R. Evans, which we will mention below. We also note, that this approach,
if successful, uses some of Minsky’s results in a key way and is heavily influenced by
his ideas. The main difference is that we do not use the “model manifold”.

The classifying objects are end-invariants which are objects associated to the sur-
faces that compactify the higher genus ends of the hyperbolic manifold. For groups
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without parabolics these invariants are either a conformal structure or a filling lam-
ination on the surface compactifying the end. With parabolics the situation is more
complicated. As usual, we will restrict to groups without parabolics.

For Σ ∈ U(X) the corresponding manifolds M has two ends both compactified by
S. On S×{0} the end-invariant is always the conformal structure X . If Σ ∈ T (X)

then the end-invariant for S×{1} will also be a conformal structure. In this case
the conformal structure will be the image of Σ in T (S̄) under the Bers’ isomorphism.
For Σ ∈ U(X)\T (X) the end-invariant is a lamination. To define it we recall that
there is a sequence of closed geodesics, γi, whose length is bounded and such that
d(γi,Σ) → 0. Furthermore, Bonahon ([Bon86]) shows that these geodesics can be
chosen to be homotopic to simple closed curves on S×{1/2}. As simple closed curves
on S, the γi will limit to a lamination λ . Most importantly this ending lamination
will not depend on the initial choice of geodesics. This is also a result of Bonahon
([Bon86]).

The following theorem of Minsky shows the importance of the ending lamina-
tion. It is a combination of his proof of the ending lamination conjecture for bounded
geometry manifolds and one of the first steps in the proof of the general conjecture.

Theorem 6.14 ([Min01]). Let Σ and Σ′ be projective structures in U(X) and assume
that the corresponding hyperbolic manifolds M and M ′ have the same end-invariant.
Then either:

(i) M and M′ are isometric.

(ii) M and M′ both have unbounded geometry and there exists a sequence of simple
closed curves γi so that both Lγi(M) and Lγi(M

′) limit to zero.

We empasize that (1) and (2) are not mutually exclusive. In fact the goal is to show
that (1) always holds. This is exactly the ending lamination conjecture.

For γ a simple closed curve on S, let U(X ,γ)⊂U(X) be those projective structures
in U(X) where the conjugacy class of γ is parabolic under the holonomy representa-
tion. Let dC (γ ,X) be the distance between γ and X in the curve complex. That is
dC (γ ,X) is the minimum number k such that there exist k +1 essential simple closed
curves, β0, . . . ,βk on S with β0 = γ , βi and βi+1 disjoint, and βk a bounded length
curve in the hyperbolic metric on X .

While we believe the following conjecture is interesting in its own right, as we will
see below it also implies the ending lamination conjecture for manifolds in U(X) with
unbounded geometry.

Conjecture 6.15. There exists a constants C1 and C2, depending only on the genus of
S, such that the diameter of U(X ,γ) in P(X) is bounded by C1e−C2dC (X,γ).

Our motivation for this conjecture is as follows. The distance dC (γ ,X) gives a
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lower bound on the thickness of the convex core of every manifold in U(X ,γ). One
then wants to combine this with geometric inflexibility to obtain the desired bound.

We now show how Theorem 6.14 and Conjecture 6.15 together imply the ending
lamination conjecture for projective structures in U(X) with unbounded geometry and
no cusps.

Let Σ and Σ′ be as in Theorem 6.14 and assume that M and M′ have unbounded
geometry. Let γi be the sequence given by (2) in Theorem 6.14. By Theorem 6.5 there
exists a sequence Σi in T (X) converging to Σ. Let Mi be the associated hyperbolic
3-manifolds. After passing to a subsequence we can assume that Lγi(Mi) → 0. Now
repeating the construction in the proof of Theorem 6.13, for each Σi we can find a cusp
Σ̂i in U(X ,γi) such that

d(Σi, Σ̂i) ≤CLγi(Mi).

Therefore the sequence Σ̂i converges to Σ. We similarly find a sequence Σ̂′
i converging

to Σ′ with each Σ̂′
i in U(X ,γi). Finally we note that the γi converge to the ending lami-

nation so dC (γi,X) limits to infinity. Conjecture 6.15 then implies that both sequences
Σ̂i and Σ̂′

i have the same limit so Σ = Σ′.

Note that, in the above argument, if we replace the curves γi with pants decompo-
sitions Pi such that

lim
i→∞

LPi(M) = lim
i→∞

LPi(M
′) = 0

then Σ̂i and Σ̂′
i will be maximal cusps. Since maximal cusps are uniquely determined

by the pants decompositon Σ̂i = Σ̂′
i and the corresponding limits, Σ and Σ′, are equal

without appealing to Conjecture 6.15. This argument, due to Evans, leads to the fol-
lowing theorem that we mentioned at the begining of this section.

Theorem 6.16 ([Ev03]). Let Σ and Σ′ be projective structures in U(X) with corre-
sponding hyperbolic manifolds M and M′. Assume that there exist a sequence of pants
decompositions Pi with

lim
i→∞

LPi(M) = lim
i→∞

LPi(M
′) = 0.

Then Σ = Σ′.

We remark that having such a shrinking pants decomposition is not as restrictive
as it may seem. In fact, the density of maximal cusps (Theorem 6.13) implies that
there is a dense Gδ of such manifolds in ∂T (X). Furthermore, if M has such a se-
quence of pants decompositions and M′ has the same ending lamination as M then the
lengths of the same sequence of pants will limit to zero in M ′. This last statement is
proven in [Min02] and is a large part of the proof of the ending lamination conjecture.
Namely, in [Min02], Minsky constructs a model for M that is completely determined
by combinatorial information coming from the ending lamination. He then shows that
there is a Lipschitz map from this model to the hyperbolic manifold M. Furthermore,
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every sufficiently short curve in M will also be short in the model. Therefore, if M ′

has the same ending lamination as M then it will have the same model and the same
short geodesics. The final step in Brock, Canary and Minsky’s proof of the ending
lamination conjecture is to show that this model is also bi-Lipschitz. This is done in
[BCM04]. On the other hand, Theorem 6.16 completely avoids the work in [BCM04]
which seems significant.
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