In a previous homework we constructed Cantor sets in $[0,1]$ with measure any $\epsilon<1$. A closer look at the construction shows that for any open interval I and any $\epsilon<1$ we can find a Cantor set $C \subset I$ with the following properties:
(A) $m(C)=\epsilon m(I)$;
(B) C is closed and nowhere dense with no isolated points.
(C) Each component of $I \backslash C$ is an interval of width $<m(I) / 2$.

We use Cantor sets to construct the set E.
Lemma 0.1 For any $\epsilon>0$ there exist Borel sets $C_{n} \subset[0,1]$ with the following properties:
(1) $C_{n} \subset C_{n+1}$;
(2) C_{n} is closed and nowhere dense;
(3) each component of $(0,1) \backslash C_{n}$ is an interval of measure less than $1 / 2^{n}$;
(4) if I is a component of $(0,1) \backslash C_{n-1}$ then $I \cap C_{n}=\emptyset$ if $m(I)<1 / 2^{n}$ and $0<m(I \cap$ $\left.C_{n}\right)<\epsilon / 2^{3 n+2}$ otherwise.

Proof. We proceed by induction. Let $C_{0}=\emptyset$.
Assuming the sets $C_{0}, \ldots, C_{n_{1}}$ have been constructed we build C_{n}. The complement $[0,1] \backslash C_{n-1}$ can contain at most 2^{n} intervals of measure $>1 / 2^{n}$. Label them I_{1}, \ldots, I_{k}. Let D_{i} be a Cantor set in I_{i} with $m\left(D_{i}\right)=\epsilon / 2^{3 n+2}$ and such that each component of $I_{i} \backslash D_{i}$ has measure $<m\left(I_{i}\right) / 2<1 / 2^{n}$ where the last inequality follows from $m\left(I_{i}\right)<1 / 2^{n-1}$.. Let $A_{n}=\cup_{i=1}^{k} D_{i}$ and $C_{n}=A_{n} \cup C_{n-1}$. We need to show that C_{n} satisfies (1)-(4).

Property (1) clearly holds. For (2) we note that a finite union of closed, nowhere dense sets is closed and nowhere dense so A_{n} and $C_{n}=C_{n-1} \cup A_{n}$ are closed and nowhere dense.

Every component I of $[0,1] \backslash C_{n}$ is contained in some component I^{\prime} of $[0,1] \backslash C_{n-1}$. If $m\left(I^{\prime}\right)<1 / 2^{n}$ then $m(I)<1 / 2^{n}$ (and $\left.I^{\prime}=I\right)$. Otherwise I is a component of $I^{\prime} \backslash D^{\prime}$ where D^{\prime} is a Cantor set, as above, and again $m(I)<1 / 2^{n}$. This gives (3).

Property (4) follows directly from our construction.

Lemma 0.2 Let $E=\cup C_{n}$ where the C_{n} are sets from Lemma 0.1. If $I \subset(0,1)$ is a component of $(0,1) \backslash C_{n}$ then $0<m(I \cap E)<\epsilon m(I)$.

Proof. By (3), $m(I)<1 / 2^{n}$. We will bound $m\left(I \cap\left(C_{k} \backslash C_{k-1}\right)\right)$ for $k \geq n$. We first note that there exists an $m \geq n$ such that $1 / 2^{m+1} \leq m(I)<1 / 2^{m}$. We then have:

- If $k<m$, then by (4), $I \cap C_{k+1}=\emptyset$ so $m\left(I \cap\left(C_{k+1} \backslash C_{k}\right)\right)=0$.
- If $k=m$, then (4) implies that $0<m\left(I \cap C_{k+1}\right)<\epsilon / 2^{3(k+1)+2}$. Since $I \cap C_{k}=\emptyset$ we have $m\left(I \cap\left(C_{k+1} \backslash C_{k}\right)\right)=m\left(I \cap C_{k}\right)$.
- If $k>m$, then every component of $(0,1) \backslash C_{k}$ that intersects I will be contained in I. In particular there are at most $\left\lfloor m(I) /\left(1 / 2^{k+1}\right)\right\rfloor \leq 2^{k+1-m}$ components of $(0,1) \backslash C_{k}$ of measure $\geq 1 / 2^{k+1}$, that intersect I. Property (4) then implies that $m\left(I \cap\left(C_{k+1} / C_{k}\right)\right) \leq 2^{k+1-m} \epsilon / 2^{3(k+1)+2}=\epsilon / 2^{2 k-m+4}$.
We then calculate

$$
\begin{aligned}
m(I \cap E) & =\sum_{k=1}^{\infty} m\left(I \cap\left(C_{k} \backslash C_{k-1}\right)\right) \\
& =m\left(I \cap\left(C_{m} \backslash C_{m-1}\right)\right)+\sum_{k=m+1}^{\infty} m\left(I \cap\left(C_{k} \backslash C_{k-1}\right)\right) \\
& \leq \frac{\epsilon}{2^{3(m+1)+2}}+\sum_{k=m+1}^{\infty} \frac{\epsilon}{2^{2 k-m+4}} \\
& =\frac{\epsilon}{2^{3(m+1)+2}}+\frac{\epsilon}{2^{m+2}} \\
& <\frac{\epsilon}{2^{m+1}}
\end{aligned}
$$

and therefore $m(I \cap E)<\epsilon m(I)$.
Note that the second bullet implies that $m(I \cap E)>0$.
Note that if we apply the previous lemma to $(0,1)=(0,1) \backslash C_{0}$ we see that $m(I \cap E)=$ $m(E)<\epsilon$.

Lemma 0.3 If $J \subset(0,1)$ is an interval then $0<m(E \cap J)<m(J)$.
Proof. We need to show that for some n there is a component I of $(0,1) \backslash C_{n}$ such that $I \subset J$. Then by Lemma $0.2, m(J \cap E) \geq m(I \cap E)>0$ and $m(J \cap E)=$ $m((J \backslash I) \cap E)+m(I \cap E)<m(J \backslash I)+m(I)=m(J)$.

Pick an x in the interior of I. Then there exists a $\delta>0$ such that $(x-\delta, x+\delta) \subset I$. Fix $n>0$ such that $1 / 2^{n-1}<\delta$. Since C_{n} is nowhere dense there exists a $y \in(0,1) \backslash C_{n}$ such that $|x-y|<1 / 2^{n}$. By property (3) y is a contained in a component I of $(0,1) \backslash C_{n}$ with $m(I)<1 / 2^{n}$ and therefore $I \subset(x-\delta, x+\delta) \subset J$.

We have now constructed the desired set on the interval $(0,1)$. By translating a copy of the set E to each interval $(n, n+1)$ we get such a set on \mathbb{R}. Note that we can choose each translate to have measure $1 /\left(1+|n|^{2}\right)$ so that the total set has finite measure.

