Math 6210 - Homework 5

Try to finish before the Thanksgiving break.

Let $([0,1], \mathfrak{M}, m)$ be the standard Lebesgue measure space on [0,1] and let $L^2[0,1] = L^2(m)$ (using the notation from Rudin).

- 1. Define $T: L^2[0,1] \to L^2[0,1]$ by (Tf)(t) = tf(t). Show that:
 - (a) T is bounded and symmetric with ||T|| = 1;
 - (b) has no eigenvalues;
 - (c) and $T \lambda I$ is surjective if and only if $\lambda \notin [0, 1]$.

Now let $([0,1]^n, \mathfrak{M}, m)$ be Lebesgue measure on the cube in \mathbb{R}^n and let $L^2([0,1]^n) = L^2(m)$. We want to find an orthonormal basis for $L^2([0,1]^n)$. Our strategy will be the same as it was for $L^1[0,1]$.

We can also define Fourier series for periodic functions on \mathbb{R}^n . (If you like you can simplify things by assuming n = 2.)

We need a bit of notation. If $\boldsymbol{\xi} \in \mathbb{Z}^n$ and $\mathbf{x} \in \mathbb{R}^n$ then $\boldsymbol{\xi} \cdot \mathbf{x} = \xi_1 x_1 + \cdots + \xi_n x_n$. Let $|\boldsymbol{\xi}|_{\infty} = \max\{|\xi_1|, \ldots, |\xi_n|\}$.

A function $f : \mathbb{R}^n \to \mathbb{C}$ is periodic if $f(\mathbf{x}) = f(\mathbf{x} + \boldsymbol{\xi})$ for all $\mathbf{x} \in \mathbb{R}^n$ and $\boldsymbol{\xi} \in \mathbb{Z}^n$. Let $C(\mathbb{T}^n)$ be continuous periodic functions on \mathbb{R}^n . Of course, any function in $C(\mathbb{T}^n)$ can be restricted to a function in $L^2([0,1]^n)$. We want to show that the functions $e_{\boldsymbol{\xi}}(\mathbf{x}) = e^{2\pi i \boldsymbol{\xi} \cdot \mathbf{x}}$ are an orthonormal basis for $L^2([0,1]^n)$.

- 2. Show that $(e_{\xi_0}, e_{\xi_1}) = 1$ if $\xi_0 = \xi_1$ and $(e_{\xi_0}, e_{\xi_1}) = 0$ if $\xi_0 \neq \xi_1$.
- 3. Show that $e_{\boldsymbol{\xi}}(\mathbf{x})e_{\boldsymbol{\xi}}(\mathbf{y}) = e_{\boldsymbol{\xi}}(\mathbf{x} + \mathbf{y}).$
- 4. (Optional) Let

$$D_N(x) = \sum_{k=-N}^{N} e^{2\pi i k x}$$

and show that

$$D_N(x) = \frac{\sin(\pi(2N+1)x)}{\sin(\pi x)},$$

5. (Optional) Let

$$K_N(x) = \frac{1}{N} \sum_{k=0}^{N-1} D_k(x)$$

and show that

$$K_N(x) = \frac{1}{N} \left(\frac{\sin(N\pi x)}{\sin(\pi x)} \right)^2.$$

6. Let

$$\mathbf{K}_{N}(\mathbf{x}) = \frac{1}{N^{n}} \prod_{j=1}^{n} \sum_{M=0}^{N-1} \sum_{k=-M}^{M} e^{2\pi i k x_{j}}.$$

Show that

$$\mathbf{K}_N(\mathbf{x}) = \frac{1}{N^n} \prod_{j=1}^n \left(\frac{\sin(N\pi x_j)}{\sin(\pi x_j)} \right)^2$$

and that $\mathbf{K}_N(\mathbf{x})$ is a finite linear combination of $e_{\boldsymbol{\xi}}(\mathbf{x})$. Conclude that

$$f_N(\mathbf{x}) = \int_{[0,1]^n} f(\mathbf{y}) \mathbf{K}_N(\mathbf{x} - \mathbf{y}) dm(\mathbf{y})$$

is a finite linear combination of $e_{\boldsymbol{\xi}}(\mathbf{x})$.

- 7. Periodic functions $\Phi_k \in C(\mathbb{T}^n)$ form an *approximate identity* if
 - (a) $\int_{[0,1]^n} \Phi_k(\mathbf{x}) dm(\mathbf{x}) = 1;$
 - (b) $\sup_n \int_{[0,1]^n} |\Phi_k(\mathbf{x})| dm(\mathbf{x}) < \infty;$
 - (c) For all $\delta > 0$, $\int_{1/2 > |\mathbf{x}| > \delta} |\Phi_k(\mathbf{x})| dm(\mathbf{x}) \to 0$.

If Φ_k is an approximate identity and f is continuous show that

$$\int_{[0,1]^n} f(\mathbf{y}) \Phi_k(\mathbf{x} - \mathbf{y}) dm(\mathbf{y}) \to f(\mathbf{x})$$

uniformly.

8. Show that $\mathbf{K}_N(\mathbf{x})$ is an approximate identity and therefore if f is in $C(\mathbb{T}^n)$ show that f_N converges to f uniformly. Conclude that the $e_{\boldsymbol{\xi}}$ are an orthonormal basis for $L^2([0,1]^n)$.

Hint: If [a, b] is an interval show that

$$\int_{[a,b]\times[-1/2,1/2]^{n-1}} \mathbf{K}_N(\mathbf{x}) dm(\mathbf{x}) = \int_a^b K_N(x) dm(x)$$

and therefore for all $\delta > 0$ we have

$$\lim_{N \to \infty} \int_{[\delta, 1/2] \times [-1/2, 1/2]^{n-1}} \mathbf{K}_N(\mathbf{x}) dm(\mathbf{x}) \to 0$$

with the same statement holding if we replace $[\delta, 1/2]$ with $[-1/2, -\delta]$. Use the fact that the set of \mathbf{x} with $1/2 > |\mathbf{x}| > \delta$ can be covered by 2n sets of the form $[\delta', 1/2] \times [-1/2, 1/2]^{n-1}$ or $[-1/2, -\delta'] \times [-1/2, 1/2]^{n-1}$ for some $\delta' > 0$ to show that $\mathbf{K}_N(\mathbf{x})$ satisfies (c).

9. Let H_s^n be sequences $u_{\boldsymbol{\xi}}$ indexed by $\boldsymbol{\xi} \in \mathbb{Z}^n$ such that

$$\sum_{\boldsymbol{\xi}\in\mathbb{Z}^n}(1+|\boldsymbol{\xi}|^2)^s|u_{\boldsymbol{\xi}}|^2<\infty.$$

Show that if $s \ge \lfloor n/2 \rfloor + 1$ and $u \in H_s^n$ then the series $\sum |u_{\boldsymbol{\xi}}|$ converges. Conclude that $\sum u_{\boldsymbol{\xi}} e_{\boldsymbol{\xi}}(\mathbf{x})$ converges to a continuous function. (Hint: Write $|u_{\boldsymbol{\xi}}| = (1 + |\boldsymbol{\xi}|^2)^{-s/2}(1 + |\boldsymbol{\xi}|^2)^{s/2}|u_{\boldsymbol{\xi}}|$ and apply the Cauchy-Schwarz inequality. You will use the assumption that $s \ge \lfloor n/2 \rfloor + 1$ to show that $\sum (1 + |\boldsymbol{\xi}|^2)^{-s}$ converges.)

If $s \ge \lfloor n/2 \rfloor + m + 1$ show $\sum u_{\boldsymbol{\xi}} e_{\boldsymbol{\xi}}(\mathbf{x})$ has partial derivatives of all order $\le m$.

10. We can make H_s^n into a Hilbert space by defining the inner product

$$(u,v)_s = \sum_{\boldsymbol{\xi} \in \mathbb{Z}^n} (1+|\boldsymbol{\xi}|^2)^s u_{\boldsymbol{\xi}} \overline{v}_{\boldsymbol{\xi}}.$$

If s > t show that the inclusion of H_s^n in H_t^n is a compact operator.