Math 6210 - Homework 5

Try to finish before the Thanksgiving break.

Let $([0,1], \mathfrak{M}, m)$ be the standard Lebesgue measure space on $[0,1]$ and let $L^{2}[0,1]=L^{2}(m)$ (using the notation from Rudin).

1. Define $T: L^{2}[0,1] \rightarrow L^{2}[0,1]$ by $(T f)(t)=t f(t)$. Show that:
(a) T is bounded and symmetric with $\|T\|=1$;
(b) has no eigenvalues;
(c) and $T-\lambda I$ is surjective if and only if $\lambda \notin[0,1]$.

Now let $\left([0,1]^{n}, \mathfrak{M}, m\right)$ be Lebesgue measure on the cube in \mathbb{R}^{n} and let $L^{2}\left([0,1]^{n}\right)=L^{2}(m)$. We want to find an orthonormal basis for $L^{2}\left([0,1]^{n}\right)$. Our strategy will be the same as it was for $L^{1}[0,1]$.

We can also define Fourier series for periodic functions on \mathbb{R}^{n}. (If you like you can simplify things by assuming $n=2$.)

We need a bit of notation. If $\boldsymbol{\xi} \in \mathbb{Z}^{n}$ and $\mathbf{x} \in \mathbb{R}^{n}$ then $\boldsymbol{\xi} \cdot \mathbf{x}=\xi_{1} x_{1}+\cdots+\xi_{n} x_{n}$. Let $|\boldsymbol{\xi}|_{\infty}=$ $\max \left\{\left|\xi_{1}\right|, \ldots,\left|\xi_{n}\right|\right\}$.

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is periodic if $f(\mathbf{x})=f(\mathbf{x}+\boldsymbol{\xi})$ for all $\mathbf{x} \in \mathbb{R}^{n}$ and $\boldsymbol{\xi} \in \mathbb{Z}^{n}$. Let $C\left(\mathbb{T}^{n}\right)$ be continuous periodic functions on \mathbb{R}^{n}. Of course, any function in $C\left(\mathbb{T}^{n}\right)$ can be restricted to a function in $L^{2}\left([0,1]^{n}\right)$. We want to show that the functions $e_{\boldsymbol{\xi}}(\mathbf{x})=e^{2 \pi \imath \xi \cdot \mathbf{x}}$ are an orthonormal basis for $L^{2}\left([0,1]^{n}\right)$.
2. Show that $\left(e_{\boldsymbol{\xi}_{0}}, e_{\boldsymbol{\xi}_{1}}\right)=1$ if $\boldsymbol{\xi}_{0}=\boldsymbol{\xi}_{1}$ and $\left(e_{\boldsymbol{\xi}_{0}}, e_{\boldsymbol{\xi}_{1}}\right)=0$ if $\boldsymbol{\xi}_{0} \neq \boldsymbol{\xi}_{1}$.
3. Show that $e_{\boldsymbol{\xi}}(\mathbf{x}) e_{\boldsymbol{\xi}}(\mathbf{y})=e_{\boldsymbol{\xi}}(\mathbf{x}+\mathbf{y})$.
4. (Optional) Let

$$
D_{N}(x)=\sum_{k=-N}^{N} e^{2 \pi \imath k x}
$$

and show that

$$
D_{N}(x)=\frac{\sin (\pi(2 N+1) x)}{\sin (\pi x)} .
$$

5. (Optional) Let

$$
K_{N}(x)=\frac{1}{N} \sum_{k=0}^{N-1} D_{k}(x)
$$

and show that

$$
K_{N}(x)=\frac{1}{N}\left(\frac{\sin (N \pi x)}{\sin (\pi x)}\right)^{2}
$$

6. Let

$$
\mathbf{K}_{N}(\mathbf{x})=\frac{1}{N^{n}} \prod_{j=1}^{n} \sum_{M=0}^{N-1} \sum_{k=-M}^{M} e^{2 \pi \imath k x_{j}} .
$$

Show that

$$
\mathbf{K}_{N}(\mathbf{x})=\frac{1}{N^{n}} \prod_{j=1}^{n}\left(\frac{\sin \left(N \pi x_{j}\right)}{\sin \left(\pi x_{j}\right)}\right)^{2}
$$

and that $\mathbf{K}_{N}(\mathbf{x})$ is a finite linear combination of $e_{\boldsymbol{\xi}}(\mathbf{x})$. Conclude that

$$
f_{N}(\mathbf{x})=\int_{[0,1]^{n}} f(\mathbf{y}) \mathbf{K}_{N}(\mathbf{x}-\mathbf{y}) d m(\mathbf{y})
$$

is a finite linear combination of $e_{\boldsymbol{\xi}}(\mathbf{x})$.
7. Periodic functions $\Phi_{k} \in C\left(\mathbb{T}^{n}\right)$ form an approximate identity if
(a) $\int_{[0,1]^{n}} \Phi_{k}(\mathbf{x}) d m(\mathbf{x})=1 ;$
(b) $\sup _{n} \int_{[0,1]^{n}}\left|\Phi_{k}(\mathbf{x})\right| d m(\mathbf{x})<\infty$;
(c) For all $\delta>0, \int_{1 / 2>|\mathbf{x}|>\delta}\left|\Phi_{k}(\mathbf{x})\right| d m(\mathbf{x}) \rightarrow 0$.

If Φ_{k} is an approximate identity and f is continuous show that

$$
\int_{[0,1]^{n}} f(\mathbf{y}) \Phi_{k}(\mathbf{x}-\mathbf{y}) d m(\mathbf{y}) \rightarrow f(\mathbf{x})
$$

uniformly.
8. Show that $\mathbf{K}_{N}(\mathbf{x})$ is an approximate identity and therefore if f is in $C\left(\mathbb{T}^{n}\right)$ show that f_{N} converges to f uniformly. Conclude that the $e_{\boldsymbol{\xi}}$ are an orthonormal basis for $L^{2}\left([0,1]^{n}\right)$.
Hint: If $[a, b]$ is an interval show that

$$
\int_{[a, b] \times[-1 / 2,1 / 2]^{n-1}} \mathbf{K}_{N}(\mathbf{x}) d m(\mathbf{x})=\int_{a}^{b} K_{N}(x) d m(x)
$$

and therefore for all $\delta>0$ we have

$$
\lim _{N \rightarrow \infty} \int_{[\delta, 1 / 2] \times[-1 / 2,1 / 2]^{n-1}} \mathbf{K}_{N}(\mathbf{x}) d m(\mathbf{x}) \rightarrow 0
$$

with the same statement holding if we replace $[\delta, 1 / 2]$ with $[-1 / 2,-\delta]$. Use the fact that the set of \mathbf{x} with $1 / 2>|\mathbf{x}|>\delta$ can be covered by $2 n$ sets of the form $\left[\delta^{\prime}, 1 / 2\right] \times[-1 / 2,1 / 2]^{n-1}$ or $\left[-1 / 2,-\delta^{\prime}\right] \times[-1 / 2,1 / 2]^{n-1}$ for some $\delta^{\prime}>0$ to show that $\mathbf{K}_{N}(\mathbf{x})$ satisfies (c).
9. Let H_{s}^{n} be sequences $u_{\boldsymbol{\xi}}$ indexed by $\boldsymbol{\xi} \in \mathbb{Z}^{n}$ such that

$$
\sum_{\boldsymbol{\xi} \in \mathbb{Z}^{n}}\left(1+|\boldsymbol{\xi}|^{2}\right)^{s}\left|u_{\boldsymbol{\xi}}\right|^{2}<\infty
$$

Show that if $s \geq\lfloor n / 2\rfloor+1$ and $u \in H_{s}^{n}$ then the series $\sum\left|u_{\boldsymbol{\xi}}\right|$ converges. Conclude that $\sum u_{\boldsymbol{\xi}} e_{\boldsymbol{\xi}}(\mathbf{x})$ converges to a continuous function. (Hint: Write $\left|u_{\boldsymbol{\xi}}\right|=\left(1+|\boldsymbol{\xi}|^{2}\right)^{-s / 2}(1+$ $\left.|\boldsymbol{\xi}|^{2}\right)^{s / 2}\left|u_{\boldsymbol{\xi}}\right|$ and apply the Cauchy-Schwarz inequality. You will use the assumption that $s \geq\lfloor n / 2\rfloor+1$ to show that $\sum\left(1+|\boldsymbol{\xi}|^{2}\right)^{-s}$ converges.)
If $s \geq\lfloor n / 2\rfloor+m+1$ show $\sum u_{\boldsymbol{\xi}} e_{\boldsymbol{\xi}}(\mathbf{x})$ has partial derivatives of all order $\leq m$.
10. We can make H_{s}^{n} into a Hilbert space by defining the inner product

$$
(u, v)_{s}=\sum_{\boldsymbol{\xi} \in \mathbb{Z}^{n}}\left(1+|\boldsymbol{\xi}|^{2}\right)^{s} u_{\boldsymbol{\xi}} \overline{\boldsymbol{v}}_{\boldsymbol{\xi}} .
$$

If $s>t$ show that the inclusion of H_{s}^{n} in H_{t}^{n} is a compact operator.

