Math 6210 - Homework 2

Due in class on $9 / 15 / 10$

From Rudin: Chapter 1, \# 3,5,6,11,12
Let $f:[0,1] \rightarrow[0, \infty)$ be a bounded, Riemann integrable function. Show that f is measurable and that the Riemann integral and Lebesgue integral agree. Here is one outline of a proof.

1. Find simple measurable functions, f_{i}^{+}and f_{i}^{-}, such that $f_{i}^{+} \geq f_{i+1}^{+} \geq f, f_{i}^{-} \leq f_{i+1}^{-} \leq f$ and in both cases the limit of the Riemann and Lebesgue integrals of the sequences converges to the Riemann integral of f.
2. Let $h:[0,1] \rightarrow[0, \infty)$ be a measurable function such that $h^{-1}((0, \infty))$ has positive measure. Show that the Lebesgue integral of h is positive.
3. Let $f^{+}=\underset{i \rightarrow \infty}{f_{i}^{+}}$and $f^{-}=\underset{i \rightarrow \infty}{f_{i}^{-}}$. Use (b) to show that the set of points where $f^{+} \neq f^{-}$has measure zero. Conclude that $f=f^{-}$(or f^{+}) outside of a set of measure zero.
4. Let f_{0} and f_{1} be functions such that $f_{0}=f_{1}$ a.e. Show that if f_{0} is measurable then f_{1} is measurable.
5. Conclude that f is measurable and that the Riemann and Lebesgue integrals agree.
