Math 6210 - Homework 1

Due in class on 9/1/10

We first recall the definition of the Riemann integral (on the interval [0,1]). A partition, \mathcal{P} , of the interval [0,1] is a finite increasing sequence $x_0 < x_1 \cdots < x_n$ with $x_0 = 0$ and $x_1 = 1$. The partition \mathcal{P} divides the interval [0,1] into n subintervals $[x_{i-1},x_i]$ of width $\Delta_i = x_i - x_{i-1}$. Given a function

$$f:[0,1]\longrightarrow \mathbb{R}$$

for each subinterval define

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$$

and

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x).$$

We then define the lower and upper Riemann sums by

$$L(f, \mathcal{P}) = \sum m_i \Delta_i$$

and

$$U(f, \mathcal{P}) = \sum M_i \Delta_i.$$

The lower and upper Riemann integrals are then

$$\underline{\int} f = \sup L(f,\mathcal{P})$$

and

$$\overline{\int} f = \inf U(f, \mathcal{P}).$$

We say that f is Riemann integrable if

$$\int f = \overline{\int} f.$$

For a Riemann integrable function we write

$$\int f = \int f.$$

- 1. Show that a continuous function on [0,1] is Rieman integrable. You can do this however you like but below is an outline of a proof for which you can fill in the details.
 - (a) A partition \mathcal{P}' is a refinement of \mathcal{P} if \mathcal{P} is contained in \mathcal{P}' as a set. Show that

$$L(f,\mathcal{P}) \leq L(\mathcal{P}')$$

and

$$U(f, \mathcal{P}) \ge U(\mathcal{P}').$$

(b) Show that for any two arbitrary partions $\mathcal P$ and $\mathcal P'$ we have

$$L(f, \mathcal{P}) \leq U(f, \mathcal{P}').$$

(Hint: Look at he common partion $\mathcal{P} \cup \mathcal{P}'$ of \mathcal{P} and \mathcal{P}' .)

(c) Use the fact that a continuous function on a compact interval is uniformly continuous to show that for any $\epsilon > 0$ there exists a partition \mathcal{P} with

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) \le \epsilon.$$

- (d) Finish the proof!
- 2. Let $\chi_{[a,b]}$ be the characteristic function of the interval $[a,b]\subseteq [0,1]$. Show that $\chi_{[a,b]}$ is Riemann integrable and that

$$\int_{[0,1]} \chi_{[a,b]} = b - a.$$

- 3. Let f be the function that is 1 on the rationals and 0 on the irrationals. Show that f is not Riemann integrable.
- 4. For any $\epsilon > 0$ show that there exists a closed subset A of the interval [0,1] whose interior is empty but the Lesbesgue measure, m(A), of A is $\geq 1 \epsilon$. (Bonus: Show that there exists such an A with the $m(A) = 1 \epsilon$.)