Math 6210 - Homework 1

Due in class on $9 / 1 / 10$

We first recall the definition of the Riemann integral (on the interval $[0,1]$). A partition, \mathcal{P}, of the interval $[0,1]$ is a finite increasing sequence $x_{0}<x_{1} \cdots<x_{n}$ with $x_{0}=0$ and $x_{1}=1$. The partition \mathcal{P} divides the interval $[0,1]$ into n subintervals $\left[x_{i-1}, x_{i}\right]$ of width $\Delta_{i}=x_{i}-x_{i-1}$. Given a function

$$
f:[0,1] \longrightarrow \mathbb{R}
$$

for each subinterval define

$$
m_{i}=\inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x)
$$

and

$$
M_{i}=\sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x) .
$$

We then define the lower and upper Riemann sums by

$$
L(f, \mathcal{P})=\sum m_{i} \Delta_{i}
$$

and

$$
U(f, \mathcal{P})=\sum M_{i} \Delta_{i}
$$

The lower and upper Riemann integrals are then

$$
\underline{\int f}=\sup L(f, \mathcal{P})
$$

and

$$
\bar{\int} f=\inf U(f, \mathcal{P})
$$

We say that f is Riemann integrable if

$$
\underline{\int} f=\bar{\int} f
$$

For a Riemann integrable function we write

$$
\int f=\underline{\int} f
$$

1. Show that a continuous function on $[0,1]$ is Rieman integrable. You can do this however you like but below is an outline of a proof for which you can fill in the details.
(a) A partition \mathcal{P}^{\prime} is a refinement of \mathcal{P} if \mathcal{P} is contained in \mathcal{P}^{\prime} as a set. Show that

$$
L(f, \mathcal{P}) \leq L\left(\mathcal{P}^{\prime}\right)
$$

and

$$
U(f, \mathcal{P}) \geq U\left(\mathcal{P}^{\prime}\right)
$$

(b) Show that for any two arbitrary partions \mathcal{P} and \mathcal{P}^{\prime} we have

$$
L(f, \mathcal{P}) \leq U\left(f, \mathcal{P}^{\prime}\right)
$$

(Hint: Look at he common partion $\mathcal{P} \cup \mathcal{P}^{\prime}$ of \mathcal{P} and \mathcal{P}^{\prime}.)
(c) Use the fact that a continuous function on a compact interval is uniformly continuous to show that for any $\epsilon>0$ there exists a partition \mathcal{P} with

$$
U(f, \mathcal{P})-L(f, \mathcal{P}) \leq \epsilon
$$

(d) Finish the proof!
2. Let $\chi_{[a, b]}$ be the characteristic function of the interval $[a, b] \subseteq[0,1]$. Show that $\chi_{[a, b]}$ is Riemann integrable and that

$$
\int_{[0,1]} \chi_{[a, b]}=b-a .
$$

3. Let f be the function that is 1 on the rationals and 0 on the irrationals. Show that f is not Riemann integrable.
4. For any $\epsilon>0$ show that there exists a closed subset A of the interval $[0,1]$ whose interior is empty but the Lesbesgue measure, $m(A)$, of A is $\geq 1-\epsilon$. (Bonus: Show that there exists such an A with the $m(A)=1-\epsilon$.)
