Math 6210 - Homework 5

Due at 4 PM on 11/10/05

From Rudin: Chapter 5, # 1,2,3,4,5

All of the problems will examine linear operators on the Hilbert space $H = \ell^2(\mathbb{Z})$. Recall that $f \in H$ if f is a function

 $f:\mathbb{Z}\longrightarrow\mathbb{C}$

with $\sum_{n\in\mathbb{Z}}\lvert f(n)\rvert^2<\infty$ and the inner product of $f,g\in H$ is

$$(f,g) = \sum_{n \in \mathbb{Z}} f(n)\overline{g(n)}.$$

We also recall the definition of the adjoint T^* of a linear operator T. If T is bounded then we saw in class that for any $g \in H$ the linear map

$$f \mapsto (Tf, g)$$

is bounded. Therefore there is a unique element $g' \in h$ such that (Tf,g) = (f,g') for all $f \in H$. We define $T^*g = g'$.

If T is unbounded it will in general only be defined on a subspace of H which we denote dom T. Then given any $g \in H$ the map

 $f \mapsto (Tf, g)$

is only defined for $f \in \text{dom } T$. Furthermore it will not always be bounded. The subset of H where this map is bounded is the domain of the adjoint, dom T^* . Then for $g \in \text{dom } T^*$ there is a unique g' such that (Tf, g) = (f, g') for all $f \in \text{dom } T$. As in the bounded case we set $T^*g = g'$.

- 1. Define $T: H \longrightarrow H$ by (Tf)(n) = f(n+1). Show that T is bounded and that ||T|| = 1. Find the adjoint T^* of T.
- 2. In this problem we will examine an unbounded operator S. Let dom S be the set of compactly supported functions in H. That is $f \in \text{dom } S$ if $f(n) \neq 0$ for only finitely many $n \in \mathbb{Z}$. We then set (Sf)(n) = nf(n).
 - (a) Show that S is unbounded.
 - (b) Show that

dom
$$S^* = \left\{ g \in H \text{ such that } \sum_{n \in \mathbb{Z}} n^2 |g(n)|^2 < \infty \right\}.$$

Here are some hints. If the sum is $< \infty$ apply Hölders inequality. If the sum is infinite we need to show that $g \notin \text{dom } S^*$ by showing that

$$f \mapsto (Sf, g)$$

is not bounded. To do this define $f_k \in \operatorname{dom} S$ with k a positive integer by

$$f_k(n) = \begin{cases} ng(n) & \text{if } |n| \le k \\ 0 & \text{if } |n| > k \end{cases}$$

and observe that $(Sf_k,g) = \|f_k\|_2^2$. Note that $\|f_k\| \to \infty$ and therefore

$$\frac{|(Sf_k,g)|}{\|f_k\|_2} \to \infty.$$

(c) Show that $(S^*g)(n) = ng(n)$ for $g \in \text{dom } S^*$. In particular $S = S^*$ on dom S (which is contained in dom S^* .) However S is not self-adjoint since S and S^* have different domains.