Math 6210-Homework 5

Due at 4 PM on $11 / 10 / 05$

From Rudin: Chapter 5, \# 1,2,3,4,5
All of the problems will examine linear operators on the Hilbert space $H=\ell^{2}(\mathbb{Z})$. Recall that $f \in H$ if f is a function

$$
f: \mathbb{Z} \longrightarrow \mathbb{C}
$$

with $\sum_{n \in \mathbb{Z}}|f(n)|^{2}<\infty$ and the inner product of $f, g \in H$ is

$$
(f, g)=\sum_{n \in \mathbb{Z}} f(n) \overline{g(n)} .
$$

We also recall the definition of the adjoint T^{*} of a linear operator T. If T is bounded then we saw in class that for any $g \in H$ the linear map

$$
f \mapsto(T f, g)
$$

is bounded. Therefore there is a unique element $g^{\prime} \in h$ such that $(T f, g)=\left(f, g^{\prime}\right)$ for all $f \in H$. We define $T^{*} g=g^{\prime}$.

If T is unbounded it will in general only be defined on a subspace of H which we denote $\operatorname{dom} T$. Then given any $g \in H$ the map

$$
f \mapsto(T f, g)
$$

is only defined for $f \in \operatorname{dom} T$. Furthermore it will not always be bounded. The subset of H where this map is bounded is the domain of the adjoint, $\operatorname{dom} T^{*}$. Then for $g \in \operatorname{dom} T^{*}$ there is a unique g^{\prime} such that $(T f, g)=\left(f, g^{\prime}\right)$ for all $f \in \operatorname{dom} T$. As in the bounded case we set $T^{*} g=g^{\prime}$.

1. Define $T: H \longrightarrow H$ by $(T f)(n)=f(n+1)$. Show that T is bounded and that $\|T\|=1$. Find the adjoint T^{*} of T.
2. In this problem we will examine an unbounded operator S. Let dom S be the set of compactly supported functions in H. That is $f \in \operatorname{dom} S$ if $f(n) \neq 0$ for only finitely many $n \in \mathbb{Z}$. We then set $(S f)(n)=n f(n)$.
(a) Show that S is unbounded.
(b) Show that

$$
\operatorname{dom} S^{*}=\left\{g \in H \text { such that } \sum_{n \in \mathbb{Z}} n^{2}|g(n)|^{2}<\infty\right\}
$$

Here are some hints. If the sum is $<\infty$ apply Hölders inequality. If the sum is infinite we need to show that $g \notin \operatorname{dom} S^{*}$ by showing that

$$
f \mapsto(S f, g)
$$

is not bounded. To do this define $f_{k} \in \operatorname{dom} S$ with k a positive integer by

$$
f_{k}(n)=\left\{\begin{array}{cl}
n g(n) & \text { if }|n| \leq k \\
0 & \text { if }|n|>k
\end{array}\right.
$$

and observe that $\left(S f_{k}, g\right)=\left\|f_{k}\right\|_{2}^{2}$. Note that $\left\|f_{k}\right\| \rightarrow \infty$ and therefore

$$
\frac{\left|\left(S f_{k}, g\right)\right|}{\left\|f_{k}\right\|_{2}} \rightarrow \infty .
$$

(c) Show that $\left(S^{*} g\right)(n)=n g(n)$ for $g \in \operatorname{dom} S^{*}$. In particular $S=S^{*}$ on $\operatorname{dom} S$ (which is contained in $\operatorname{dom} S^{*}$.) However S is not self-adjoint since S and S^{*} have different domains.

