Math 6510 - Homework 6

Due at 4 PM on 10/22/04

1. Define $\mathbb{C}P^1$ to be equivalence classes of points in $\mathbb{C}^2 \setminus \{0\}$ with the equivalence relation $(z, w) \sim (z', w')$ if there exists a $\lambda \in \mathbb{C}$ with $(z, w) = \lambda(z', w')$. Let

$$\pi: \mathbb{C}^2 \backslash \{0\} \longrightarrow \mathbb{C}P^1$$

be the quotient map.

- (a) Show that $\mathbb{C}P^1$ has a differentiable structure such that π is a submersion. (Hint: There is a diffeomorphim from \mathbb{C} to the set of points in \mathbb{C}^2 with w = 1. Show that the composition of this map with π is (the inverse of) a chart. Do the same thing with z = 1. These two charts cover $\mathbb{C}P^1$.)
- (b) Let $f : \mathbb{C}^2 \setminus \{0\} \longrightarrow \mathbb{C}^2 \setminus \{0\}$ be a smooth map with $f(\lambda z, \lambda w) = \mu f(z, w)$ where $\mu \in \mathbb{C}$ is a constant. Show that there is a unique smooth map $\overline{f} : \mathbb{C}P^1 \longrightarrow \mathbb{C}P^1$ with $\pi \circ f = \overline{f} \circ \pi$.
- (c) Given a polynomial

$$p(z) = z^{n} + a_{n-1}z^{n-1} + \dots + a_{0}$$

define

$$P(z,w) = (z^{n} + a_{n-1}z^{n-1}w + \dots + a_{0}w^{n}, w^{n})$$

Show that $P(\lambda z, \lambda w) = \lambda^n P(z, w)$ and that therefore exists a smooth map \overline{P} as in (b).

(d) Show that \overline{P} has mod 2 degree n by showing that

$$P_t(z, w) = (z^n + t(a_{n-1}z^{n-1}w + \dots + a_0w^n), w^n)$$

defines a homotopy of P to the map

$$(z,w)\mapsto(z^n,w^n)$$

and that this descends to a homotopy of \overline{P} .

- (e) Conclude that if n is odd there is a point $[(z,w)] \in \mathbb{C}P^1$ such that $\overline{P}([(z,w)]) = [(0,1)]$ and that therefore there is a $z \in \mathbb{C}$ such that p(z) = 0 for the original polynomial p.
- 2. 2.4 #4,5,6; 3.2 #2, 4 (For 2.4 #5: A manifold X is *contractable* if there is a homotopy $F: X \times I \longrightarrow X$ with $f_0 = \text{id}$ and f_1 a constant map.)