Final

Due at 4 PM on $12 / 17 / 04$
Do 5 of the 10 problems in $11 / 2$ hours.

1. Let $M \subset \mathbb{R}^{n}$ be a compact manifold without boundary. Prove that there is $\epsilon>0$ such that for any manifold X the following holds: any two smooth maps

$$
f, g: X \rightarrow M
$$

with $|f(x)-g(x)|<\epsilon$ for every $x \in X$ are homotopic. Find an explicit $\epsilon>0$ for the case when M is the unit sphere S^{n-1}.
2. Compute the Lefschetz number of the mapping

$$
f_{k}: \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n}
$$

given by

$$
\left[x_{0}: x_{1}: \cdots: x_{n}\right] \mapsto\left[x_{0}^{k}: x_{1}^{k}: \cdots: x_{n}^{k}\right]
$$

for $k=1,2, \cdots$.
3. Let p be a homogeneous polynomial in k real variables. This means that

$$
p\left(t x_{1}, t x_{2}, \cdots, t x_{k}\right)=t^{m} p\left(x_{1}, x_{2}, \cdots, x_{k}\right)
$$

for all $t, x_{1}, x_{2}, \cdots, x_{k} \in \mathbb{R}$. Prove that for $a \neq 0$ the set

$$
\left\{x \in \mathbb{R}^{k} \mid p(x)=a\right\}
$$

is a submanifold of \mathbb{R}^{k}.
4. Let X and Y be two submanifolds of \mathbb{R}^{n}. Show that for almost every $a \in \mathbb{R}^{n}$ the translate

$$
X+a=\{x+a \mid x \in X\}
$$

is transverse to Y.
5. Prove that the Euler characteristic of the orthogonal group $O(n)$ is 0 for $n \geq 1$.
6. Let V be the vector field in the complex plane \mathbb{C} given by

$$
V(z)=z^{m}
$$

for some $m=1,2, \cdots$, where we use the standard identification $T_{z} \mathbb{C}=\mathbb{C}$. Compute the index of V at the origin.
7. Let ω be the 2 -form on R^{3} given by

$$
\omega(x, y, z)=z d x \wedge d y+y d z \wedge d x+x d y \wedge d z
$$

and define the map $f: \mathbb{R}^{2} \longrightarrow R^{3}$ by

$$
f(u, v)=\left(u, v, u^{2}+v^{2}\right) .
$$

Calculate $f^{*} \omega$.
8. Let ω be the 1 -form on $\mathbb{R}^{2}-\{0\}$ given by

$$
\omega(x, y)=\frac{-y d x}{x^{2}+y^{2}}+\frac{x d y}{x^{2}+y^{2}}
$$

(a) Calculate $\int_{C} \omega$ for any circle C centered at the origin.
(b) Prove that in the half-plane $x>0$ there is a smooth function f such that $\omega=d f$.
(c) Prove that there is no smooth function f defined on $\mathbb{R}^{2}-\{0\}$ such that $\omega=d f$.
9. Give an example (with proof) of a nonintegrable plane field.
10. Compute de Rham cohomology of the 3 -torus $S^{1} \times S^{1} \times S^{1}$.

