Final

Due at 4 PM on 12/17/04Do 5 of the 10 problems in 1 1/2 hours.

1. Let $M \subset \mathbb{R}^n$ be a compact manifold without boundary. Prove that there is $\epsilon > 0$ such that for any manifold X the following holds: any two smooth maps

$$f,g:X\to M$$

with $|f(x) - g(x)| < \epsilon$ for every $x \in X$ are homotopic. Find an explicit $\epsilon > 0$ for the case when M is the unit sphere S^{n-1} .

2. Compute the Lefschetz number of the mapping

$$f_k: \mathbb{C}P^n \to \mathbb{C}P^n$$

given by

$$[x_0:x_1:\cdots:x_n]\mapsto [x_0^k:x_1^k:\cdots:x_n^k]$$

for $k = 1, 2, \cdots$.

3. Let p be a homogeneous polynomial in k real variables. This means that

$$p(tx_1, tx_2, \cdots, tx_k) = t^m p(x_1, x_2, \cdots, x_k)$$

for all $t, x_1, x_2, \cdots, x_k \in \mathbb{R}$. Prove that for $a \neq 0$ the set

$$\{x \in \mathbb{R}^k | p(x) = a\}$$

is a submanifold of \mathbb{R}^k .

4. Let X and Y be two submanifolds of \mathbb{R}^n . Show that for almost every $a \in \mathbb{R}^n$ the translate

$$X + a = \{x + a | x \in X\}$$

is transverse to Y.

- 5. Prove that the Euler characteristic of the orthogonal group O(n) is 0 for $n \ge 1$.
- 6. Let V be the vector field in the complex plane $\mathbb C$ given by

$$V(z) = z^m$$

for some $m = 1, 2, \cdots$, where we use the standard identification $T_z \mathbb{C} = \mathbb{C}$. Compute the index of V at the origin.

7. Let ω be the 2-form on \mathbb{R}^3 given by

$$\omega(x,y,z) = z dx \wedge dy + y dz \wedge dx + x dy \wedge dz$$

and define the map $f: \mathbb{R}^2 \longrightarrow R^3$ by

$$f(u, v) = (u, v, u^2 + v^2).$$

Calculate $f^*\omega$.

8. Let ω be the 1-form on $\mathbb{R}^2 - \{0\}$ given by

$$\omega(x,y) = \frac{-ydx}{x^2 + y^2} + \frac{xdy}{x^2 + y^2}$$

- (a) Calculate $\int_C \omega$ for any circle C centered at the origin.
- (b) Prove that in the half-plane x > 0 there is a smooth function f such that $\omega = df$.
- (c) Prove that there is no smooth function f defined on $\mathbb{R}^2 \{0\}$ such that $\omega = df$.
- 9. Give an example (with proof) of a nonintegrable plane field.
- 10. Compute de Rham cohomology of the 3-torus $S^1 \times S^1 \times S^1$.