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A mathematical theory of interacting hypercolumns in primary visual cor-
tex (V1) is presented that incorporates details concerning the anisotropic
nature of long-range lateral connections. Each hypercolumn is modeled
as a ring of interacting excitatory and inhibitory neural populations with
orientation preferences over the range 0 to 180 degrees. Analytical meth-
ods from bifurcation theory are used to derive nonlinear equations for
the amplitude and phase of the population tuning curves in which the ef-
fective lateral interactions are linear in the amplitudes. These amplitude
equations describe how mutual interactions between hypercolumns via
lateral connections modify the response of each hypercolumn to modu-
lated inputs from the lateral geniculate nucleus; such interactions form
the basis of contextual effects. The coupled ring model is shown to re-
produce a number of orientation-dependent and contrast-dependent fea-
tures observed in center-surround experiments. A major prediction of the
model is that the anisotropy in lateral connections results in a nonuniform
modulatory effect of the surround that is correlated with the orientation
of the center.

1 Introduction

The discovery that a majority of neurons in the visual or striate cortex of
cats and primates (usually referred to as V1) respond selectively to the
local orientation of visual contrast patterns (Hubel & Wiesel, 1962) initi-
ated many studies of the precise circuitry underlying this property. Two
cortical circuits have been fairly well characterized. There is a local circuit
operating at subhypercolumn dimensions (<0.7 mm) in monkeys compris-
ing strong orientation-speci�c recurrent excitation and weaker intrahyper-
columnar inhibition (Michalski, Gerstein, Czarkowska, & Tarnecki, 1983;
Hata, Tsumoto, Sato, Hagihara, & Tamura, 1988; Douglas, Koch, Mahowald,
Martin, & Suarez, 1995). The other circuit operates between hypercolumns,
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connecting cells with similar orientation preferences separated by up to sev-
eral millimeters of cortical tissue (Gilbert & Wiesel, 1989; Hirsch & Gilbert,
1992; Malach, Amir, Harel, & Grinvald, 1993; Fitzpatrick, Zhang, Scho�eld,
& Muly, 1993; Grinvald, Lieke, Frostig, & Hildesheim, 1994; Yoshioka, Blas-
del, Levitt, & Lund, 1996). The lateral connections that mediate this circuit
arise almost exclusively from excitatory neurons (Rockland & Lund, 1983;
Gilbert & Wiesel, 1983), although 20% terminate on inhibitory cells and can
thus have signi�cant inhibitory effects (McGuire, Gilbert, Rivlin, & Wiesel,
1991).

Stimulation of a hypercolumn via lateral connections modulates rather
than initiates spiking activity (Hirsch & Gilbert, 1992; Toth, Rao, Kim, Som-
ers, & Sur, 1996). Thus, the lateral connectivity is ideally structured to pro-
vide local cortical processes with contextual information about the global
nature of stimuli. As a consequence, these lateral connections have been
invoked to explain a wide variety of context-dependent visual processing
phenomena (Gilbert, Das, Ito, Kapadia, & Westheimer, 1996; Fitzpatrick,
2000). (Interestingly, contextual processing also occurs in extrastriate visual
areas, and feedback from these areas to V1 has been invoked to explain as-
pects of contextual processing;Wenderoth & Johnstone, 1988). One common
experimental paradigm is to investigate the response to stimuli consisting of
circular (center) and annular (surround) gratings of differing contrasts, ori-
entations, and diameters. When both center and surround are stimulated
with strong suprathreshold inputs, one typically �nds that the surround
suppresses the center unit’s tuning response for surround stimulation close
to the orientation of the unit’s peak tuning response and facilitates the re-
sponse when the surround is stimulated at orientations suf�ciently dissim-
ilar to the preferred orientation of the center (Blakemore & Tobin, 1972; Li
& Li, 1994; Sillito, Grieve, Jones, Cudeiro, & Davis, 1995).

The center response to surround stimulation depends signi�cantly on
the contrast of center stimulation (Toth et al., 1996; Levitt & Lund, 1997;
Polat, Mizobe, Pettet, Kasamatsu, & Norcia, 1998). For example, a �xed
surround stimulus tends to facilitate responses to stimuli at a preferred ori-
entation when the center contrast is low but suppresses responses when
it is high. Both effects are strongest when center and surround stimuli
are iso-oriented. The response to variations in the size of a stimulus is
also contrast dependent. For example, responses to a high-contrast circu-
lar grating decline beyond a characteristic preferred stimulus size due to
activation of an inhibitory surround. In addition, the effective size of the
excitatory receptive �eld tends to increase with decreasing contrast, and
at low contrasts becomes a monotonically increasing function of stimu-
lus size (Jagadeesh & Ferster, 1990; Sceniak, Ringach, Hawken, & Shapley,
1999).

One common approach to modeling the role of lateral connections in
center-surround modulation is to consider a reduced local cortical circuit
composed of excitatory and inhibitory populations receiving feedforward
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inputs from the lateral geniculate nucleus (LGN), together with long–range
intracortical inputs, some of which could provide feedback from higher cor-
tical areas (Somers, Nelson, & Sur, 1994; Mundel, 1996; Mundel, Dimitrov,
& Cowan, 1997; Somers et al., 1998; Li, 1999; Dragoi & Sur, 2000; Stetter,
Bartsch, & Obermayer, 2000; Grossberg & Raizada, 2000). Inclusion of some
form of contrast-related asymmetry between local excitatory and inhibitory
neurons is then suf�cient to account for the switch between low-contrast
facilitation and high-contrast suppression (Somers et al., 1998; Stetter et
al., 2000). Although these (mainly) computational studies have provided
some insights into the possible role of lateral connections in mediating
center-surround effects, a more general analytical frameworkhas so far been
lacking.

In this article, we develop such a framework by considering the non-
linear dynamics of interacting hypercolumns. In particular, previous work
on the dynamics of sharp orientation tuning in recurrent models of a cor-
tical hypercolumn (Ben-Yishai, Bar-Or, & Sompolinsky, 1995; Somers, Nel-
son, & Sur, 1995; Vidyasagar, Pei, & Volgushev, 1996; Ben-Yishai, Hansel,
& Sompolinsky, 1997; Mundel et al., 1997; Bressloff, Bressloff, & Cowan,
2000; Pugh, Ringach, Shapley, & Shelley, 2000) is extended to incorporate
the effects of lateral connections between hypercolumns. A related com-
putational approach has been initiated by McLaughlin, Shapley, Shelley,
and Wielaard (2000). Our basic assumptions are as follows: (1) each active
hypercolumn is close to a bifurcation point signaling the onset of sharp ori-
entation tuning, and (2) the interactions between hypercolumns are weak.
We �rst use analytical methods from bifurcation theory to derive nonlin-
ear equations for the amplitude and phase of the tuning curves in which
the effective interactions are linear in the amplitudes. (Amplitude equa-
tions with linear interaction terms also arise in studies of weakly interact-
ing neurons; Hoppensteadt & Izhikevich, 1997). These amplitude equations
describe how mutual interactions betweenhypercolumns via lateral connec-
tions modify the response of each hypercolumn to modulated inputs from
the lateral geniculate nucleus; such interactions form the basis of contextual
effects. We then show how our model reproduces a number of orientation-
dependent and contrast-dependent features observed in center-surround
experiments.

One novel aspect of our model is that we incorporate the explicit aniso-
tropy of lateral connections as observed in a number of optical imaging ex-
periments (Yoshioka et al., 1996; Bosking, Zhang, Scho�eld, & Fitzpatrick,
1997). In recent studies of the global dynamics of V1, idealized as a con-
tinuous two–dimensional sheet of interacting hypercolumns, we showed
that the patterns of connection exhibit a very interesting symmetry (Wiener,
1994;Cowan, 1997;Bressloff, Cowan, Golubitsky, Thomas, & Wiener, 2001a);
they are invariant under the action of the planar Euclidean group E(2)—
the group of rigid motions in the plane—rotations, re�ections, and trans-
lations. By virtue of the anisotropy of the lateral connections, they are also
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invariant with respect to certain shifts and twists of the plane such that a
new E(2) group action is needed to represent its properties. This shift–twist
symmetry plays an important role in determining which cortical activity
patterns form through spontaneous symmetry breaking. Our previous re-
sults on the global dynamics of V1 can also be obtained by considering a
continuum version of the amplitude equations for weakly interacting hy-
percolumns derived in this paper. This establishes that both the feedforward
response properties of V1 and its intrinisic dynamical properties can be un-
derstood within the same analytical framework.

2 A Dynamical Model of V1 and Its Intrinsic Circuitry

Recent work using optical imaging (Blasdel & Salama, 1986; Blasdel, 1992)
augments the early work of Hubel and Wiesel (1962) concerning the large-
scale organization of iso–orientation patches in V1. It shows that approxi-
mately every 0.7 mm or so in monkey V1, there is an iso–orientation patch
of a given preference w . We therefore view the tangential structure of the
cortex as a lattice of hypercolumns, where each hypercolumn comprises
a continuum of iso-orientation patches that are designated by their pre-
ferred orientation w 2 [¡90±, 90±]. This simpli�ed anatomy is most easily
motivated (though the analysis does not depend on this assumption in any
crucial manner) if we assume a pinwheel two–dimensional architecture
for V1 (Obermayer & Blasdel, 1993; Bonhoeffer, Kim, Malonek, Shoham, &
Grinvald, 1995). The sharply orientation-tuned elements of a hypercolumn
then form a ring of interacting neural populations. (A lattice model is also
consistent with the observation that each location in the visual �eld is repre-
sented in V1, roughly speaking, by a hypercolumn-sized region containing
all orientations.) In addition to this two-dimensional tangential architec-
ture, V1 has a complex laminar vertical structure. Although this vertical
organization has been studied in some detail, its functional characteristics
with regard to orientation selectivity are largely unknown. The solution we
adopt here is to collapse this vertical organization into the dynamical inter-
action between two neuronal components: one excitatory (E), representing
pyramidal cells, and the other inhibitory (I). The latter lumps together a
number of different types of interneuron, for example, interneurons with
horizontally distributed axonal �elds of the basket cell subtype and in-
hibitory interneurons that have predominantly vertically aligned axonal
�elds (see Figure 1).

Suppose that there are N hypercolumns labeled i D 1, . . . , N. Let al (ri, w , t)
denote the average membrane potential or activity at time t of a population
of cells of type l D E, I belonging to an iso–orientation patch of the ith
hypercolumn, i D 1, . . . , N, where ri denotes the cortical position of the
hypercolumn (on some coarsely grained spatial scale) and w 2 [¡90±, 90±]
is the orientation preference of the patch. The activity variables al evolve to



Amplitude Equation Approach 497

Figure 1: Local interacting neuronal populations. Py—excitatory population
of pyramidal cells; Ba—spatially extended basket cell inhibitory population;
Ma—local inhibitory population; Martinotti, chandelier, and double bouquet
populations.

the set of equations

f
@al (ri, w , t)

@t
D ¡al (ri, w , t) C hl (ri, w )

C
X

mDE,I

NX

jD1

Z p /2

¡p /2
wlm (ri , w |rj, w 0 ) £ sm (am (rj , w 0 , t))

dw 0

p
, (2.1)

where f is a decay time constant (set equal to unity), hl (ri, w ) is the input to
the ith hypercolumn (in this study presumed to be from the LGN), and sl is
taken to be a smooth output function,1

sl (x) D
1

1 C e¡gl (x¡k l)
, (2.2)

1 If sl is interpreted as the �ring rate of a single neuron with al its membrane potential,
then sl typically has a hard threshold, that is, sl (al ) D 0 for al < gl. However, at the
population level, such a �ring-rate function can be smoothed out by either spontaneous
activity or dispersion of membrane properties within the population (Wilson & Cowan,
1972). From a mathematical perspective, the assumption of smoothness is needed in order
to carry out the bifurcation analysis of Section 3.
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where gl determines the slope or sensitivity of the input–output charac-
teristics of the population and kl is a threshold. The kernel wlm (ri, w |rj, w 0 )
represents the strength or weight of connections from the mth population
of the iso-orientation patch w 0 at cortical position rj to the lth population
of the orientation patch w at position ri. Note that in this article, we do not
specify how visual stimuli impinging on the retina are mapped to the cor-
tex via the LGN. We simply assume that when there is an oriented stimulus
in the (aggregate) classical receptive �eld of the ith hypercolumn, then the
input h(ri , w ) is maximal at w D Wi where Wi is the stimulus orientation. We
also assume that the hypercolumns have nonoverlapping aggregate �elds
so that each probes a distinct region of visual space.

Optical imaging combined with labeling techniques has generated con-
siderable information concerning the pattern of connections both within
and between hypercolumns (Blasdel & Salama, 1986; Blasdel, 1992; Malach
et al., 1993; Yoshioka et al., 1996; Bosking et al., 1997). A particularly striking
result concerns the intrinsic lateral connections in layers II, III, and (to some
extent) V of V1. The axons of these connections make terminal arbors only
every 0.7 mm or so along their tracks (Rockland & Lund, 1983; Gilbert &
Wiesel, 1983), and they seem to connect mainly to cells with similar orien-
tation preferences (Malach et al., 1993; Yoshioka et al., 1996; Bosking et al.,
1997). In addition, there is a pronounced anisotropy of the pattern of such
connections; its long axis runs parallel to a patch’s preferred orientation
(Gilbert & Wiesel, 1983; Bosking et al., 1997). Thus, differing iso-orientation
patches connect to patches in neighboring hypercolumns in differing di-
rections. This contrasts with the pattern of connectivity within any one
hypercolumn that is much more isotropic; any given iso-orientation patch
connects locally in all directions to all neighboring patches within a radius
of less than 0.7 mm.

Motivated by these observations concerning the intrinsic circuitry of V1,
we decompose w in terms of local connections from elements within the
same hypercolumn and patchy (excitatory) lateral connections from ele-
ments in other hypercolumns:

wlm (ri, w |rj, w 0 ) D wlm (w ¡ w 0 )di, j C 2 bldm,E Ow (ri, w |rj, w 0 ) (1 ¡ di, j), (2.3)

where 2 is a parameter that measures the weight of lateral relative to local
connections. Observations by Hirsch and Gilbert (1992) suggest that 2 is
small and therefore that the lateral connections modulate rather than drive
V1 activity. The relative strengths of the lateral inputs into local excitatory
and inhibitory populations are represented by the factors bl. (Recall that
although the lateral connections are excitatory—Rockland & Lund, 1983;
Gilbert & Wiesel, 1983—20% of the connections in layers II and III of V1
end on inhibitory interneurons, so the overall action of the lateral connec-
tions can become inhibitory, especially at high levels of activity; Hirsch &
Gilbert, 1992). The contrast dependence of the factors bl will be considered
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in Section 4. Substituting equation 2.3 into equation 2.1 gives

@al (ri, w , t)
@t

D ¡al (ri, w , t) C
X

mDE,I

Z p /2

¡p /2
wlm (w ¡ w 0 )sm (am (ri, w 0 , t))

dw 0

p
C hl (ri, w ) C 2 bl

X

j 6Di

Z p/2

¡p /2
Ow(ri , w |rj, w 0 )sE (aE (rj, w 0 , t))

dw 0

p
(2.4)

for i D 1, . . . , N.
In order to incorporate information concerning the anisotropic nature of

lateral connections, we further decompose Ow according to2

Ow(ri, w |rj, w 0 ) D Ow(rij)p0(w 0 ¡ hij)p1 (w ¡ w 0 ), (2.5)

where rj D ri C rij (cos(hij), sin(hij)). In the special case pk (w ) D d (w ), the
distribution Ow(rij ) determines the weight of lateral connections between
iso-orientation patches separated by a cortical distance rij along a visuotopic
axis whose direction hij is parallel to their (common) orientation preference
(see Figure 2). The p -periodic functions pk (w ) then determine the spread
of the lateral connections with respect to the visuotopic axis for k D 0 (see
Figure 3a) and orientation preference for k D 1 (see Figure 3b). We take
pk (w ) to be an even, monotonically decreasing function of w over the domain
¡p /2 < w < p /2 such that

R p /2
¡p /2 pk (w )dw /p D 1.

3 Amplitude Equation for Interacting Hypercolumns

3.1 Sharp Orientation Tuning in a LocalCortical Circuit. In the absence
of lateral connections (2 D 0), each hypercolumn is independently described
by the ring model of orientation tuning (Somers et al., 1995; Ben-Yishai et
al., 1995, 1997; Mundel et al., 1997; Bressloff et al., 2000). That is, equation 2.4
reduces to the pair of equations

@aE

@t
D ¡aE C wEE ¤ sE (aE) ¡ wEI ¤ sI (aI) C hE (3.1)

@aI

@t
D ¡aI C wIE ¤ sE (aE) ¡ wII ¤ sI (aI ) C hI , (3.2)

where ¤ indicates a convolution operation,

w ¤ f (ri, w ) D
Z p /2

¡p /2
w (w ¡ w 0 ) f (ri, w 0 )

dw 0

p
, (3.3)

2 The distribution of lateral connections given by equation 2.5 differs from the one
used by Li (1999) in that there is no explicit cross–orientation inhibition.
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Figure 2: Anisotropic lateral interactions connect iso-orientation patches lo-
cated along a visuotopic axis parallel to their (common) orientation preference.
Horizontal patches are connected along axis A, whereas oblique patches are
connected along axis B.

for a hypercolumn at a �xed cortical position ri. In the case of w -independent
external inputs, hl (ri, w ) D Nhl (ri), i D 1, . . . , N, there exists at least one �xed-
point solution al (ri, w ) D Nal (ri) of equations 3.1 and 3.2, which satis�es the
algebraic equations

NaE D WEE (0)sE (NaE) ¡ WEI (0)sI (NaI ) C NhE (3.4)

NaI D WIE (0)sE (NaE) ¡ WII (0)sI (NaI ) C NhI, (3.5)

Figure 3: Angular spread in the anisotropic lateral connections with respect to
the (a) visuotopic axis and (b) orientation preference. Shaded orientation patches
are connected.
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where Wlm (0) D
R p/2

¡p/2 wlm (w )dw /p . If Nhl is suf�ciently small relative to the
thresholdkl, then this �xed point is unique and stable for each ri. Under the
change of coordinates al ! al ¡ Nhl, it can be seen that the effect of Nhl is to shift
the threshold by the amount ¡Nhl. Thus, there are two ways to increase the
excitability of the network and thus destabilize the �xed point: increasing
the external input Nhl or reducing the threshold kl. In the case of external
visual stimuli, adaptation mechanisms tend to �lter out the uniform part of
the stimulus so that the contribution to Nhl from the LGN is expected to be
small. We assume, however, that various arousal and attentional mechanism
act so that neurons sit close to threshold and can respond to small spatial
(and temporal) variations of Nhl (Tsodyks & Sejnowski, 1995). An alternative
mechanism for raising the excitability of the cortex is through the action of
drugs on certain brain stem nuclei, which can induce the experience of see-
ing geometric visual hallucinations (Ermentrout & Cowan, 1979; Bressloff
et al., 2001a; Bressloff, Cowan, Golubitsky, Thomas, & Wiener, 2001b).

The local stability of (NaE, NaI ) is found by linearization:

@bE

@t
D ¡bE C

h
s 0

E (NaE)wEE ¤ bE ¡ s 0
I (NbI )wEI ¤ bI

i
(3.6)

@bI

@t
D ¡bI C

£
s 0

E (NaE)wIE ¤ bE ¡ s 0
I (NaI)wII ¤ bI

¤
, (3.7)

where bl (rj, w , t) D al (rj, w , t) ¡ Nal (rj ) and s 0
l (x) D dsl (x)/dx. Equations 3.6

and 3.7 have solutions of the form

bl (rj, w , t) D Blelt
h
z(rj)e2inw C z(rj )e¡2inw

i
, (3.8)

where z(rj ) is an arbitrary (complex) amplitude. For each positive integer n,
the eigenvalues l and corresponding eigenvectors B D (BE, BI)T satisfy the
matrix equation

(1 C l)B D

³
s 0

E (NaE)WEE (n) ¡s 0
I (NaI )WEI (n)

s 0
E (NaE)WIE (n) ¡s 0

I (NaI)WII (n)

´
B, (3.9)

where Wlm (n) is the nth Fourier coef�cient in the expansion of thep -periodic
weights kernels wlm (w ),

wlm (w ) D Wlm (0) C 2
1X

nD1

Wlm (n) cos(2nw ), l, m D E, I, (3.10)

and we assume that wlm (w ) D wlm (¡w ).
For the sake of illustration, suppose that s 0

m (Nam) D m , so that an increase
in the excitability of the network can be modeled as an increase in m . Equa-
tion 3.9 then has solutions of the form

l§
n D ¡1 C m W§

n (3.11)
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for integer n, where

W§
n D

1
2

[WEE (n) ¡ WII (n) § S (n)] (3.12)

are the eigenvalues of the weight matrix with

S (n) D
p

[WEE (n) C WII (n)]2 ¡ 4WEI (n)WIE (n). (3.13)

The corresponding eigenvectors (up to an arbitrary normalization) are

B§
n D

³
WEI (n)

1
2 [WEE (n) C WII (n) ¨ S (n)]

´
. (3.14)

Suppose that Re WC
n has a unique maximum as a function of n ¸ 0 at n D 1,

with Im WC
1 D 0, and de�ne m c D 1/WC

1 . For m < m c, we have l§
n < 0 for all

n, and thus the homogeneous resting state is stable. However, as m is steadily
increased, the homogeneous state will destabilize at the critical pointm D m c
due to excitation of eigenmodes of the form BC

1

£
z(rj)e2iw C z(rj)e¡2iw

¤
, where

z(rj) is an arbitrary complex function of r. It can be shown that the satu-
rating nonlinearities of the system stabilize the tuning curves beyond the
critical point m c (Ermentrout, 1998; Bressloff et al., 2000). Using the po-
lar representation z(r) D Z(r)e2ipw (r), the eigenmode can be rewritten as
BC

p Z(rj) cos(2p[w ¡w (rj)]). Thus, the maximum (linear) response of the jth hy-
percolumn occurs at the orientation w (rj) C kp /p, k D 0, 1, . . . p ¡1 for p > 0.

In terms of the orientation tuning properties observed in real neurons,
the most relevant cases are p D 0 and p D 1. The former corresponds to a
bulk instability within a hypercolumn in which the new steady state exhibits
no orientation preference. We call such a response the Hubel–Wiesel mode
since any orientation tuning must be extrinsic to V1, generated, for example,
by local anisotropies of the geniculo–cortical map (Hubel & Wiesel, 1962). A
bulk instability will occur when the local inhibition is suf�ciently weak. In
the second case, each hypercolumn supports an activity pro�le consisting
of a solitary peak centered about the angle w (rj), that is, the population re-
sponse is characterized by an orientation tuning curve. One mechanism that
generates a p > 0 mode is if the local connections comprise short-range exci-
tation and longer-range inhibition, which would be the case if the inhibitory
neurons are identi�ed with basket cells (I D Ba) whose lateral axonal spread
has a space constant of about 250 m m. However, it is also possible within
a two-population model to generate orientation tuning in the presence of
short–range inhibition, as would occur if the inhibitory neurons are identi-
�ed with local interneurons (I D Ma) instead whose lateral axonal spread
is about 20 m m (see Figure 1). Example spectra WC

n for both of these cases
are plotted in Figure 4 for gaussian coef�cients

Wlm (n) D
p

2pjlmalme¡n2j 2
lm /2, (3.15)
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Figure 4: (a) Distribution of eigenvalues WC
n as a function of n in the case of

long-range inhibition. Parameter values are jEE D jIE D 15±, jII D jEI D 60± ,
aEE D 1, aEIaIE D 0.3, aII D 0. (b) Distribution of eigenvalues WC

n as a function of
n in the case of short-range inhibition. Parameter values are jEE D 35± ,jIE D 40± ,
jII D jEI D 5± , aEE D 0.5, aEIaIE D 0.5, aII D 1. Solid line shows real part and
dashed line shows the imaginary part.

where jlm determine the range of the axonal �elds of the excitatory and in-
hibitory populations. For both examples, it can be seen that ReWC

1 > ReWC
n

for all n 6D 1 so that the n D 1 mode becomes marginally stable �rst, lead-
ing to the spontaneous formation of sharp orientation tuning curves. (Note
that if ImWC

1 6D 0 at the critical point, then the homogeneous resting state
bifurcates to an orientation tuning curve whose peak spontaneously either
rotates as a traveling wave or pulsates as a standing wave at a frequency de-
termined by Iml

C
1 (Ben-Yishai et al., 1997; Bressloff et al., 2000). We consider

the time–periodic case in Section 3.3.
The location of the peak w ¤ (rj) of the tuning curve at rj is arbitrary in the

presence of w-independent inputs hl (rj, w ) D Nhl (rj). However, the inclusion
of an additional small-amplitude input Dhl (rj , w ) » cos[2(w ¡ Wj)] breaks
the rotational invariance of the system and locks the location of the tuning
curve to the orientation corresponding to the peak of the stimulus, that
is, w ¤ (rj) D Wj. This is illustrated in Figure 5, where the input and output
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Figure 5: Sharp orientation tuning curve in a single hypercolumn. Local re-
current excitation and inhibition ampli�es a weakly modulated input from the
LGN. Dotted line is the baseline output without orientation tuning.

of the excitatory population of a single hypercolumn are shown (see also
Section 4.1). Thus, the local intracortical connections within a hypercolumn
serve to amplify a weakly oriented input signal from the LGN (Somers et
al., 1995; Ben-Yishai et al., 1997).

The proportion of thalamocortical versus intracortical input in vivo and
the tuning of the thalamocortical input are matters of ongoing debate. It
is still not known for certain whether orientation selectivity is introduced
in a feedforward manner to subsequent layers or arises from the intrinsic
recurrent architecture of the upper layers of layer 4 or higher, or from some
combination of these mechanisms. Recent workappears to con�rm the orig-
inal proposal of Hubel and Wiesel (1962) that geniculate input is sharply
tuned in the cat (Ferster, Chung, & Wheat, 1997). On the other hand, a
considerable body of work indicates that intracortical processes, including
recurrent excitation and intracortical inhibition, are important in determin-
ing orientation selectivity (Blakemore & Tobin, 1972; Sillito, 1975; Douglas
et al., 1995; Somers et al., 1995). In primates such as the macaque, most layer
IV C cells receiving direct thalamocortical input are unoriented, and thus
the introduction of orientation asymmetry is clearly a cortical process. If
orientation information is to be represented cortically and kept “on–line”
for any period of time, then speci�c intracortical circuitry not too dissimi-
lar from the tuning circuitry of the primate (e.g., local recurrent excitation
and inhibition) is necessary to stably represent the sharply tuned input. The
work of Phleger and Bonds (1995) demonstrating a loss of stable orientation
tuning in cats with blocking of intracortical inhibition supports this view.

3.2 Cubic Amplitude Equation:Stationary Case. So far we have estab-
lished that in the absence of lateral connections, each hypercolumn (labeled
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by cortical position rj) can exhibit sharp orientation tuning when in a suf-
�ciently excited state. The peak of the tuning curve is �xed by inputs from
the LGN signaling the presence of a local oriented bar in the classical re-
ceptive �eld (CRF) of the given hypercolumn. We wish to investigate how
such activity is further modulated by stimuli outside the CRF due to the
presence of anisotropic lateral connections between hypercolumns leading
to contextual effects.

Our approach will be to exploit the fact that the lateral connections are
weak relative to local circuit connections and to use bifurcation analysis to
derive dynamical equations for the amplitudes of the excited modes close
to the bifurcation point. These equations then allow us to explore the effects
of local and lateral inputs on sharp orientation tuning. For simplicity, we
assume that each hypercolumn can be in one of two states of activation
distinguished by the index Â (ri) D 0, 1, where ri is the cortical position of
the ith hypercolumn. If Â (ri) D 0, then the neurons within the hypercolumn
are well below threshold so that there is only spontaneous activity, sl ¼
0. On the other hand, if Â (ri) D 1, then the hypercolumn exhibits sharp
orientation tuning with mean levels of output activity sl (Nal (ri)) where Nal (ri)
is a �xed-point solution of equations 3.4 and 3.5 close to the bifurcation
point. Any hypercolumn in the active state is taken to have the same mean
output activity. That is, if we denote the set of active hypercolumns by
J D fi 2 1, . . . , NI Â (ri) D 1g, then Nal (ri) D Nal for all i 2 J , and we set
sl (Nal ) D Nsl.

First, perform a Taylor expansion of equation 2.4 with respect to bl (ri, w , t)
D al (ri , w , t) ¡ Nal, i 2 J ,

@bl

@t
D ¡bl C

X

mDE,I

wlm ¤
h
m bm C c mb2

m C c 0
mb3

m C . . .
i

C Dhl

C 2 bl Ow ±
¡
[ NsE C m bE C . . .] Â

¢
(3.16)

where Dhl D hl ¡ Nhl and m D s 0
l (Nal), c l D s 00 (Nal)/2, c 0

l D s 000 (Nal)/6. The
convolution operation ¤ is de�ned by equation 3.3 and

[ Ow ± f ] (ri, w ) D
X

j2J , j 6Di

Ow(rij)
Z p /2

¡p /2
p0 (w 0 ¡hij)p1 (w ¡w 0 ) f (rj, w 0 )

dw 0

2p 0 (3.17)

for an arbitrary function f (r, w ), and Ow given by equation 2.5. Suppose that
the system is 2 -close to the point of marginal stability of the homogeneous
�xed point associated with excitation of the modes e§2iw . That is, take m D
m c C 2 Dm where m c D 1/WC

1 (see equation 3.11). Substitute into equation 3.16
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the perturbation expansion,

bm D 2 1/2b(1)
m C 2 b (2)

m C 2 3/2b (3)
m C ¢ ¢ ¢ (3.18)

Finally, introduce a slow timescale t D 2 t and collect terms with equal
powers of 2 . This leads to a hierarchy of equations of the form (up to O (2 3/2)):

[ L b(1)]l D 0 (3.19)

[ L b(2)]l D v(2)
l (3.20)

´
X

mDE,I
c mwlm ¤ [b(1)

m ]2 C bl NsE Ow ± Â

[ L b(3)]l D v(3)
l

´ ¡
@b (1)

l

@t
C

X

mDE,I

wlm ¤
h
Dm b (1)

m C c 0
m[b(1)

m ]3 C 2c mb(1)
m b(2)

m

i

C Dhl C m cbl Ow ±
±
b(1)

E Â
²

, (3.21)

with the linear operator L de�ned according to

[ L b]l D bl ¡ m c

X

mDE,I

wlm ¤ bm. (3.22)

We have also assumed that the modulatory external input is O (2 3/2) and
rescaled Dhl ! 2 3/2Dhl.

Recall that each active hypercolumn is assumed to exhibit sharp orien-
tation tuning, so that the local connections are such that the �rst equation
in the hierarchy, equation 3.19, has solutions of the form

b (1) (ri, w , t ) D
±

z(ri, t )e2iw C z(ri, t ) e¡2iw
²

B (3.23)

for all i 2 J , with B ´ BC
1 de�ned in equation 3.14 and z denotes the

complex conjugate of z. We obtain a dynamical equation for the complex
amplitude z(ri, t ) by deriving solvability conditions for the higher-order
equations. We proceed by taking the inner product of equations 3.20 and
3.21 with the dual eigenmode eb(w ) D e2iweB where

eB D

³
WIE (1)

¡1
2 [WEE (1) C WII (1) ¡ S (1)]

´
(3.24)

so that

[ L Teb]l ´ ebl ¡ m c

X

mDE,I

wml ¤ ebm D 0.
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The inner product of any two vector-valued functions of w is de�ned as

hu|vi D
Z p

0
[uE (w )vE (w ) C uI (w )vI (w )]

dw

p
. (3.25)

With respect to this inner product, the linear operator L satis�es heb| L bi D
h L Teb|bi D 0 forany b. Since L b(p) D v(p), we obtain a hierarchy of solvability
conditions heb|v(p)i D 0 for p D 2, 3, . . ..

It can be shown from equations 3.17, 3.20, and 3.23 that the �rst solvability
condition requires that

bl NsEP(1)
0 P(1)

1

X

j2J
Ow(rij )e¡2ihij · O (2 1/2) (3.26)

where

P(n)
k D

"Z p /2

¡p /2
e¡2niw pk (w )

dw

p

#
. (3.27)

This is analogous to the so-called adaptation condition in the bifurcation
theory of weakly connected neurons (Hoppensteadt & Izhikevich, 1997). If
it is violated, then at this level of approximation, the interactions between
hypercolumns become trivial. There are two ways in which equation 3.26
can be satis�ed: the con�guration of surrounding hypercolumns is such
that

P
j Ow (rij)e¡2ihij · O (2 1/2) or the mean �ring rate NsE · O (2 1/2). Here we

assume that NsE D O (2 1/2).
The solvability condition heb|v(3)i D 0 generates a cubic amplitude equa-

tion for z(ri, t ). As a further simpli�cation, we set c m D 0, since this does
not alter the basic structure of the amplitude equation. (Note, however, that
the coef�cients of the amplitude equation are c m dependent, and hence the
stability properties of a pattern may change ifc m 6D 0.) Using equations 3.17,
3.21, and 3.23, we then �nd that (after rescaling t )

@z(ri , t )
@t

D z(ri, t )(Dm ¡ A|z(ri, t )|2) C f (ri) C b
X

j2J
Ow (rij)

£
h
z(rj, t ) C z(rj, t )P(2)

0 e¡4ihij C sP(1)
0 e¡2ihij

i
, (3.28)

for all i 2 J where s D NsE /
p

2 m cBE,

b D P(1)
1

X

lDE,I

Dlbl (3.29)

f (ri ) D m c
X

lDE,I

eBl

Z p

0
e¡2iwDhl (ri, w )

dw

p
(3.30)
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and

Dl D
m 2

c BE

eBTB
eBl, A D ¡ 3

eBTB

X

lDE,I

eBlc
0
l B3

l . (3.31)

Equation 3.28 is our reduced model of weakly interacting hypercolumns. It
describes the effects of anisotropic lateral connections and modulatory in-
puts from the LGN on the dynamics of the (complex) amplitude z(ri, t ). The
latter determines the response properties of the orientation tuning curve
associated with the hypercolumn at cortical position ri . The coupling pa-
rameter b is a linear combination of the relative strengths of the lateral con-
nections’ innervating excitatory neurons and those innervating inhibitory
neurons, with DE, DI determined by the local weight distribution. Since
DE > 0 and DI < 0, we see that the effective interactions between hyper-
columns have both an excitatory and an inhibitory component. (The factor
P(1)

1 appearing in equation 3.29, which arises from the spread in lateral con-
nections with respect to orientation—see Figure 3b—generates a positive
rescaling of the lateral interactions and can be absorbed into the parameters
DE and DI.) Note that in the case of isotropic lateral connections, P (n)

k D 0
for all n > 1 so that z decouples from z in the amplitude equation 3.28.

3.3 Cubic Amplitude Equation: Oscillatory Case. In our derivation
of the amplitude equation, 3.28, we assumed that the local cortical cir-
cuit generates a stationary orientation tuning curve. However, as shown
in Section 3.1, it is possible for a time-periodic tuning curve to occur when
ImWC

1 6D 0. Taylor expanding 2.4 as before leads to the hierarchy of equa-
tions, 3.19 through 3.21, except that the linear operator L ! L t D L C @/@t.
The lowest-order solution, equation 3.23, now takes the form

b (1) (ri, w , t, t ) D
h
zL (ri, t )ei(V0 t¡2w ) C zR (ri, t )ei(V0tC2w )

i
BC c.c., (3.32)

where zL and zR represent the complex amplitudes for anticlockwise (L) and
clockwise (R) rotating waves (around the ring of a single hypercolumn), and

V0 D m c

p
4WEI (1)WIE (1) ¡ [WEE (1) C WII (1)]2. (3.33)

Introduce the generalized inner product,

hu | vi D lim
T!1

1
T

Z T/2

¡T/2

Z p

0
[uE (w , t)vE (w , t) C uI (w , t)vI (w , t)]

dw

p
dt, (3.34)

and the dual vectors ebL D eBei(V0t¡2w ) , ebR D eBei(V0 tC2w ) . Using the fact that
hebL | L tbi D hebR | L tbi D 0 for arbitrary b, we obtain the pair of solvability
conditions hebL |v(p)i D hebR |v(p)i D 0 for each p ¸ 2.
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The p D 2 solvability conditions are identically satis�ed. The p D 3
solvability conditions then generate cubic amplitude equations for zL, zR of
the form

@zL (ri, t )
@t

D (1 C iV0)zL (ri, t )
h
Dm ¡A|zL (ri, t ) |2 ¡2A|zR (ri, t ) |2

i

C f¡ (ri) C b
X

j2J
Ow(rij )

h
zL (rj, t ) C zR (rj, t )P (2)

0 e4ihij

i
(3.35)

and

@zR (ri, t )
@t

D (1 C iV0)zR (ri, t )
h
Dm ¡A|zR (ri, t ) |2 ¡2A|zL (ri, t ) |2

i

C fC (ri) C b
X

j2J
Ow (rij)

h
zR (rj , t ) C zL (rj, t )P(2)

0 e¡4ihij

i
, (3.36)

where

f§ (ri) D lim
T!1

m c

T

Z T/2

¡T/2

Z p

0
e¡i(V0t§2w )

X

lDE,I

eBlDhl (ri, w , t)
dw

p
dt. (3.37)

It can be seen that the amplitudes couple only to time–dependent inputs
from the LGN.

4 Contextual Effects

In the previous section, we used perturbation techniques to reduce the orig-
inal in�nite-dimensional system of Wilson-Cowan equations (2.4) to a cor-
responding �nite-dimensional system of amplitude equations (3.28). This is
illustrated in Figure 6. The complex amplitude z(ri) D Zie¡2iw i determines
the linear response function Ri (w ) of the ith hypercolumn according to

Ri (w ) D z(ri)e2iw C Nzi (ri)e¡2iw D 2Zi cos(2[w ¡ w i]), (4.1)

and this in turn determines the population tuning curves of the excitatory
and inhibitory populations. In this section, we use the amplitude equation,
3.28, to investigate (at least qualitatively) how contextual stimuli falling
outside the classical receptive �eld of a hypercolumn modify their response
to stimuli within the classical receptive �eld; such contextual effects are
mediated by the lateral interactions between hypercolumns.

4.1 A Single Driven Hypercolumn. We begin by determining the re-
sponse of a single hypercolumn to an LGN input in the absence of lateral
interactions (b D 0) and under the assumption that the orientation tuning
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Figure 6: Reduction from a dynamical model of interacting hypercolumns to a
dynamical model of interacting population tuning curves.

curves and external stimuli are stationary. Let the input from the LGN to
the ith active hypercolumn be of the form

Dhl (ri, w ) D glCi cos(2[w ¡ Wi]), (4.2)

where Ci, Ci > 0, is proportional to the contrast of the center stimulus,
Wi is its orientation, and gl ¸ 0 determines the relative strengths of the
feedforward input to the local excitatory and inhibitory populations. Such
a stimulus represents an oriented edge or bar in the aggregate receptive
�eld of the hypercolumn. It then follows from equation 3.30 that

f (ri) D Cie¡2iWi , (4.3)

where we have set m c
P

lDE,I
QBlgl D 1 for convenience. This term is positive

if gE À gI. Setting b D 0 in equation 3.28 and writing z(ri ) D Zie¡2iwi , with
Zi real, we obtain the following pair of equations:

dZi

dt
D Zi (Dm ¡ AZ2

i ) C Ci cos(2[w i ¡ Wi]) (4.4)

dw i

dt
D ¡

Ci

2Zi
sin(2[w i ¡ Wi]). (4.5)

Assuming that the coef�cients Dm > 0, A > 0, these have a stable �xed-
point solution (w ¤

i , Z¤
i ) with w ¤

i D Wi (independent of the contrast), and Z¤
i
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is thepositive rootof the cubic Zi (Dm ¡AZ2
i )CCi D 0. Thus, the hypercolumn

encodes the orientation Wi of a local bar in its aggregate receptive �eld by
locking the peak of its tuning curve to Wi (see Figure 5). The amplitude
of the tuning curve is determined by Z¤

i , which is an increasing function
of contrast. Note that in the absence of an external stimulus (Ci D 0), the
tuning curve is marginally stable since w¤

i is arbitrary. This means that the
phase will be susceptible to noise-induced diffusion. Recall from Section 3
that the amplitude of the LGN input was assumed to be O (2 3/2), whereas
the amplitude of the response is O (2 1/2). Since 2 ¿ 1, the intrinsic circuitry
of the hypercolumn ampli�es the LGN input.

Now consider the oscillatory case. In order that the amplitudes zL and
zR of equations 3.35 and 3.36 couple to an LGN input, the latter must be
time dependent with a Fourier component at the natural frequency of os-
cillation V0 of the hypercolumn. It is certainly reasonable to assume that
external stimuli have a time-dependent part. For example, neurophysiolog-
ical experiments often use �ashing or drifting oriented gratings as external
stimuli. (These are chosen to compensate for the spike frequency adaptation
of neurons in the cortex.) Time-dependent signals might also be generated in
the LGN. Suppose that Ci is the contrast of the relevant temporal frequency
component and Wi is the orientation of the external stimulus. Neglecting
lateral inputs, the amplitude equations 3.35 and 3.36 become

@zL (ri, t )
@t

D (1 C iV0)zL (ri, t )

£
h
Dm ¡ A|zL (ri, t )|2 ¡ 2A|zR (ri, t ) |2

i
C Cie¡2iWi (4.6)

and

@zR (ri, t )
@t

D (1 C iV0)zR (ri, t )

£
h
Dm ¡ A|zR (ri , t ) |2 ¡ 2A|zL (ri, t )|2

i
C Cie2iWi . (4.7)

If Ci D 0, Dm > 0 and A > 0, there are three types of �xed-point solution:
(1) anticlockwise rotating waves |zL |2 D Dm /A, zR D 0, (2) clockwise rotating
waves |zR |2 D Dm /A, zL D 0, and (3) standing waves |zR |2 D |zL |2 D Dm /3A.
The standing waves are unstable, and the traveling waves are marginally
stable due to the existence of arbitrary phases (Kath, 1981; Aronson, Ermen-
trout, & Kopell, 1990). (Note, however, that it is possible to obtain stable
standing waves when c m 6D 0 in equation 3.21.) If Ci > 0, the traveling
wave solutions no longer exist, but standing wave solutions do, of the form
zL D Zie¡2iWi eiy , zR D Zie2iW ieiy with tan y D ¡V0 and Zi a positive root of
the cubic

Zi[Dm ¡ 3AZ2
i ] C Ci cos(y ) D 0. (4.8)
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Equation 3.32 then implies that the tuning curves are of the form

4Zi cos(V0t C y ) cos(2[w ¡ Wi]).

It can be shown that these solutions are unstable for suf�ciently low con-
trasts but stable for high contrasts.

The existence of a stable, time–periodic tuning curve in the case of a single
isolated hypercolumn means that it effectively acts as a single giant oscilla-
tor. One could then investigate, for example, the synchronization properties
of a network of hypercolumns coupled via anisotropic lateral interactions.
However, it is not clear how to interpret these oscillations biologically. One
possibility is that they correspond to the 40 Hz c frequency oscillations that
are thought to play a role in the synchronization of cell assemblies (Gray,
Konig, Engel, & Singer, 1989; Singer & Gray, 1995). One dif�culty with this
interpretation is that the c oscillations appear in the spikes of individual
neurons, and thus the mechanism for generating them is likely to be washed
out in any mean-�eld theory analysis used to derive the rate models con-
sidered in this article. On the other hand, recent work on integrate–and–�re
networks has shown that time–dependent �ringrates can be viewed as mod-
ulations of single neuron spikes (Bressloff et al., 2000). Given the dif�culties
concerning the signi�cance of oscillatory tuning curves, we assume that
the normal operating regime of each hypercolumn is to generate stationary
tuning curves in response to slowly changing LGN inputs.

4.2 Center–Surround Interactions. Consider the following experimen-
tal situation (Blakemore & Tobin, 1972; Li & Li, 1994; Sillito et al., 1995): a
particular hypercolumn designated the “center” is stimulated with a grating
at orientation Wc, while outside the receptive area of this hypercolumn—in
the “surround”—there is a grating at some uniform orientation Ws as shown
in Figure 7a. In order to analyze this problem, we introduce a mean-�eld
approximation. That is, the active region of cortex responding to the center-
suround stimulus of Figure 7a is taken to have the con�guration shown in
Figure 7b. This consists of a center hypercolumn at rc D 0 interacting with
a ring of N identical surround hypercolumns at relative positions rj , with
|rj | D R, j D 1, . . . , N. Note that the total input from surround to center
is strong relative to that from center to surround. Therefore, as a further
approximation, we can neglect the latter and treat the system as a single hy-
percolumn receiving a mixture of inputs from the LGN and lateral inputs
from the surround (see Figure 7c).

Suppose that the surround hypercolumns are sharply tuned to the stim-
ulus orientation Ws, that is, they have steady-state amplitudes of the form
z(rj) D Zse¡2iWs , where Zs is positive and real. It follows from equation 3.28
that the complex amplitude zc (t ) characterizing the response of the center
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Figure 7: (a) Circular center–surround stimulus con�guration. (b) Cortical con-
�guration of a center hypercolumn interacting with a ring of surround hy-
percolumns. (c) Effective single hypercolumn circuit in which there are direct
LGN inputs from the center and lateral inputs from the surround. The relative
strengths of the lateral inputs to the excitatory (E) and inhibitory (I) popula-
tions are determined by bE and bI , respectively. The corresponding LGN input
strengths are denoted by gE and gI .

satis�es the equation

dzc (t )
dt

D zc (t ) (Dm ¡ A|zc (t ) |2)

C bws

±
e¡2iWs C Le2iWs C QL

²
C Cce¡2iWc , (4.9)

where ws D NZs Ow (R) > 0, Cc is the contrast of the center stimulus and

L D
P(2)

0

N

NX

jD1

e¡4ihj , QL D
sP(1)

0

NZs

NX

jD1

e¡2ihj , (4.10)

with hj the direction of the line from the center to the jth surround hy-
percolumn (see Figure 7b). We now make the simplifying assumption that
L D QL D 0 due to the rotational symmetry of the mean-�eld con�guration.
Writing zc D Zce¡2iwc , we then obtain the following pair of equations:

dZc

dt
D Zc (Dm ¡ AZ2

c ) C Cc cos(2[wc ¡ Wc])

C bws cos(2[wc ¡ Ws]) (4.11)

dwc

dt
D ¡

Cc

2Zc
sin(2[wc ¡ Wc]) ¡ bws

2Zc
sin(2[wc ¡ Ws]). (4.12)
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Figure 8: Response of center population as a function of the relative orientation
of the surround stimulus DW D Ws ¡Wc . Parameters in amplitude equations 4.11
and 4.12 are Dm D 0.1, |b | Ows D 0.8, Cc D 1, and A D 1. (a) Solid line: total
response dZc at preferred orientation as a fraction of the response in the absence
of surround modulation. Dashed line: amplitude of maximum response Z¤

c (b ).
(b) Plot of the shift in the peak of the orientation tuning curve dwc D Wc ¡ w¤

c (b ).

Recall from equation 3.29 that the effective interaction parameter b has
both an excitatory and an inhibitory component. As noted previously, ex-
perimental data suggest that the effect of lateral inputs on the response
of a hypercolumn is contrast sensitive, tending to be suppressive at high
contrasts and facilitatory at low contrasts (Toth et al., 1996; Levitt & Lund,
1997; Polat et al., 1998). In terms of the amplitude equation, 4.9, this implies
that b D b (Cc). For the moment, we assume that the contrast of the center
stimulus is large enough so that b < 0.

Let (Z¤
c (b ), w ¤

c (b )) be the unique, stable, steady-state solution of equa-
tions 4.11 and 4.12 for a given b . We de�ne two important quantities: the
shift dwc in the peak of the tuning curve and the fractional changedZc in the
linear response at the preferred orientation Wi,

dwc D Wc ¡ w ¤
c (b ), dZc D

Z¤
c (b ) cos(2dwc)

Z¤
c (0)

. (4.13)

If dZc < 1, the effect of the lateral inputs is supressive, whereas if dZc >
1, then it is facilitatory. In Figure 8 we plot the resulting quantities dZc
and dwc as a function of DW D Ws ¡ Wc. It can be seen that surround
modulation changes from suppression to facilitation as the difference in
the orientation of the surround and the center increases beyond around
60±. This is consistent with experimental results on center-surround sup-
pression and facilitation at high contrasts (Blakemore & Tobin, 1972; Li
& Li, 1994; Sillito et al., 1995). An important contribution to the asym-
metry between suppression and facilitation arises from the shift in the
peak of the effective tuning curve in the presence of the surround, as mea-
sured by dwc. Since this is positive, there is an apparent increase in the
difference between the center and surround tuning curve peaks, which
is analogous to the direct tilt effect observed in psychophysical experi-
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ments (Wenderoth & Johnstone, 1988), although the effect is much larger
here.

We now give a simple argument for the switch from suppression to fa-
cilitation as the relative angle DW D Ws ¡ Wc is increased. If the surround
is stimulated by a grating parallel to that of the center stimulus (Ws D Wc),
then w¤

c D Wc and equation 4.11 becomes

dZc

dt
D Zc (Dm ¡ AZ2

c ) C Cc C bws. (4.14)

Similarly, in the case of an orthogonal surround (Ws D Wc C 90±),

dZc

dt
D Zc (Dm ¡ AZ2

c ) C Cc ¡ bws. (4.15)

The steady-state amplitude Z¤
c for b D 0 is an increasing function of Cc (see

Section 4.1). Hence, if b < 0, then Cc ! Cc ¡ |bwc | for a collinear surround,
resulting in a suppression of the center response, whereas Cc ! Cc C |bwc |
for an orthogonal surround leading to facilitation.

The occurrence of a facilitatory response to an orthogonal surround stim-
ulus has been observed experimentally by a number of groups (Blakemore &
Tobin, 1972; Sillito et al., 1995; Levitt & Lund, 1997; Polat et al., 1998). At �rst
sight, however, this con�icts with the consistent experimental �nding that
stimulating a hypercolumn with an orthogonal stimulus suppresses the re-
sponse to the original stimulus. In particular, DeAngelis, Robson, Ohzawa,
and Freeman (1992) show that cross–orientation suppression (with orthog-
onal gratings) originates within the receptive �eld of most cat neurons ex-
amined and is a consistent �nding in both complex and simple cells. The
degree of suppression depends linearly on the size of the orthogonal grating
up to a critical dimension, which is smaller than the classical receptive �eld
dimension. Such observations are compatible with the above �ndings. In
the case of orthogonal inputs to the same hypercolumn, we have the simple
linear summation Cc cos(2w ) C C0

c cos(2[w ¡p /2]) D (Cc ¡C0
c) cos(2w ), where

Cc > C0
c > 0. Thus, the orthogonal input of amplitude C0

c reduces the ampli-
tude of the original input and hence gives rise to a smaller response. On the
other hand, the effect of an orthogonal surround stimulus is mediated by
the lateral connections and (in the suppressive setting) is input primarily to
the orthogonal inhibitory population, which can lead to disinhibition and
consequently facilitation. Similar arguments were used by Mundel et al.
(1997) and more recently by Dragoi and Sur (2000) in their numerical study
of interacting hypercolumns.

The center response to surround stimulation depends signi�cantly on
the contrast of the center stimulation (Toth et al., 1996; Levitt & Lund, 1997;
Polat et al., 1998). For example, a �xed surround stimulus tends to facilitate
responses to preferred orientation stimuli when the center contrast is low
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Figure 9: Variation in the response Rc of a center hypercolumn at its preferred
orientation as a function of (log) contrast Cc for collinear high-contrast surround
(solid curve) and no surround (dashed curve). Parameters in the amplitude
equations 4.11 and 4.12 are Dm D 0.1, A D 1, and Ows D 0.8. The contrast-
dependent coupling is taken to be of the form b D (0.5 ¡ Cc).

but suppresses responses when it is high. Both effects are strongest when the
center and surround stimuli are at the same orientation. It has recently been
shown that inclusion of some form of contrast-related asymmetry between
local excitatory and inhibitory neurons is suf�cient to account for the switch
between low-contrast facilitation and high-contrast suppression (Somers et
al., 1998).

One way to model the thresholding properties of the lateral interac-
tions is to distinguish between the differing classes of inhibitory inter-
neurons. For example, certain types of local interneuron are well placed
to provide a source of feedforward inhibition from lateral connections, as
illustrated in Figure 1. This feedforward inhibition will have its own thresh-
old and gain that will be determined by the contrast of the LGN inputs, and
there will thus be a contrast-dependent disynaptic inhibition arising from
the lateral connections. We incorporate such an effect into our cortical model
by including a contrast-dependent contribution to the lateral inputs of the
excitatory population in equation 2.4: bE ! bE ¡ b¤, where b¤ is contrast
dependent. In the case of high contrasts, we expect b¤ to be suf�ciently large
so that the effective coupling b < 0. This has been assumed in our analysis
of high-contrast center-surround stimulation. Now suppose that we con-
sider the response of the center in the presence of a high-contrast surround
and varying center contrast. For the sake of illustration, suppose that b¤

varies linearly with the contrast. The response of the center at its preferred
orientation, Rc, is plotted as a function of contrast in Figure 9, both with
and without a collinear surround. It can be seen that there is facilitation at
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low contrasts and suppression at high contrasts, which is consistent with
experimental data (Polat et al., 1998).

4.3 Anisotropy in Surround Suppression. So far we have considered
a surround con�guration in which the the anisotropic nature of the lateral
connections is effectively averaged away. This is no longer the case if only
a subregion of the surround is stimulated. For concreteness, suppose that
only a single hypercolumn in the surround is active, and take its location
relative to the center to be r D r (cosh, sinh ) (see Figure 7b). Since the effects
of feedback from the center hypercolumn to the surround cannot now be
ignored, we have to solve the pair of equations

dzc (t )
dt

D zc (t ) (Dm ¡ A|zc (t ) |2) C Ce¡2iWc

C b Ow (r)
h
zs C NzsP

(2)
0 e¡4ih C sP(1)

0 e¡2ih
i

(4.16)

dzs (t )
dt

D zs (t )(Dm ¡ A|zs (t ) |2) C Ce¡2iWs

C b Ow (r)
h
zc C NzcP

(2)
0 e¡4ih C sP(1)

0 e¡2ih
i

, (4.17)

where for simplicity the contrast of the center and surround stimuli is taken
to be equal. It is clear that if the lateral connections are isotropic, then p0(w ) D
1 for all w 2 [¡p /2, p /2), so that P(2)

0 D 0 D P(1)
0 , and the effective interaction

between the center and surround is independent of their relative angular
location h . However, if P(1)

0 and P(2)
0 are nonzero, then there will be some

dependence on the relative angle h , which is a signature of the anisotropy
of the lateral connections.

For the sake of illustration, suppose that Wc D Ws D 0 (iso-oriented center
and surround). Then, by symmetry, a �xed-point solution exists for which
zc D zs D Ze¡2iw , where

Z(Dm ¡ AZ2) C C cos(2w ) C b Ow(r)Z

£
h
1 C P(2)

0 cos(4[w ¡h ]) C sP(1)
0 cos(2[w ¡h])

i
D 0 (4.18)

C sin(2w ) C b Ow(r)
h
P(2)

0 sin(4[w ¡h]) C sP(1)
0 sin(2[w ¡h])

i
D 0. (4.19)

Some solutions of these equations are plotted in Figure 10 with dZc D
Z(b ) cos(w )/Z(0). It can be seen that the degree of suppression of the center
(at high-contrast) depends on both the relative angular position of the sur-
round hypercolumn and the degree of spread in the lateral connections as
characterized by the parameters P(1)

0 and P(2)
0 . For certain parameter values
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Figure 10: Variation in the degree of suppression of a center hypercolumn as
a function of the relative angular position h of a surround hypercolumn. Both
center and surround are stimulated by a high-contrast horizontal bar such that
h D 0± corresponds to a collinear or end-�ank con�guration and h D 90± corre-
sponds to an orthogonal or side-�ank con�guration as shown. The two curves
differ in the choice of spread parameters: (i) sP (1)

0 D 0.1, P (2)
0 D 0.6 and (ii)

sP(1)
0 D 0.8, P(2)

0 D 0.4. Other parameters in equations 4.16 and 4.17 are m D 0.1,
A D 1, C D 1.0, and |b |w(r) D 0.5.

(see curve ii in Figure 10), the suppressive effect of the surround hypercol-
umn is maximal when located close to the end-�ank position and minimal
when located around the side-�ank position. However, it is also possible
for the suppressive effect to be minimal at some oblique con�guration (see
curve i in Figure 10).

It is interesting that recent experimental data concerning the spatial orga-
nization of surrounds in primary visual cortex of the cat imply that in many
cases, suppression originates from a localized region in the surround rather
than being distributed uniformly in the region encircling the center’s classi-
cal receptive �eld, that is, the surrounds are spatially asymmetric (Walker,
Ohzawa, & Freeman, 1999). The suppressive portion of the surround can
arise at any location with a bias toward the ends of the center’s classical
receptive. Our analysis suggests that the effect of the surround depends on
a subtle combination of the spread in the anisotropic lateral connections and
the spatial organization of the surround.

5 Discussion

The mathematical model introduced here assumes that V1 dynamics is close
to threshold, so that even weakly modulated signals from the LGN can trig-
ger a tuned response. One way to achieve this is if there is a balance between
intracortical excitation and inhibition. This and related ideas have been ex-
plored in a number of recent studies of the roleof intracortical interactions on
the observed properties of cortical neurons (Douglas et al., 1995; Carandini
et al., 1997; Tsodyks & Sejnowski, 1995; Chance & Abbott, 2000; Wielaard,
Shelley, McLaughlin, & Shapley, 2001).



Amplitude Equation Approach 519

5.1 Balanced Excitation and Inhibition. As discussed by Tsodyks and
Sejnowski (1995), when a network with balanced excitation and inhibition
is close to threshold, several properties obtain. (1) Fluctuations about the
threshold are large, and remain so, even in the continuum limit. (2) The
network switches discontinuously from threshold to a tuned excited state,
indicating theexistenceof a subcritical bifurcation. (3) Critical slowing down
occurs, that is, the network state changes more slowly from threshold to
tuned the closer the stimulus is to threshold (see also Cowan & Ermentrout,
1978)—given realistic neural parameters it takes about 50 msec to reach the
peak of the tuned state. However, (4) if the input orientation bias is switched
instantaneously to a new value, the net switches to thenew tuned state in less
than 50 msec, particularly if the inhibition in the network is faster than the
excitation. Finally, (5) the orientation-tuned response is contrast invariant.
Most, if not all, of these properties are found in the mathematical model
described above.

On a more technical level, we note that one consequence of having bal-
anced excitation and inhibition is that to have any effect on the bifurcation
process whereby new orientation tuned stable states emerge, external stim-
uli, for example, those from the LGN, which we labeled as hl (rj, w ), must be
of the form

hl (rj , w ) D glCjf1 ¡ 2 3/2 C 2 3/2 cos(2[w ¡ Wj])g,

where gl measures the relative strengths of LGN inputs to excitatory and
inhibitory populations in V1, and Cj is the stimulus contrast at the jth hyper-
column. Thus, the nonoriented component (1 ¡ 2 3/2)glCj is 0(1) and couples
to the steady-state equations, whereas the orientation-tuned component
2 3/2glCj cos(2[w ¡ Wj]) is 0(2 3/2) and couples to the cubic amplitude equa-
tions. It follows that if V1 is not sitting close to a bifurcation point, so that
much stronger modulations are needed to drive it to an orientation-tuned
state, then a different mathematical analysis is needed. In this respect, it
is clear that the noise �uctuations described above can play an important
role in keeping the network dynamics close to the bifurcation point. As
recently noted by Anderson, Lampl, Gillespie, and Ferster (2000), noise
�uctuations can also secure contrast invariance in the tuned response of a
population of spiking neurons, which is a property we found in the uncou-
pled hypercolumn model (Bressloff et al., 2000) using sigmoid population
equations that effectively take account of effects produced by stochastic
resonance.

5.2 Divisive Inhibition. Another well-known set of studies concerns
the use of recurrent inhibition to model the nearly linear behavior of sim-
ple cortical cells. Thus, Carandini et al. (1997) have explored the use of
shunting or divisive inhibition provided by a pool of inhibitory neurons,
to linearize neural responses and produce contrast invariance and satura-
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tion properties consistent with observations. As Majaj, Smith, and Movshon
(2000) recently showed, many contextual effects can be modeled within
this framework if the inhibition acts to normalize the neural response.
Thus, cross–orientation suppression within the classical receptive �eld is
easily obtained. In general, many suppression experiments can be mod-
eled with such a mechanism, but it is more dif�cult to account for effects
such as cross–orientation facilitation by stimuli in the nonclassical receptive
�eld.

The idea of using division rather than subtraction to model the effects
of inhibition has been around for a long time. One early mathematical use
was by Grossberg (1973), who developed population equations similar to
those of Wilson and Cowan (1972, 1973), but using divisive inhibition. An
immediate problem is then to �nd a biophysical basis for such a mechanism.
Recent work by Wielaard et al. (2001) has provided a natural solution. If one
uses conductance-based models of the evolution of changes in membrane
potentials in a network of integrate–and–�re neurons with recurrent exci-
tation and inhibition and if the conductances are suf�ciently large, then the
steady-state voltages reached depend on both differences between excita-
tion and inhibition, and also on ratios of conductances, in such a way as to
implement divisive inhibition. One can then use such conductance models
to see how linear simple cell properties can emerge from network inter-
actions. It is the balance between excitation and inhibition that produces
effective linearity.

A similar but less biophysically directmodel was also recently introduced
by Chance and Abbott (2000). However, they went further in devising a cir-
cuit to maintain rapid switching in the presence of critical slowing down
by using a three-population model comprising one excitatory and two (di-
visive) inhibitory populations. This circuit is more elaborate than that of
Tsodyks and Sejnowski (1995) and in fact is very close to the three-neuron
circuit we have studied in this article (see Figure 1), except that we have used
subtractive inhibition. But the mathematical analysis carried out in this ar-
ticle proceeds by �rst linearizing the basic equations about an equilibrium
state and then carrying out various perturbation expansions. It follows that
either subtractive or divisive inhibition will lead to very similar equations
and conclusions. The only difference lies in the particular parameter values
needed to obtain the various behaviors. Thus, our results are qualitatively
similar to what can be expected from a three-neuron circuit employing di-
visive rather than subtractive inhibition, particularly as we deal only with
steady-state behaviors in this article.

Given the framework described above, we note again that the analysis
outlined in this article provides an account of both suppression and facili-
tation in a single model. We expect that the equivalent divisive inhibitory
model will also exhibit such properties, at least if stationary tuning curves
are analyzed. It remains to be seen what differences, if any, exist in the case
of time–dependent responses.
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5.3 Contrast Dependence. One other bene�t is provided by the three-
neuron circuit described here. In various parts of the article, we have im-
posed contrast dependence of the lateral connectivity in a somewhat ad
hoc manner simply by assuming the effective coupling coef�cient b of the
lateral connections between hypercolumns to be of the form

b D bE ¡ b¤ (C),

where bE is the excitatory coupling between hypercolumns and C is the
stimulus contrast. Evidently if b¤ (C) increases monotonically with contrast,
there exists a contrast threshold at which b < 0. One relatively straight-
forward way to achieve this is to suppose that basket cells, which receive
about 20% of the signal from excitatory lateral connections (McGuire et
al., 1991), have relatively high thresholds and are therefore not activated
by low-contrast stimuli. In effect, this implies that the effective excitatory
part of the aggregate hypercolumn receptive �eld is larger at low contrast
(Movshon, pers. comm., 2001).
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