3.1 Linear Algebra

Start with a field F (this will be the field of scalars).
Definition: A vector space over F is a set V with a vector addition and scalar multiplication ("scalars" in F times "vectors" in V) so that:
(a) Vector addition is associative and commutative.
(b) There is an additive identity vector, denoted 0 , or sometimes $\overrightarrow{0}$.
(c) Every vector \vec{v} has an additive inverse vector $-\vec{v}$.
(d) Scalar multiplication distributes with vector addition.
(e) If $c, k \in F$ are scalars and $\vec{v} \in V$ is a vector, then $c(k \vec{v})=(c k) \vec{v}$.
(f) If $1 \in F$ is the multiplicative identity, then $1 \vec{v}=\vec{v}$ for all \vec{v}.

Examples: (a) F^{n} is the standard finite-dimensional vector space of n-tuples of elements of F. Vectors $\vec{v} \in F^{n}$ will be written vertically:

$$
\vec{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right],\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]+\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right]=\left[\begin{array}{c}
v_{1}+w_{1} \\
v_{2}+w_{2} \\
\vdots \\
v_{n}+w_{n}
\end{array}\right], \quad k\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{c}
k v_{1} \\
k v_{2} \\
\vdots \\
k v_{n}
\end{array}\right]
$$

(b) If $F \subset D$ and D is a commutative ring with 1 , then D is a vector space over F. The scalar multiplication is ordinary multiplication in D, and property (e) is the associative law for multiplication in D. Thus, for example, vector spaces over \mathbb{Q} include $\mathbb{R}, \mathbb{C}, \mathbb{Q}[x]$ and $\mathbb{Q}(x)$.
Definition: A basis of a vector space V is a set of vectors $\left\{\vec{v}_{i}\right\}$ that:
(i) Span. Every vector is a linear combination of the \vec{v}_{i} :

$$
\vec{v}=k_{1} \vec{v}_{1}+\ldots+k_{n} \vec{v}_{n}
$$

and
(ii) Are Linearly Independent. The only way:

$$
k_{1} \vec{v}_{1}+\ldots+k_{n} \vec{v}_{n}=0
$$

is if all the scalars k_{1}, \ldots, k_{n} are zero.
Proposition 3.1.1. If $\left\{\vec{v}_{1}, \ldots ., \vec{v}_{n}\right\}$ is a basis of V, then every vector $\vec{v} \in V$ is a unique scalar linear combination of the basis vectors:

$$
\vec{v}=k_{1} \vec{v}_{1}+\ldots+k_{n} \vec{v}_{n}
$$

and any other basis $\left\{\vec{w}_{i}\right\}$ of V must also consist of a set of n vectors. The number n is called the dimension of the vector space V over F.

Proof: Since the $\left\{\vec{v}_{i}\right\}$ span, each vector \vec{v} has at least one expression as a linear combination of the \vec{v}_{i}, and if there are two:

$$
\vec{v}=k_{1} \vec{v}_{1}+\ldots+k_{n} \vec{v}_{n} \text { and } \vec{v}=l_{1} \vec{v}_{1}+\ldots+l_{n} \vec{v}_{n}
$$

then subtracting them gives: $0=\left(k_{1}-l_{1}\right) \vec{v}_{1}+\ldots+\left(k_{n}-l_{n}\right) \vec{v}_{n}$. But then each $k_{i}=l_{i}$ because the $\left\{\vec{v}_{i}\right\}$ are linearly independent, and thus the two linear combinations are the same. This gives uniqueness.

Now take another basis $\left\{\vec{w}_{i}\right\}$ and solve: $\vec{w}_{1}=b_{1} \vec{v}_{1}+\ldots+b_{n} \vec{v}_{n}$. We can assume (reordering the \vec{v}_{i} if necessary) that $b_{1} \neq 0$. Then:

$$
\vec{v}_{1}=\frac{1}{b_{1}} \vec{w}_{1}-\frac{b_{2}}{b_{1}} \vec{v}_{2}-\ldots-\frac{b_{n}}{b_{1}} \vec{v}_{n}
$$

and then $\left\{\vec{w}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is another basis of V because every

$$
\vec{v}=k_{1} \vec{v}_{1}+\ldots+k_{n} \vec{v}_{n}=k_{1}\left(\frac{1}{b_{1}} \vec{w}_{1}-\frac{b_{2}}{b_{1}} \vec{v}_{2}-\ldots-\frac{b_{n}}{b_{1}} \vec{v}_{n}\right)+k_{2} \vec{v}_{2}+\ldots+k_{n} \vec{v}_{n}
$$

so the vectors span V, and the only way:

$$
0=k_{1} \vec{w}_{1}+\ldots+k_{n} \vec{v}_{n}=k_{1}\left(b_{1} \vec{v}_{1}+\ldots+b_{n} \vec{v}_{n}\right)+k_{2} \vec{v}_{2}+\ldots+k_{n} \vec{v}_{n}
$$

is if $k_{1} b_{1}=0\left(\right.$ so $\left.k_{1}=0\right)$ and each $k_{1} b_{i}+k_{i}=0\left(\right.$ so each $k_{i}=0$, too! $)$
Similarly we can replace each \vec{v}_{i} with a \vec{w}_{i} to get a sequence of bases: $\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{v}_{3}, \ldots, \vec{v}_{n}\right\},\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, \vec{v}_{4}, \ldots, \vec{v}_{n}\right\}$, etc. If there were fewer of the \vec{w}_{i} basis vectors than \vec{v}_{i} basis vectors we would finish with a basis:

$$
\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}, \vec{v}_{m+1}, \ldots, \vec{v}_{n}\right\}
$$

which is impossible, since $\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}\right\}$ is already a basis! Similarly, reversing the roles of the \vec{v}_{i} 's and \vec{w}_{i} 's, we see that there cannot be fewer \vec{v}_{i} 's than \vec{w}_{i} 's. So there must be the same number of \vec{w}_{i} 's as \vec{v}_{i} 's!

Examples:

(a) F^{n} has n "standard" basis vectors:

$$
\vec{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \vec{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \ldots, \vec{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

(b) \mathbb{R}^{1} is the line, \mathbb{R}^{2} is the plane, and \mathbb{R}^{3} is space.
(c) \mathbb{C} has basis $\{1, i\}$ as a vector space over \mathbb{R}.
(d) $\mathbb{Q}[x]$ has infinite basis $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ as a vector space over \mathbb{Q}.
(e) It is hard to even imagine a basis for \mathbb{R} as a vector space over \mathbb{Q}.
(f) Likewise it is hard to imagine a basis for $\mathbb{Q}(x)$ over \mathbb{Q}.

We can create vector spaces with polynomial clock arithmetic. Given

$$
f(x)=x^{d}+a_{d-1} x^{d-1}+\ldots+a_{0} \in F[x]
$$

we first define the $" \bmod f(x)$ " equivalence relation by setting

$$
g(x) \equiv h(x)(\bmod f(x))
$$

if $g(x)-h(x)$ is divisible by $f(x)$, and then the "polynomial clock":

$$
F[x]_{f(x)}=\{[g(x)]\}
$$

is the set of "mod $f(x)$ " equivalence classes.
Proposition 3.1.2. The polynomial clock $F[x]_{f(x)}$ is a commutative ring with 1 and a vector space over F with basis:

$$
\left\{[1],[x], \ldots,\left[x^{d-1}\right]\right\}
$$

and if $f(x)$ is a prime polynomial, then the polynomial clock is a field.
Proof: Division with remainders tells us that in every equivalence class there is a "remainder" polynomial $r(x)$ of degree $<d$. This tells us that the vectors:

$$
[1],[x],\left[x^{2}\right], \ldots,\left[x^{d-1}\right] \in F[x]_{f(x)}
$$

span the polynomial clock. They are linearly independent since if:

$$
b_{d-1}\left[x^{d-1}\right]+\ldots+b_{0}[1]=0
$$

then $r(x)=b_{d-1} x^{d-1}+\ldots+b_{0}$ is divisible by $f(x)$, which is impossible (unless $r(x)=0$) because $f(x)$ has larger degree than $r(x)$.

The addition and multiplication are defined as in the ordinary clock arithmetic (and are shown to be well-defined in the same way, see $\S 8$). As in the ordinary (integer) clock arithmetic, if $[r(x)]$ is a non-zero remainder polynomial and $f(x)$ is prime, then 1 is a gcd of $f(x)$ and $r(x)$, and we can solve:

$$
1=r(x) u(x)+f(x) v(x)
$$

and then $[u(x)]$ is the multiplicative inverse of $[r(x)]$.
Example: We saw that $x^{2}+x+1 \in F_{2}[x]$ is prime. From this, we get $\{[1],[x]\}$ as the basis of the polynomial clock defined by $x^{2}+x+1$, which is a vector space over F_{2} of dimension 2 and a field with 4 elements (removing the cumbersome brackets):

$$
0,1, x, x+1
$$

Let's write down the multiplication and addition laws for this field. Notice that this is not $\mathbb{Z}_{4}\left(\mathbb{Z}_{4}\right.$ isn't a field!). We'll call this field F_{4} :

+	0	1	x	$x+1$
0	0	1	x	$x+1$
1	1	0	$x+1$	x
x	x	$x+1$	0	1
$x+1$	$x+1$	x	1	0

\times	0	1	x	$x+1$
0	0	0	0	0
1	0	1	x	$x+1$
x	0	x	$x+1$	1
$x+1$	0	$x+1$	1	x

Next recall that an algebraic number α is a complex root of a prime polynomial:

$$
f(x)=x^{d}+a_{d-1} x^{d-1}+\ldots+a_{d} \in \mathbb{Q}[x]
$$

We claim next that via α, the polynomial $f(x)$-clock can be regarded as a subfield of the field \mathbb{C} of complex numbers. In fact:

Proposition 3.1.3. Suppose $F \subset \mathbb{C}$ is a subfield and $\alpha \in \mathbb{C}$ is a root of a prime polynomial:

$$
f(x)=x^{d}+a_{d-1} x^{d-1}+\ldots+a_{0} \in F[x]
$$

Then the $f(x)$-clock becomes a subfield of \mathbb{C} when we set $[x]=\alpha$. This subfield is always denoted by $F(\alpha)$, and it sits between F and \mathbb{C} :

$$
F \subset F(\alpha) \subset \mathbb{C}
$$

Proof: The $f(x)$-clock is set up so that:

$$
[x]^{d}+a_{d-1}[x]^{d-1}+\cdots a_{0}=0
$$

But if $\alpha \in \mathbb{C}$ is a root of $f(x)$, then it is also true that

$$
\alpha^{d}+a_{d-1} \alpha^{d-1}+\cdots a_{0}=0
$$

so setting $[x]=\alpha$ is a well-defined substitution, and because $f(x)$ is prime, it follows that the clock becomes a subfield of \mathbb{C}.

Examples: We can give multiplication tables for clocks by just telling how to multiply the basis elements of the vector spaces:
(a) $F=\mathbb{R}$ and $f(x)=x^{2}+1$. The $x^{2}+1$-clock has table:

\times	1	x
1	1	x
x	x	-1

On the other hand, $\mathbb{R}(i)$ and $\mathbb{R}(-i)$ have multiplciation tables:

\times	1	i				
1	1	i				
i	i	-1	\quad and \quad	\times	1	$-i$
:---:	:---:	:---:				
1	1	$-i$				
$-i$	$-i$	-1				

Both $\mathbb{R}(i)$ and $\mathbb{R}(-i)$ are, in fact, equal to \mathbb{C}. The only difference is in the basis as a vector space over \mathbb{R}. One basis uses i and the other uses its complex conjugate $-i$.
(b) If $F=\mathbb{Q}$ and $f(x)=x^{3}-2$, the clock has multiplication table:

\times	1	x	x^{2}
1	1	x	x^{2}
x	x	x^{2}	2
x^{2}	x^{2}	2	$2 x$

and $\mathbb{Q}(\sqrt[3]{2})$ (necessarily) has the same multiplication table:

\times	1	$\sqrt[3]{2}$	$\sqrt[3]{4}$
1	1	$\sqrt[3]{2}$	$\sqrt[3]{4}$
$\sqrt[3]{2}$	$\sqrt[3]{2}$	$\sqrt[3]{4}$	$\sqrt[3]{8}=2$
$\sqrt[3]{4}$	$\sqrt[3]{4}$	$\sqrt[3]{8}=2$	$\sqrt[3]{16}=2 \sqrt[3]{2}$

To find, for example, the inverse of $x^{2}+1$ in the clock, we solve:

$$
1=\left(x^{2}+1\right) u(x)+\left(x^{3}-2\right) v(x)
$$

which we do, as usual, using Euclid's algorithm:

$$
\begin{array}{ll}
x^{3}-2=\left(x^{2}+1\right) x & +(-x-2) \\
x^{2}+1=(-x-2)(-x+2) & +5
\end{array}
$$

so, solving back up Euclid's algorithm:

$$
\begin{array}{rlrl}
5 & =\left(x^{2}+1\right) & & -(-x-2)(-x+2) \\
& =\left(x^{2}+1\right) & & \left.-\left(\left(x^{3}-2\right)-\left(x^{2}+1\right) x\right)\right)(-x+2) \\
& =\left(x^{2}+1\right)\left(-x^{2}+2 x+1\right) & +\left(x^{3}-2\right)(x-2)
\end{array}
$$

giving us the inverse in the $x^{3}-2$-clock:

$$
\left(x^{2}+1\right)^{-1}=\frac{1}{5}\left(-x^{2}+2 x+1\right)
$$

which we can substitute $x=\sqrt[3]{2}$ to get the inverse in $\mathbb{Q}(\sqrt[3]{2})$:

$$
(\sqrt[3]{4}+1)^{-1}=\frac{1}{5}(-\sqrt[3]{4}+2 \sqrt[3]{2}+1)
$$

Definition: A linear transformation of a vector space is a function:

$$
T: V \rightarrow V
$$

such that:

$$
T(\vec{v}+\vec{w})=T(\vec{v})+T(\vec{w}) \quad \text { and } \quad T(k \vec{v})=k T(\vec{v})
$$

for all vectors \vec{v}, \vec{w} and all scalars k. The linear transformation is invertible if there is an inverse function $T^{-1}: V \rightarrow V$, which is then automatically also a linear transformation!
Definition: Given a vector space V of dimension n with a basis $\left\{\vec{v}_{i}\right\}$ and a linear transformation $T: V \rightarrow V$, the associated $n \times n$ matrix

$$
A=\left(a_{i j}\right)=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
& & \vdots & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

is defined by:

$$
T\left(\vec{v}_{j}\right)=a_{1 j} \vec{v}_{1}+a_{2 j} \vec{v}_{2}+\ldots+a_{n j} \vec{v}_{n}=\sum_{i=1}^{n} a_{i j} \vec{v}_{i}
$$

Examples: (a) Rotations in the \mathbb{R}^{2} plane. We start with the basis:

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

and we want the matrix for $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by counterclockwise rotation by an angle of θ. For the matrix, use:

$$
T\left(\vec{e}_{1}\right)=\cos (\theta) \vec{e}_{1}+\sin (\theta) \vec{e}_{2}
$$

by the definition of sin and cos. Since \vec{e}_{2} can be thought of as \vec{e}_{1} already rotated by $\frac{\pi}{2}$, we can think of $T\left(\vec{e}_{2}\right)$ as the rotation of \vec{e}_{1} by $\frac{\pi}{2}+\theta$ so:

$$
T\left(\vec{e}_{2}\right)=\cos \left(\frac{\pi}{2}+\theta\right) \vec{e}_{1}+\sin \left(\frac{\pi}{2}+\theta\right) \vec{e}_{2}
$$

and then the matrix for counterclockwise rotation by θ is:

$$
A=\left[\begin{array}{cc}
\cos (\theta) & \cos \left(\frac{\pi}{2}+\theta\right) \\
\sin (\theta) & \sin \left(\frac{\pi}{2}+\theta\right)
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

(using the identities: $\cos \left(\frac{\pi}{2}+\theta\right)=-\sin (\theta)$ and $\sin \left(\frac{\pi}{2}+\theta\right)=\cos (\theta)$)
(b) Multiplication by a scalar. If $k \in F$, let $T(\vec{v})=k \vec{v}$, so:

$$
T\left(\vec{v}_{1}\right)=k \vec{v}_{1}, \ldots, T\left(\vec{v}_{n}\right)=k \vec{v}_{n}
$$

for any basis, and then:

$$
A=\left[\begin{array}{cccc}
k & 0 & \cdots & 0 \\
0 & k & \cdots & 0 \\
& & \vdots & \\
0 & 0 & \cdots & k
\end{array}\right]
$$

In particular, the negation transformation is the case $k=-1$.
(c) Multiplication by α. If α has characteristic polynomial:

$$
x^{d}+a_{d-1} x^{d-1}+\ldots+a_{0} \in \mathbb{Q}[x]
$$

then multiplication by α on the vector space $\mathbb{Q}(\alpha)$ is defined by:

$$
T(1)=\alpha, T(\alpha)=\alpha^{2}, \ldots, T\left(\alpha^{d-1}\right)=\alpha^{d}=-a_{0}-\ldots-a_{d-1} \alpha^{d-1}
$$

giving us the matrix:

$$
A=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & \cdots & 0 & -a_{2} \\
& & \vdots & & \\
0 & 0 & \cdots & 1 & -a_{d-1}
\end{array}\right]
$$

The fact that multiplication by α is a linear transformation comes from:
Proposition 3.1.4. Multiplication by any $\beta \in \mathbb{Q}(\alpha)$ is linear.
Proof: We need to show that $\beta(\vec{v}+\vec{w})=\beta \vec{v}+\beta \vec{w}$ and $\beta(k \vec{v})=k(\beta \vec{v})$. But in this vector space, all the vectors are complex numbers! For convenience set $\vec{v}=s$ and $\vec{w}=t$ to help us remember that they are numbers. Then:

$$
\beta(s+t)=\beta s+\beta t
$$

is the distributive law! And:

$$
\beta(k s)=(\beta k) s=(k \beta) s=k(\beta s)
$$

are the associative and commutative laws for multiplication.
Matrix multiplication (of matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{j k}\right)$) is given by the prescription:

$$
A B=C \text { for } c_{i k}=a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+\ldots+a_{i n} b_{n k}=\sum_{j} a_{i j} b_{j k}
$$

Fix a basis $\left\{\vec{v}_{i}\right\}$ for V. If the matrices A and B are associated to the linear transformations S and T, respectively, and if $U=S \circ T$, then:

$$
U\left(\vec{v}_{k}\right)=S\left(T\left(\vec{v}_{k}\right)\right)=S\left(\sum_{j} b_{j k} \vec{v}_{j}\right)=\sum_{i, j} a_{i j} b_{j k} \vec{v}_{i}=\sum_{i} c_{i k} \vec{v}_{i}
$$

is the k th column of C. So the product of two matrices is the matrix of the composition of the linear transformations.

We see from this that matrix multiplication is associative:

$$
(A B) C=A(B C)
$$

since composition of functions is associative:

$$
(R \circ S) \circ T=R \circ S \circ T=R \circ(S \circ T)
$$

Composition of linear transformations often isn't commutative, so matrix multiplication often isn't commutative (but sometimes it is!).

The identity transformation corresponds to the identity matrix:

$$
I_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
& & \vdots & \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

which is a (multiplicative) identity, since $I_{n} A=A=A I_{n}$ for all A. So I_{n} commutes with all matrices! In fact, multiplication by any scalar commutes with all matrices, by definition of a linear transformation.

If T is an invertible linear transformation with matrix A, then the matrix A^{-1} associated to T^{-1} is the (two-sided) inverse matrix because the inverse function is always a two-sided inverse! In other words, the inverse matrix satisfies:

$$
A A^{-1}=I_{n}=A^{-1} A
$$

(so A commutes with its inverse matrix, whenever an inverse exists!)
Examples: (a) The matrices for rotations by θ and ψ are:

$$
A_{\theta}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \text { and } A_{\psi}=\left[\begin{array}{cc}
\cos (\psi) & -\sin (\psi) \\
\sin (\psi) & \cos (\psi)
\end{array}\right]
$$

The product of the two matrices is:

$$
A_{\theta} A_{\psi}=\left[\begin{array}{ll}
\cos (\theta) \cos (\psi)-\sin (\theta) \sin (\psi) & -\cos (\theta) \sin (\psi)-\sin (\theta) \cos (\psi) \\
\cos (\theta) \cos (\psi)-\sin (\theta) \sin (\psi) & -\sin (\theta) \sin (\psi)+\cos (\theta) \cos (\psi)
\end{array}\right]
$$

and by the angle sum formula from trig (see also $\S 4$) this is $A_{\theta+\psi}$, which is, as it must be, the matrix associated to the rotation by $\theta+\psi$. Notice that here, too, the matrix multiplication is commutative, since $\theta+\psi=\psi+\theta$!
(b) We saw in an earlier example that in $\mathbb{Q}(\sqrt[3]{2})$, there is an equality:

$$
(\sqrt[3]{4}+1)(-\sqrt[3]{4}+2 \sqrt[3]{2}+1)=5
$$

Let's check this out with matrix multiplication. Start with:

$$
A=\left[\begin{array}{lll}
0 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad A^{2}=\left[\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 2 \\
1 & 0 & 0
\end{array}\right]
$$

(the matrices for multiplication by $\sqrt[3]{2}$ and $\sqrt[3]{4}$, respectively)

The matrices for multiplication by $\sqrt[3]{4}+1$ and $-\sqrt[3]{4}+2 \sqrt[3]{2}+1$ are:

$$
A^{2}+I_{3}=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2 \\
1 & 0 & 1
\end{array}\right], \quad-A^{2}+2 A+I_{3}=\left[\begin{array}{rrr}
1 & -2 & 4 \\
2 & 1 & -2 \\
-1 & 2 & 1
\end{array}\right]
$$

and then the matrix version of the equality above is:

$$
\left(A^{2}+I_{3}\right)\left(-A^{2}+2 A+I_{3}\right)=5 I_{3}
$$

as you may directly check with matrix multiplication!
Recall some more basic concepts from linear algebra:
Similarity: Two $n \times n$ matrices A and A^{\prime} are similar if

$$
B^{-1} A B=A^{\prime}
$$

for some invertible matrix B. This is an equivalence relation:
(i) Reflexive: $I_{n}^{-1} A I_{n}=A$
(ii) Symmetric: If $B^{-1} A B=A^{\prime}$, then $\left(B^{-1}\right)^{-1} A^{\prime} B^{-1}=A$.
(iii) Transitive: If $B^{-1} A B=A^{\prime}$ and $C^{-1} A^{\prime} C=A^{\prime \prime}$, then:

$$
A^{\prime \prime}=C^{-1}\left(B^{-1} A B\right) C=(B C)^{-1} A(B C)
$$

Note: Similarity occurs when we change basis. If A is the matrix for a transformation T with basis $\left\{\vec{v}_{i}\right\}$ and if $\left\{\vec{w}_{j}\right\}$ is another basis with:

$$
\vec{w}_{j}=b_{1 j} \vec{v}_{1}+b_{2 j} \vec{v}_{2}+\ldots+b_{n j} \vec{v}_{n}
$$

then $A^{\prime}=B^{-1} A B$ is the matrix for T with the basis $\left\{\vec{w}_{j}\right\}$.
Determinant: The determinant is the unique function:

$$
\text { det : square matrices } \rightarrow F
$$

that satisfies the following properties:
(i) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for square $n \times n$ matrices A and B.
(ii) $\operatorname{det}(A)=0$ if and only if A is not invertible.
(iii) The determinants of the "basic" matrices satisfy:
(a) $\operatorname{det}(A)=-1$ when A transposes two basis vectors \vec{v}_{i} and \vec{v}_{j} :

$$
T\left(\vec{v}_{i}\right)=\vec{v}_{j}, T\left(\vec{v}_{j}\right)=\vec{v}_{i}, \quad \text { otherwise } T\left(\vec{v}_{l}\right)=\vec{v}_{l}
$$

(b) $\operatorname{det}(A)=1$ when A adds a multiple of one basis vector to another:

$$
T\left(\vec{v}_{j}\right)=\vec{v}_{j}+k \vec{v}_{i}, \quad \text { otherwise } T\left(\vec{v}_{l}\right)=\vec{v}_{l}
$$

(c) $\operatorname{det}(A)=k$ when A multiplies one basis vector by k :

$$
T\left(\vec{v}_{i}\right)=k \vec{v}_{i} \text { and otherwise } T\left(\vec{v}_{l}\right)=\vec{v}_{l}
$$

Example: The basic 2×2 matrices are:

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=-1 \\
\operatorname{det}\left[\begin{array}{cc}
1 & 0 \\
k & 1
\end{array}\right]=1, \\
\operatorname{det}\left[\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right]=1 \\
\operatorname{det}\left[\begin{array}{cc}
k & 0 \\
0 & 1
\end{array}\right]=k,
\end{gathered}
$$

Since each matrix is a product of basic matrices (Gaussian elimination!) the determinant is completely determined by property (iii).
Note: $\operatorname{det}\left(B^{-1}\right) \operatorname{det}(B)=\operatorname{det}\left(I_{n}\right)=1$ when B is invertible, and

$$
\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}\left(B^{-1}\right) \operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B)^{-1} \operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(A)
$$

when $A^{\prime}=B^{-1} A B$, so the determinants of similar matrices are equal. Thus the determinant doesn't care about the choice of basis.

Characteristic Polynomial: This is the function:

$$
c h: \text { square matrices } \rightarrow F[x]
$$

defined by: $\operatorname{ch}(A)=\operatorname{det}\left(x I_{n}-A\right)$ (assuming A is an $n \times n$ matrix). And the characteristic polynomial is the same for similar matrices, too:

$$
\operatorname{ch}\left(A^{\prime}\right)=\operatorname{det}\left(x I_{n}-B^{-1} A B\right)=\operatorname{det}\left(B^{-1}\left(x I_{n}-A\right) B\right)=\operatorname{det}\left(x I_{n}-A\right)=\operatorname{ch}(A)
$$

Examples: (a) The characteristic polynomial of rotation by θ :

$$
\operatorname{det}\left[\begin{array}{cc}
x-\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & x-\cos (\theta)
\end{array}\right]=x^{2}-2 \cos (\theta) x+1
$$

and the roots of this polynomial are the two complex numbers:

$$
e^{i \theta}=\cos (\theta)+\sin (\theta) i \quad \text { and } \quad e^{-i \theta}=\cos (\theta)-\sin (\theta) i
$$

(b) The characteristic polynomial of multiplication by $\alpha \in \mathbb{Q}(\alpha)$ is:

$$
\operatorname{det}\left[\begin{array}{ccccc}
x & 0 & \cdots & 0 & a_{0} \\
-1 & x & \cdots & 0 & a_{1} \\
0 & -1 & \cdots & 0 & a_{2} \\
& & \vdots & & \\
0 & 0 & \cdots & -1 & x+a_{d-1}
\end{array}\right]=x^{d}+a_{d-1} x^{d-1}+\ldots+a_{0}
$$

which is exactly the same as the characteristic polynomial of α thought of as an algebraic number! This apparent coincidence is explained by the following:

Proposition 3.1.5. Each $n \times n$ matrix A is a "root" of its characteristic polynomial. That is, if

$$
\operatorname{ch}(A)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}
$$

then

$$
A^{n}+a_{n-1} A^{n-1}+\ldots+a_{0} I_{n}=0
$$

(this isn't a root in our usual sense, because A is a matrix, not a scalar!)
Proof: The sum:

$$
B=A^{n}+a_{n-1} A^{n-1}+\ldots+a_{0} I_{n}
$$

is a matrix, so to see that it is zero, we need to see that it is the zero linear transformation, which is to say that $B \vec{v}=0$ for all vectors $\vec{v} \in V$. In fact, it is enough to see that $B \vec{v}_{i}=0$ for all basis vectors, but in this case it isn't helpful to restrict our attention to basis vectors.

So given an arbitrary vector \vec{v}, we know that eventually the vectors:

$$
\vec{v}, A \vec{v}, A^{2} \vec{v}, \ldots, A^{m} \vec{v}
$$

are linearly dependent (though we may have to wait until $m=n$). For the first such m, the vector $A^{m} \vec{v}$ is a linear combination of the others (which are linearly independent):

$$
b_{0} \vec{v}+b_{1} A \vec{v}+\ldots+b_{m-1} A^{m-1} \vec{v}+A^{m} \vec{v}=0
$$

Now I claim that the polynomial $x^{m}+b_{m-1} x^{m-1}+\ldots+b_{0}$ divides $c h(A)$. To see this, we extend $\vec{v}, \ldots, A^{m-1} \vec{v}$ to a basis of the vector space V :

$$
\vec{v}, A \vec{v}, \ldots, A^{m-1} \vec{v}, \vec{w}_{m+1}, \ldots, \vec{w}_{n}
$$

with some extra vectors $\vec{w}_{m+1}, \ldots, \vec{w}_{n}$ that I don't care about. The characteristic polynomial doesn't care what basis we use, so let's use this one. The point is that some of this matrix we know:

$$
A=\left[\begin{array}{cccccccc}
0 & 0 & \cdots & 0 & -b_{0} & * & \cdots & * \\
1 & 0 & \cdots & 0 & -b_{1} & * & \cdots & * \\
0 & 1 & \cdots & 0 & -b_{2} & * & \cdots & * \\
& & \vdots & & & & \vdots & \\
0 & 0 & \cdots & 1 & -b_{m-1} & * & \cdots & * \\
0 & 0 & \cdots & 0 & 0 & * & \cdots & * \\
& & \vdots & & & & \vdots & \\
0 & 0 & \cdots & 0 & 0 & * & \cdots & *
\end{array}\right]
$$

where the "*" denote entries that we do not know, since they involve the \vec{w}_{i} basis vectors. But this is enough. It follows as in Example (b) above that $x^{m}+b_{m-1} x^{m-1}+\ldots+b_{0}$ divides the determinant of $x I_{n}-A$!

But now that $c h(A)$ factors, we can write

$$
\operatorname{ch}(A)=\left(x^{n-m}+c_{n-m-1} x^{n-m-1}+\ldots+c_{0}\right)\left(x^{m}+b_{m-1} x^{m-1}+\ldots+b_{0}\right)
$$

for some other polynomial with c coefficients, and then:
$B \vec{v}=\left(A^{n-m}+c_{n-m-1} A^{n-m-1}+\ldots+c_{0} I_{n}\right)\left(A^{m}+b_{m-1} A^{m-1}+\ldots+b_{0} I_{n}\right) \vec{v}=0$
because $A^{m} \vec{v}=-b_{0} \vec{v}-\cdots-b_{m-1} A^{m-1} \vec{v}$. That's the proof!
Final Remarks: Given an $n \times n$ matrix A, then any vector satsifying:

$$
A \vec{v}=\lambda \vec{v}
$$

is an eigenvector of the linear transformation and λ is its eigenvalue. If \vec{v} is a nonzero eigenvector, then

$$
\left(\lambda I_{n}-A\right) \vec{v}=0
$$

so in particular, $\lambda I_{n}-A$ is not an invertible matrix, and so:

$$
\operatorname{det}\left(\lambda I_{n}-A\right)=0
$$

In other words, an eigenvalue is a root of the characteristic polynomial, and conversely, each root is an eigenvalue for some eigenvector. Notice that if the vector space happens to have a basis $\left\{\vec{v}_{i}\right\}$ of eigenvectors with eigenvalues $\left\{\lambda_{i}\right\}$, then by changing to this basis, we get a matrix A^{\prime} similar to A with:

$$
A^{\prime}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
& & \vdots & \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

In this case A is said to be diagonalizable.
Example: Rotation by θ is not diagonalizable if \mathbb{R} is our scalar field, since the eigenvalues for rotation are the complex numbers $e^{i \theta}$ and $e^{-i \theta}$. However, if we broaden our horizons and allow \mathbb{C} to be the scalar field, then:

$$
\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{c}
1 \\
-i
\end{array}\right]=\left[\begin{array}{c}
\cos (\theta)+i \sin (\theta) \\
\sin (\theta)-i \cos (\theta)
\end{array}\right]=e^{i \theta}\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
1 \\
i
\end{array}\right]=\left[\begin{array}{c}
\cos (\theta)-i \cos (\theta) \\
\sin (\theta)+i \cos (\theta)
\end{array}\right]=e^{-i \theta}\left[\begin{array}{l}
1 \\
i
\end{array}\right]
$$

so we have our basis of eigenvectors and in that basis, rotation is given by the matrix:

$$
\left[\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right]
$$

3.1.1 Linear Algebra Exercises

10-1 Recall that the polynomial $f(x)=x^{3}+x+1 \in F_{2}[x]$ is prime. This means that the $f(x)$-clock is a field with 8 elements. Complete the following addition and multiplication tables for this field:

+	0	1	x	$x+1$	x^{2}	$x^{2}+1$	$x^{2}+x$	$x^{2}+x+1$
0								
1								
x								
$x+1$								
x^{2}								
$x^{2}+1$								
$x^{2}+x$								
$x^{2}+x+1$								

\times	0	1	x	$x+1$	x^{2}	$x^{2}+1$	$x^{2}+x$	$x^{2}+x+1$
0								
1								
x								
$x+1$								
x^{2}								
$x^{2}+1$								
$x^{2}+x$								
$x^{2}+x+1$								

10-2 Repeat 10-1 for the prime polynomial $f(x)=x^{2}+1 \in F_{3}[x]$. Hint: This time you'll get a field with 9 elements!

10-3 In the field $\mathbb{Q}(\sqrt{2})$ do the following:
(a) Find the multiplicative inverse of $1+\sqrt{2}$ in $\mathbb{Q}(\sqrt{2})$.
(b) Write the 2×2 matrix for multiplication by $1+\sqrt{2}$ in $\mathbb{Q}(\sqrt{2})$.
(c) Find the characteristic polynomial for the matrix in (b).
(d) Find the (complex!) eigenvalues of the matrix in (b).
(e) Find the 2×2 matrix for multiplication by $(1+\sqrt{2})^{-1}$ in $\mathbb{Q}(\sqrt{2})$.
(f) Multiply the matrices (for $1+\sqrt{2}$ and for $\left.(1+\sqrt{2})^{-1}\right)$ to see that they are really inverses of each other.

10-4 Let $\alpha=\cos \left(\frac{2 \pi}{5}\right)+i \sin \left(\frac{2 \pi}{5}\right)$. In the field $\mathbb{Q}(\alpha)$ do the following:
(a) Find the characteristic polynomial of the algebraic number α. (Hint: It is a polynomial of degree 4).
(b) Fill out the following multiplication table for $\mathbb{Q}(\alpha)$:

\times	1	α	α^{2}	α^{3}
1				
α				
α^{2}				
α^{3}				

(c) Find the multiplicative inverse of α^{2} in $\mathbb{Q}(\alpha)$.
(d) Write the 4×4 matrix for multiplication by α^{2}.

10-5 Find the characteristic polynomials and eigenvalues of the following:
(a)

$$
\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
\sin (\theta) & -\cos (\theta)
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{llll}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

