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3.1 Linear Algebra

Start with a field F (this will be the field of scalars).

Definition: A vector space over F is a set V with a vector addition and
scalar multiplication (“scalars” in F times “vectors” in V ) so that:

(a) Vector addition is associative and commutative.

(b) There is an additive identity vector, denoted 0, or sometimes ~0.

(c) Every vector ~v has an additive inverse vector −~v.

(d) Scalar multiplication distributes with vector addition.

(e) If c, k ∈ F are scalars and ~v ∈ V is a vector, then c(k~v) = (ck)~v.

(f) If 1 ∈ F is the multiplicative identity, then 1~v = ~v for all ~v.

Examples: (a) Fn is the standard finite-dimensional vector space of n-tuples
of elements of F . Vectors ~v ∈ Fn will be written vertically:

~v =


v1
v2
...
vn

 ,

v1
v2
...
vn

 +


w1

w2

...
wn

 =


v1 + w1

v2 + w2

...
vn + wn

 , k


v1
v2
...
vn

 =


kv1
kv2
...

kvn


(b) If F ⊂ D and D is a commutative ring with 1, then D is a vector space

over F . The scalar multiplication is ordinary multiplication in D, and property
(e) is the associative law for multiplication in D. Thus, for example, vector
spaces over Q include R,C,Q[x] and Q(x).

Definition: A basis of a vector space V is a set of vectors {~vi} that:

(i) Span. Every vector is a linear combination of the ~vi:

~v = k1~v1 + ...+ kn~vn

and

(ii) Are Linearly Independent. The only way:

k1~v1 + ...+ kn~vn = 0

is if all the scalars k1, ..., kn are zero.

Proposition 3.1.1. If {~v1, ...., ~vn} is a basis of V , then every vector ~v ∈ V is
a unique scalar linear combination of the basis vectors:

~v = k1~v1 + ...+ kn~vn

and any other basis {~wi} of V must also consist of a set of n vectors. The
number n is called the dimension of the vector space V over F .
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Proof: Since the {~vi} span, each vector ~v has at least one expression as a
linear combination of the ~vi, and if there are two:

~v = k1~v1 + ...+ kn~vn and ~v = l1~v1 + ...+ ln~vn

then subtracting them gives: 0 = (k1 − l1)~v1 + ... + (kn − ln)~vn. But then
each ki = li because the {~vi} are linearly independent, and thus the two linear
combinations are the same. This gives uniqueness.

Now take another basis {~wi} and solve: ~w1 = b1~v1 + ... + bn~vn. We can
assume (reordering the ~vi if necessary) that b1 6= 0. Then:

~v1 =
1
b1
~w1 −

b2
b1
~v2 − ...− bn

b1
~vn

and then {~w1, ~v2, ..., ~vn} is another basis of V because every

~v = k1~v1 + ...+ kn~vn = k1(
1
b1
~w1 −

b2
b1
~v2 − ...− bn

b1
~vn) + k2~v2 + ...+ kn~vn

so the vectors span V , and the only way:

0 = k1 ~w1 + ...+ kn~vn = k1(b1~v1 + ...+ bn~vn) + k2~v2 + ...+ kn~vn

is if k1b1 = 0 (so k1 = 0) and each k1bi + ki = 0 (so each ki = 0, too!)

Similarly we can replace each ~vi with a ~wi to get a sequence of bases:
{~w1, ~w2, ~v3, ...., ~vn}, {~w1, ~w2, ~w3, ~v4, ..., ~vn}, etc. If there were fewer of the ~wi
basis vectors than ~vi basis vectors we would finish with a basis:

{~w1, ..., ~wm, ~vm+1, ..., ~vn}

which is impossible, since {~w1, ..., ~wm} is already a basis! Similarly, reversing
the roles of the ~vi’s and ~wi’s, we see that there cannot be fewer ~vi’s than ~wi’s.
So there must be the same number of ~wi’s as ~vi’s!

Examples:
(a) Fn has n “standard” basis vectors:

~e1 =


1
0
...
0

 , ~e2 =


0
1
...
0

 , ..., ~en =


0
0
...
1


(b) R1 is the line, R2 is the plane, and R3 is space.

(c) C has basis {1, i} as a vector space over R.

(d) Q[x] has infinite basis {1, x, x2, x3, ...} as a vector space over Q.

(e) It is hard to even imagine a basis for R as a vector space over Q.
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(f) Likewise it is hard to imagine a basis for Q(x) over Q.

We can create vector spaces with polynomial clock arithmetic. Given

f(x) = xd + ad−1x
d−1 + ...+ a0 ∈ F [x]

we first define the “mod f(x)” equivalence relation by setting

g(x) ≡ h(x) (mod f(x))

if g(x)− h(x) is divisible by f(x), and then the “polynomial clock”:

F [x]f(x) = {[g(x)]}

is the set of “mod f(x)” equivalence classes.

Proposition 3.1.2. The polynomial clock F [x]f(x) is a commutative ring with
1 and a vector space over F with basis:

{[1], [x], ..., [xd−1]}

and if f(x) is a prime polynomial, then the polynomial clock is a field.

Proof: Division with remainders tells us that in every equivalence class
there is a “remainder” polynomial r(x) of degree < d. This tells us that the
vectors:

[1], [x], [x2], ..., [xd−1] ∈ F [x]f(x)

span the polynomial clock. They are linearly independent since if:

bd−1[xd−1] + ...+ b0[1] = 0

then r(x) = bd−1x
d−1 + ...+ b0 is divisible by f(x), which is impossible (unless

r(x) = 0) because f(x) has larger degree than r(x).

The addition and multiplication are defined as in the ordinary clock arith-
metic (and are shown to be well-defined in the same way, see §8). As in the
ordinary (integer) clock arithmetic, if [r(x)] is a non-zero remainder polynomial
and f(x) is prime, then 1 is a gcd of f(x) and r(x), and we can solve:

1 = r(x)u(x) + f(x)v(x)

and then [u(x)] is the multiplicative inverse of [r(x)].

Example: We saw that x2 +x+1 ∈ F2[x] is prime. From this, we get {[1], [x]}
as the basis of the polynomial clock defined by x2+x+1, which is a vector space
over F2 of dimension 2 and a field with 4 elements (removing the cumbersome
brackets):

0, 1, x, x+ 1

Let’s write down the multiplication and addition laws for this field. Notice that
this is not Z4 (Z4 isn’t a field!). We’ll call this field F4:
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+ 0 1 x x+ 1
0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

× 0 1 x x+ 1
0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

Next recall that an algebraic number α is a complex root of a prime poly-
nomial:

f(x) = xd + ad−1x
d−1 + ...+ ad ∈ Q[x]

We claim next that via α, the polynomial f(x)-clock can be regarded as a
subfield of the field C of complex numbers. In fact:

Proposition 3.1.3. Suppose F ⊂ C is a subfield and α ∈ C is a root of a prime
polynomial:

f(x) = xd + ad−1x
d−1 + ...+ a0 ∈ F [x]

Then the f(x)-clock becomes a subfield of C when we set [x] = α. This subfield
is always denoted by F (α), and it sits between F and C:

F ⊂ F (α) ⊂ C

Proof: The f(x)-clock is set up so that:

[x]d + ad−1[x]d−1 + · · · a0 = 0

But if α ∈ C is a root of f(x), then it is also true that

αd + ad−1α
d−1 + · · · a0 = 0

so setting [x] = α is a well-defined substitution, and because f(x) is prime, it
follows that the clock becomes a subfield of C.

Examples: We can give multiplication tables for clocks by just telling how to
multiply the basis elements of the vector spaces:

(a) F = R and f(x) = x2 + 1. The x2 + 1-clock has table:

× 1 x
1 1 x
x x −1

On the other hand, R(i) and R(−i) have multiplciation tables:

× 1 i
1 1 i
i i −1

and
× 1 −i
1 1 −i
−i −i −1
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Both R(i) and R(−i) are, in fact, equal to C. The only difference is in the
basis as a vector space over R. One basis uses i and the other uses its complex
conjugate −i.

(b) If F = Q and f(x) = x3 − 2, the clock has multiplication table:

× 1 x x2

1 1 x x2

x x x2 2
x2 x2 2 2x

and Q( 3
√

2) (necessarily) has the same multiplication table:

× 1 3
√

2 3
√

4
1 1 3

√
2 3

√
4

3
√

2 3
√

2 3
√

4 3
√

8 = 2
3
√

4 3
√

4 3
√

8 = 2 3
√

16 = 2 3
√

2

To find, for example, the inverse of x2 + 1 in the clock, we solve:

1 = (x2 + 1)u(x) + (x3 − 2)v(x)

which we do, as usual, using Euclid’s algorithm:

x3 − 2 = (x2 + 1)x + (−x− 2)
x2 + 1 = (−x− 2)(−x+ 2) + 5

so, solving back up Euclid’s algorithm:

5 = (x2 + 1) − (−x− 2)(−x+ 2)
= (x2 + 1) −

(
(x3 − 2)− (x2 + 1)x

)
)(−x+ 2)

= (x2 + 1)(−x2 + 2x+ 1) + (x3 − 2)(x− 2)

giving us the inverse in the x3 − 2-clock:

(x2 + 1)−1 =
1
5
(−x2 + 2x+ 1)

which we can substitute x = 3
√

2 to get the inverse in Q( 3
√

2):

( 3
√

4 + 1)−1 =
1
5
(− 3
√

4 + 2 3
√

2 + 1)

Definition: A linear transformation of a vector space is a function:

T : V → V

such that:
T (~v + ~w) = T (~v) + T (~w) and T (k~v) = kT (~v)
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for all vectors ~v, ~w and all scalars k. The linear transformation is invertible if
there is an inverse function T−1 : V → V , which is then automatically also a
linear transformation!

Definition: Given a vector space V of dimension n with a basis {~vi} and a
linear transformation T : V → V , the associated n× n matrix

A = (aij) =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
an1 an2 · · · ann


is defined by:

T (~vj) = a1j~v1 + a2j~v2 + ...+ anj~vn =
n∑
i=1

aij~vi

Examples: (a) Rotations in the R2 plane. We start with the basis:

~e1 =
[

1
0

]
and ~e2 =

[
0
1

]
and we want the matrix for T : R2 → R2 given by counterclockwise rotation by
an angle of θ. For the matrix, use:

T (~e1) = cos(θ)~e1 + sin(θ)~e2

by the definition of sin and cos. Since ~e2 can be thought of as ~e1 already rotated
by π

2 , we can think of T (~e2) as the rotation of ~e1 by π
2 + θ so:

T (~e2) = cos(
π

2
+ θ)~e1 + sin(

π

2
+ θ)~e2

and then the matrix for counterclockwise rotation by θ is:

A =
[

cos(θ) cos(π2 + θ)
sin(θ) sin(π2 + θ)

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(using the identities: cos(π2 + θ) = −sin(θ) and sin(π2 + θ) = cos(θ))

(b) Multiplication by a scalar. If k ∈ F , let T (~v) = k~v, so:

T (~v1) = k~v1, ..., T (~vn) = k~vn

for any basis, and then:

A =


k 0 · · · 0
0 k · · · 0

...
0 0 · · · k


In particular, the negation transformation is the case k = −1.



94 CHAPTER 3. SYMMETRIES

(c) Multiplication by α. If α has characteristic polynomial:

xd + ad−1x
d−1 + ...+ a0 ∈ Q[x]

then multiplication by α on the vector space Q(α) is defined by:

T (1) = α, T (α) = α2, ..., T (αd−1) = αd = −a0 − ...− ad−1α
d−1

giving us the matrix:

A =


0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
0 0 · · · 1 −ad−1


The fact that multiplication by α is a linear transformation comes from:

Proposition 3.1.4. Multiplication by any β ∈ Q(α) is linear.

Proof: We need to show that β(~v+ ~w) = β~v+ β ~w and β(k~v) = k(β~v). But
in this vector space, all the vectors are complex numbers! For convenience
set ~v = s and ~w = t to help us remember that they are numbers. Then:

β(s+ t) = βs+ βt

is the distributive law! And:

β(ks) = (βk)s = (kβ)s = k(βs)

are the associative and commutative laws for multiplication.

Matrix multiplication (of matrices A = (aij) and B = (bjk)) is given by
the prescription:

AB = C for cik = ai1b1k + ai2b2k + ...+ ainbnk =
∑
j

aijbjk

Fix a basis {~vi} for V . If the matrices A and B are associated to the linear
transformations S and T , respectively, and if U = S ◦ T , then:

U(~vk) = S(T (~vk)) = S(
∑
j

bjk~vj) =
∑
i,j

aijbjk~vi =
∑
i

cik~vi

is the kth column of C. So the product of two matrices is the matrix of the
composition of the linear transformations.

We see from this that matrix multiplication is associative:

(AB)C = A(BC)
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since composition of functions is associative:

(R ◦ S) ◦ T = R ◦ S ◦ T = R ◦ (S ◦ T )

Composition of linear transformations often isn’t commutative, so matrix
multiplication often isn’t commutative (but sometimes it is!).

The identity transformation corresponds to the identity matrix:

In =


1 0 · · · 0
0 1 · · · 0

...
0 0 · · · 1


which is a (multiplicative) identity, since InA = A = AIn for all A. So In
commutes with all matrices! In fact, multiplication by any scalar commutes
with all matrices, by definition of a linear transformation.

If T is an invertible linear transformation with matrix A, then the matrix
A−1 associated to T−1 is the (two-sided) inverse matrix because the inverse
function is always a two-sided inverse! In other words, the inverse matrix satis-
fies:

AA−1 = In = A−1A

(so A commutes with its inverse matrix, whenever an inverse exists!)

Examples: (a) The matrices for rotations by θ and ψ are:

Aθ =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
and Aψ =

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

]
The product of the two matrices is:

AθAψ =
[

cos(θ)cos(ψ)− sin(θ)sin(ψ) −cos(θ)sin(ψ)− sin(θ)cos(ψ)
cos(θ)cos(ψ)− sin(θ)sin(ψ) −sin(θ)sin(ψ) + cos(θ)cos(ψ)

]
and by the angle sum formula from trig (see also §4) this is Aθ+ψ, which is, as
it must be, the matrix associated to the rotation by θ + ψ. Notice that here,
too, the matrix multiplication is commutative, since θ + ψ = ψ + θ!

(b) We saw in an earlier example that in Q( 3
√

2), there is an equality:

( 3
√

4 + 1)(− 3
√

4 + 2 3
√

2 + 1) = 5

Let’s check this out with matrix multiplication. Start with:

A =

 0 0 2
1 0 0
0 1 0

 , A2 =

 0 2 0
0 0 2
1 0 0


(the matrices for multiplication by 3

√
2 and 3

√
4, respectively)
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The matrices for multiplication by 3
√

4 + 1 and − 3
√

4 + 2 3
√

2 + 1 are:

A2 + I3 =

 1 2 0
0 1 2
1 0 1

 , −A2 + 2A+ I3 =

 1 −2 4
2 1 −2

−1 2 1


and then the matrix version of the equality above is:

(A2 + I3)(−A2 + 2A+ I3) = 5I3

as you may directly check with matrix multiplication!

Recall some more basic concepts from linear algebra:

Similarity: Two n× n matrices A and A′ are similar if

B−1AB = A′

for some invertible matrix B. This is an equivalence relation:

(i) Reflexive: I−1
n AIn = A

(ii) Symmetric: If B−1AB = A′, then (B−1)−1A′B−1 = A.

(iii) Transitive: If B−1AB = A′ and C−1A′C = A′′, then:

A′′ = C−1(B−1AB)C = (BC)−1A(BC)

Note: Similarity occurs when we change basis. If A is the matrix for a trans-
formation T with basis {~vi} and if {~wj} is another basis with:

~wj = b1j~v1 + b2j~v2 + ...+ bnj~vn

then A′ = B−1AB is the matrix for T with the basis {~wj}.

Determinant: The determinant is the unique function:

det : square matrices → F

that satisfies the following properties:

(i) det(AB) = det(A)det(B) for square n× n matrices A and B.

(ii) det(A) = 0 if and only if A is not invertible.

(iii) The determinants of the “basic” matrices satisfy:

(a) det(A) = −1 when A transposes two basis vectors ~vi and ~vj :

T (~vi) = ~vj , T (~vj) = ~vi, otherwise T (~vl) = ~vl

(b) det(A) = 1 when A adds a multiple of one basis vector to another:

T (~vj) = ~vj + k~vi, otherwise T (~vl) = ~vl
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(c) det(A) = k when A multiplies one basis vector by k:

T (~vi) = k~vi and otherwise T (~vl) = ~vl

Example: The basic 2× 2 matrices are:

det
[

0 1
1 0

]
= −1

det
[

1 0
k 1

]
= 1, det

[
1 k
0 1

]
= 1

det
[
k 0
0 1

]
= k, det

[
1 0
0 k

]
= k

Since each matrix is a product of basic matrices (Gaussian elimination!) the
determinant is completely determined by property (iii).

Note: det(B−1) det(B) = det(In) = 1 when B is invertible, and

det(A′) = det(B−1)det(A)det(B) = det(B)−1det(A)det(B) = det(A)

when A′ = B−1AB, so the determinants of similar matrices are equal. Thus
the determinant doesn’t care about the choice of basis.

Characteristic Polynomial: This is the function:

ch : square matrices → F [x]

defined by: ch(A) = det(xIn − A) (assuming A is an n × n matrix). And the
characteristic polynomial is the same for similar matrices, too:

ch(A′) = det(xIn −B−1AB) = det(B−1(xIn −A)B) = det(xIn −A) = ch(A)

Examples: (a) The characteristic polynomial of rotation by θ:

det
[
x− cos(θ) sin(θ)
−sin(θ) x− cos(θ)

]
= x2 − 2cos(θ)x+ 1

and the roots of this polynomial are the two complex numbers:

eiθ = cos(θ) + sin(θ)i and e−iθ = cos(θ)− sin(θ)i

(b) The characteristic polynomial of multiplication by α ∈ Q(α) is:

det


x 0 · · · 0 a0

−1 x · · · 0 a1

0 −1 · · · 0 a2

...
0 0 · · · −1 x+ ad−1

 = xd + ad−1x
d−1 + ...+ a0

which is exactly the same as the characteristic polynomial of α thought of as
an algebraic number! This apparent coincidence is explained by the following:
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Proposition 3.1.5. Each n×n matrix A is a “root” of its characteristic poly-
nomial. That is, if

ch(A) = xn + an−1x
n−1 + ...+ a0

then
An + an−1A

n−1 + ...+ a0In = 0

(this isn’t a root in our usual sense, because A is a matrix, not a scalar!)

Proof: The sum:

B = An + an−1A
n−1 + ...+ a0In

is a matrix, so to see that it is zero, we need to see that it is the zero linear
transformation, which is to say that B~v = 0 for all vectors ~v ∈ V . In fact, it is
enough to see that B~vi = 0 for all basis vectors, but in this case it isn’t helpful
to restrict our attention to basis vectors.

So given an arbitrary vector ~v, we know that eventually the vectors:

~v,A~v,A2~v, ...., Am~v

are linearly dependent (though we may have to wait until m = n). For the first
such m, the vector Am~v is a linear combination of the others (which are linearly
independent):

b0~v + b1A~v + ...+ bm−1A
m−1~v +Am~v = 0

Now I claim that the polynomial xm + bm−1x
m−1 + ... + b0 divides ch(A). To

see this, we extend ~v, ..., Am−1~v to a basis of the vector space V :

~v,A~v, ..., Am−1~v, ~wm+1, ..., ~wn

with some extra vectors ~wm+1, ..., ~wn that I don’t care about. The characteristic
polynomial doesn’t care what basis we use, so let’s use this one. The point is
that some of this matrix we know:

A =



0 0 · · · 0 −b0 ∗ · · · ∗
1 0 · · · 0 −b1 ∗ · · · ∗
0 1 · · · 0 −b2 ∗ · · · ∗

...
...

0 0 · · · 1 −bm−1 ∗ · · · ∗
0 0 · · · 0 0 ∗ · · · ∗

...
...

0 0 · · · 0 0 ∗ · · · ∗


where the “∗” denote entries that we do not know, since they involve the ~wi
basis vectors. But this is enough. It follows as in Example (b) above that
xm + bm−1x

m−1 + ...+ b0 divides the determinant of xIn −A!
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But now that ch(A) factors, we can write

ch(A) = (xn−m + cn−m−1x
n−m−1 + ...+ c0)(xm + bm−1x

m−1 + ...+ b0)

for some other polynomial with c coefficients, and then:

B~v = (An−m + cn−m−1A
n−m−1 + ...+ c0In)(Am + bm−1A

m−1 + ...+ b0In)~v = 0

because Am~v = −b0~v − · · · − bm−1A
m−1~v. That’s the proof!

Final Remarks: Given an n× n matrix A, then any vector satsifying:

A~v = λ~v

is an eigenvector of the linear transformation and λ is its eigenvalue. If ~v is
a nonzero eigenvector, then

(λIn −A)~v = 0

so in particular, λIn −A is not an invertible matrix, and so:

det(λIn −A) = 0

In other words, an eigenvalue is a root of the characteristic polynomial, and
conversely, each root is an eigenvalue for some eigenvector. Notice that if the
vector space happens to have a basis {~vi} of eigenvectors with eigenvalues {λi},
then by changing to this basis, we get a matrix A′ similar to A with:

A′ =


λ1 0 · · · 0
0 λ2 · · · 0

...
0 0 · · · λn


In this case A is said to be diagonalizable.

Example: Rotation by θ is not diagonalizable if R is our scalar field, since the
eigenvalues for rotation are the complex numbers eiθ and e−iθ. However, if we
broaden our horizons and allow C to be the scalar field, then:[

cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
1
−i

]
=

[
cos(θ) + i sin(θ)
sin(θ)− i cos(θ)

]
= eiθ

[
1
−i

]
and [

cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
1
i

]
=

[
cos(θ)− i cos(θ)
sin(θ) + i cos(θ)

]
= e−iθ

[
1
i

]
so we have our basis of eigenvectors and in that basis, rotation is given by the
matrix: [

eiθ 0
0 e−iθ

]
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3.1.1 Linear Algebra Exercises

10-1 Recall that the polynomial f(x) = x3 +x+1 ∈ F2[x] is prime. This means
that the f(x)-clock is a field with 8 elements. Complete the following addition
and multiplication tables for this field:

+ 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
0
1
x

x+ 1
x2

x2 + 1
x2 + x

x2 + x+ 1

× 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
0
1
x

x+ 1
x2

x2 + 1
x2 + x

x2 + x+ 1

10-2 Repeat 10-1 for the prime polynomial f(x) = x2 + 1 ∈ F3[x]. Hint: This
time you’ll get a field with 9 elements!

10-3 In the field Q(
√

2) do the following:

(a) Find the multiplicative inverse of 1 +
√

2 in Q(
√

2).

(b) Write the 2× 2 matrix for multiplication by 1 +
√

2 in Q(
√

2).

(c) Find the characteristic polynomial for the matrix in (b).

(d) Find the (complex!) eigenvalues of the matrix in (b).

(e) Find the 2× 2 matrix for multiplication by (1 +
√

2)−1 in Q(
√

2).

(f) Multiply the matrices (for 1 +
√

2 and for (1 +
√

2)−1) to see that they
are really inverses of each other.

10-4 Let α = cos( 2π
5 ) + i sin( 2π

5 ). In the field Q(α) do the following:

(a) Find the characteristic polynomial of the algebraic number α. (Hint: It
is a polynomial of degree 4).
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(b) Fill out the following multiplication table for Q(α):

× 1 α α2 α3

1
α
α2

α3

(c) Find the multiplicative inverse of α2 in Q(α).

(d) Write the 4× 4 matrix for multiplication by α2.

10-5 Find the characteristic polynomials and eigenvalues of the following:

(a) [
cos(θ) sin(θ)
sin(θ) −cos(θ)

]
(b)  0 0 1

1 0 0
0 1 0


(c) 

0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1






