Chapter 3

Symmetries

Symmetries are linear transformations of a vector space, so we will begin with a review of some linear algebra. In a basic linear algebra course, the scalars are real numbers, but here they might belong to any field. Each algebraic number (root of a polynomial with rational number coefficients) comes equipped with a multiplication transformation, which is a symmetry whose characteristic polynomial is the polynomial that gave birth to the algebraic number in the first place. The constructible numbers (numbers that can be constructed using only a compass and straightedge) are particular algebraic numbers that were of great interest to the ancients, and we will use linear algebra to understand them in some detail. Symmetries come in groups, and finite symmetry groups are always subgroups of permutation groups. There is a qualitative difference between permutation groups of 4 or less objects versus permutation groups of 5 or more objects, which we will explore. Finally, we will look at the Galois group of symmetries of the "splitting field" of an algebraic number, which is one of the most interesting objects in all of mathematics.

