
Lecture 2. The Categories of Vector Spaces
PCMI Summer 2015 Undergraduate Lectures on Flag Varieties

Lecture 2. We discuss the categories of vector spaces and linear maps.
Since vector spaces are always given in terms of a (scalar) field, we need
to start with them.

A field is roughly a set of numbers with addition and multiplication
operations that obey all the rules of arithmetic. You can get a long
way by remembering that the rational numbers Q and real and complex
numbers R and C are fields, but the natural numbers N (no negatives)
and integers Z (no reciprocals) are not. More precisely:

Definition 2.1. A set k with addition and multiplication operations
+ and · (the latter of which is suppressed in notation) is a field if:

a+ (b+ c) = (a+ b) + c ∀a, b, c ∈ k
a+ b = b+ a ∀a, b ∈ k

∃ 0 ∈ k such that 0 + a = a ∀a ∈ k
Each a has an additive inverse −a such that a+ (−a) = 0

(Subtraction is addition of the additive inverse: a− b := a+ (−b))
a(bc) = (ab)c ∀ a, b, c ∈ k

ab = ba ∀a, b ∈ k
∃ 1 ∈ k such that 1a = a ∀a ∈ k

Each a 6= 0 has a multiplicative inverse 1/a such that a(1/a) = 1

(Division is multiplication by the multiplicative inverse: a/b := a(1/b))

a(b+ c) = ab+ ac ∀a, b, c ∈ k

The field Q of rational numbers is the smallest field containing Z.
The field R of real numbers is the completion of Q, consisting of all
limits of convergent sequences of rational numbers. The field C of
complex numbers is the algebraic closure of R, in which all polynomials
(with real or complex coefficients) have a complex root.

There are many other interesting fields. There are fields with finitely
many elements, fields of (rational) functions, and completions of Q with
respect to unusual (p-adic) notions of distance, as well as a wealth of
number fields sitting between Q and C.

Example 2.1. For each prime p, the set of p elements:

Fp = {0, 1, ..., p− 1}
together with “mod p” addition and multiplication is a field.
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The standard vector space of dimension n over a scalar field k is:

kn := k × k × ...× k
with componentwise addition of vectors and multiplication by scalars,
i.e. if ~v = (v1, . . . , vn), ~w = (w1, . . . , wn) ∈ kn and c ∈ k, then:

~v + ~w = (v1 + w1, . . . , vn + wn) and c~v = (cv1, . . . , cvn)

Example 2.2. R2 is the Euclidean plane and R3 is Euclidean 3-space.

The key properties of kn are gathered together in the following:

Definition 2.2. A vector space over k is a set V of vectors, equipped
with an addition operation and an operation of multiplication by scalars
that satisfies all the following properties:

(a) ~u+ (~v + ~w) = (~u+ ~v) + ~w ∀~u,~v, ~w ∈ V
(b) ~u+ ~v = ~v + ~u ∀~u,~v ∈ V
(c) There is a zero vector ~0 ∈ V satisfying ~0 + ~v = ~v ∀~v ∈ V .

(d) Every vector ~v has an additive inverse −~v.

(e) The multiplicative identity 1 ∈ k satisfies 1 · ~v = ~v ∀~v ∈ V .

(f) c(c′~v) = (cc′)~v

(g) c(~v + ~w) = c~v + c~w

(h) (c+ c′)~v = c~v + c′~v

Examples 2.3. (a) The standard vector spaces kn.

(b) The zero vector space {~0} (analogous to the empty set).

(c) Any nonempty subset U ⊂ V of a vector space V (e.g. V = kn)
that is closed under addition and scalar multiplication is a vector space.
Such a U is called a subspace of V . For example, the subspaces of
Euclidean space R3 are {~0} and the lines and planes through ~0.

Definition 2.3. A map of vector spaces f : V → W over k is linear if:

(i) f(~v + ~w) = f(~v) + f(~w) ∀~v, ~w ∈ V
(ii) f(c~v) = cf(~v) ∀c ∈ k,~v ∈ V

Exercise 2.1. (a) The identity map idV : V → V is linear.

(b) The composition of a pair of linear maps is linear.

(c) The inverse of a linear map (if it exists) is linear.

Moment of Zen. The category VSk of vector spaces over k is:

(a) The collection of vector spaces V over k, with (b) Linear maps.
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Definition 2.4. The automorphisms Aut(V ) of V in the category VSk
make up the general linear group GL(V ).

Remark. The general linear group GL(kn) is usually written as GL(n, k).

Linear maps of standard vector spaces have a convenient:

Matrix Notation: Let e1, . . . , en ∈ kn be the standard basis vectors

e1 = (1, 0, ..., 0), e2 = (0, 1, ..., 0), ..., en = (0, ..., 0, 1)

and suppose f : kn → V is a linear map. Then the list of images of
basis vectors f(e1), . . . , f(en) ∈ V determines the linear map f since
~v = v1e1 + · · ·+ vnen (for unique scalars v1, ..., vn) and:

f(~v) = v1f(e1) + v2f(e2) + · · ·+ vnf(en) =
n∑
j=1

vjf(ej) ∈ V

If V = km, let e′1, . . . , e
′
m ∈ km be the standard basis vectors and

f(ej) = (a1,j, ...., am,j) = a1,je
′
1 + · · ·+ am,je

′
m =

m∑
i=1

ai,je
′
i

Then the m× n (m rows, n columns) array A = (ai,j) is the matrix
notation for f : kn → km, in which the jth column is the vector f(ej).

Proposition 2.1. If f : kn → km and g : km → kl are linear maps with
matrix notation A and B, then the composition h = g ◦ f : kn → kl

has the l × n matrix notation given by the matrix product:

C = B · A =

(∑
j

bi,jaj,r

)
= (ci,r)

Proof. Letting e′′1, ..., e
′′
l be a standard basis for kl:

g(f(er)) = g(
∑
j

aj,re
′
j) =

∑
j

aj,r

(∑
i

bi,je
′′
i

)
=
∑
i

(∑
j

bi,jaj,r

)
e′′i

Definition 2.5. The dot product of two vectors in km is:

~v · ~w = (v1, . . . , vm) · (w1, . . . , wm) =
m∑
j=1

vjwj

The dot product is not a multiplication of vectors, since it takes two
vectors and produces a scalar. It is, however, commutative and (bi)-
linear in the sense that (~u+~v) · ~w = ~u · ~w+~v · ~w and (c~v) ·w = c(~v · ~w).
(It doesn’t even make sense to ask whether it is associative!) It is very
useful in computations to notice that the entry ci,r in C = B ·A is the
dot product of the ith row (bi,∗) of B with the rth column (a∗,r) of A.
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Example 2.4. Rotation of R2 by an angle θ counterclockwise is:

rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
and a composition of rotations is the rotation by the sum of the angles:

rψ+θ = rψ ◦ rθ =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
·
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
=

[
cos(ψ) cos(θ)− sin(ψ) sin(θ) −(cos(ψ) sin(θ) + sin(ψ) cos(θ))
sin(ψ) cos(θ) + cos(ψ) sin(θ) − sin(ψ) sin(θ) + cos(ψ) cos(θ)

]
which translates into the angle addition formulas for sin and cos.

Example 2.5. Multiplying the second column of rθ by −1 gives:

fθ =

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]
which is the reflection across the line y/x = tan(θ/2), and in particular:

f 2
θ =

[
cos2(θ) + sin2(θ) 0

0 sin2(θ) + cos2(θ)

]
= idR2

is the Pythagorean theorem.

These two “circles” of linear maps are the symmetries of the circle.

Definition 2.6. The determinant of an n× n matrix A = (aij) is:

det(A) =
∑

σ∈Perm(n)

sgn(σ)
n∏
i=1

ai,σ(i)

One way to think about the determinant. When k = R, then
| det(A)| is the “volume scaling factor” of the associated linear map,
and if it is nonzero, then the sign of det(A) describes whether or not
“orientation” is preserved by the linear map.

Another way to think about the determinant. We can think
about an n× n matrix A as being the list of its column vectors. Then
the determinant is a function that takes the list of column vectors as
input and produces a scalar as output, analogous to the dot product
(which takes two vectors as input and produces a scalar). Like the
dot product, it is “multi”-linear, i.e. linear in each column vector, but
unlike the dot product, the determinant function is anti-commutative
in the sense that when two columns of a matrix are transposed, the
determinant changes sign. These properties, together with det(id) = 1,
completely determine the determinant function.

In one case, the determinant is the sign of a single permutation:
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Permutation Matrices. Consider fτ : kn → kn that permutes the
standard basis vectors according to τ ∈ Perm(n):

fτ (ei) = eτ(i)

The columns of the matrix Pτ for fτ are the standard basis vectors
permuted by τ , so that pi,τ−1(i) = 1 for all i and all the other entries
are zero (think about the τ−1!). Evidently, these linear maps satisfy:

(fτ ′ ◦ fτ )(ei) = fτ ′(eτ(i)) = eτ ′(τ(i)) = fτ ′◦τ (ei)

so the assignment τ 7→ fτ converts composition of permutations to
composition of elements of the general linear group.

This is called the natural representation of Perm(n). Notice that

det(Pτ ) =
∑
σ

sgn(σ)
∏
i

pi,σ(i) = sgn(τ−1)
∏
i

pi,τ−1(i) = sgn(τ−1)

for the single permutation τ−1, and sgn(τ) = 1/sgn(τ−1) = sgn(τ−1).

Diagonal Matrices. The determinant of the diagonal n× n matrix:

D = diag{d1, ..., dn} is the product
n∏
i=1

di

More generally, the determinant of an upper or lower triangular matrix:

U = (ui,j) | ui,j = 0 for i > j or L = (li,j) | li,j = 0 for i < j

is equal to the product of the terms on the diagonal (Exercise 2.2)

Transpose. The transpose of a matrix A = (ai,j) is AT = (aj,i).

Remark. The transpose converts m× n matrices to n×m matrices!

The transpose is the matrix for the dual map, in the following sense.

Definition 2.7. The dual of the vector space V is the vector space:

V ∨ = {linear functions x : V → k}
with addition of linear functions defined by (x + y)(~v) = x(~v) + y(~v)
and multiplication by scalars defined by (cx)(~v) = x(c~v).

Duality. To each linear map f : V → W there is a dual linear map

f∨ : W∨ → V ∨ defined by (f∨ ◦ x)(~v) = x(f(~v)).

If f : kn → km has matrix A, let x1, ..., xn ∈ (kn)∨ be the dual basis
defined by xi(ei) = 1, xi(ej) = 0 for i 6= j and likewise for km. Then:

(f∨ ◦ x′i)(ej) = x′i(f(ej)) = x′i(
∑

aj,ke
′
k) = aj,i

so f∨(x′i) =
∑

j aj,ixj has the transpose matrix AT = (aj,i)!
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Dual maps compose in the reverse order:

(f ◦ g)∨ = g∨ ◦ f∨, (A ·B)T = BT · AT

just as inverses do, but the dual is not (usually) the inverse!

For square matrices, it follows directly from the definition that:

det(AT ) =
∑
σ

sgn(σ)
∏
i

aσ(i),i =
∑
σ

sgn(σ)
∏
σ−1(i)

ai,σ−1(i) = det(A)

once again since each sgn(σ) = sgn(σ−1).

Given a linear map f : V → W of vector spaces over k:

Definition 2.8. The kernel and image of f are the two subspaces:

ker(f) = f−1(~0) ⊂ V (a subspace of the domain of f) and

im(f) ⊂ W (a subspace of the range of f)

Proposition 2.2. f is injective if and only if the kernel of f is {~0}.
Proof. f fails to be injective if and only if there are two vectors

~v 6= ~v′ ∈ V such that f(~v) = f(~v′), if and only if there is a nonzero

vector ~w = ~v−~v′ in the kernel of f , since f(~w) = f(~v)− f(~v′) = ~0. �

Associated to every subspace U ⊂ V , there is a quotient space.

Definition 2.9. The quotient vector space V/U is defined by:

(a) The vectors of V/U are the “cosets” ~v + U = {~v + ~u | ~u ∈ U}.
(b) Addition of vectors of V/U and scalar multiplication is:

(~v + U) + (~w + U) = (~v + ~w) + U and c(~v + U) = c~v + U

Proposition 2.3. The natural map from V to the quotient space:

q : V → V/U defined by q(~v) = ~v + U

is linear and surjective, and U = ker(q).

Proof. Surjectivity and linearity are built into the definition, and
U = ~0 + U is the origin in V/U . But q−1(U) consists of all vectors ~v
such that ~v + U = U , i.e. the vectors of U ! �

Corollary 2.1. A linear map f : V → W is surjective if and only if
the dual map f∨ : W∨ → V ∨ is injective.

Proof. Suppose f is surjective and x ∈ W∨ is not the zero vector.
Then x : W → k is not the zero map, so f∨(x) = x ◦ f : V → W → k

is also not the zero map, i.e. f∨(x) 6= ~0. In other words, ker(f∨) = ~0,
so f∨ is injective by Proposition 2.2.
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On the other hand, if f fails to be surjective, let U = im(f) ⊂ W ,
and let g : W → W/U be the surjective map from Proposition 2.3.

Then W/U 6= {~0}, and it follows that (W/U)∨ is not the zero space.

Let x ∈ (W/U)∨ be a non-zero element. Then g∨(x) 6= ~0, by the

previous paragraph, but f∨(g∨(x)) = ~0, since g ◦ f is the zero map, so
f∨ fails to be injective, as desired. �

Now for the big theorem about determinants:

Theorem 2.1. Let A be the n× n matrix associated to f : kn → kn.

(a) det(A) 6= 0 if and only if f has an inverse map.

(b) The determinant is a multiplicative function:

det(A ·B) = det(A) det(B)

Proof. “Row and column operations” on B give the following:

Basic Linear Algebra Fact. Every n× n matrix B is a product of:

(i) Transposition permutation matrices P(i j) for some pair i 6= j.

(ii) Diagonal matrices D = diag{d1, ..., dn} and

(iii) “Shearing” matrices Sci+j with ones on the diagonal and all
other entries are zero except for a single entry si,j = c .

When A is multiplied on the right by one of these matrices...

APτ permutes the columns of A according to τ .

AD multiplies the columns of A by the corresponding entries of D.

ASci+j adds c times the ith column of A to the jth column.

Part (b) of the Theorem now boils down to three computations:

det(APτ ) =
∑
σ

sgn(σ)
∏
i

ai,σ(τ−1(i))

= sgn(τ)
∑
σ

sgn(σ◦τ−1)
∏
i

ai,σ◦τ−1(i) = det(A)·sgn(τ) = det(A)·det(Pτ )

Remark. It follows from this computation that if two different columns
of A are the same vector, then A = AP(i j), and so:

det(A) = det(AP(i j)) = det(A)sgn(i j) = − det(A)

from which it follows that det(A) = 0 for such matrices.

Next:

det(A·D) =
∑
σ

sgn(σ)
∏
i

dσ(i)ai,σ(i) = (
∏
i

di)·det(A) = det(A) det(D)
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Remark. It follows from this computation and the previous remark
that if one column vector of A is equal to a multiple of another column
vector of A, then det(A) = 0.

Finally, suppose the jth column f(ej) = (a∗,j) of a matrix A is the
sum of two vectors: ~v + ~w = (a∗,j). Then:

det(A) =
∑
σ

sgn(σ)
∏
i

ai,σ(i) =
∑
σ

sgn(σ)(vσ(j) + wσ(j))
∏
i 6=j

ai,σ(i)

= det(A′) + det(A′′)

where A′ and A′′ are obtained by replacing the jth column of A with ~v
and with ~w, respectively. This is the multi-linearity of the determinant.
Applying this to the matrix ASci+j gives:

det(ASci+j) = det(A) + det(A′)

where A′ is obtained from A by replacing the jth column of A with c
times the ith column. But then A′ is a matrix whose determinant is
zero by the previous remark, so det(ASci+j) = det(A). This completes
the proof of (b).

Remark. It follows from this (and the previous remarks) that if one
column vector of A is a linear combination of other column vectors,
then det(A) = 0. Indeed, suppose f(ej) =

∑
i 6=j cif(ei). Then consider

the matrix A′ which agrees with A in all columns except that the jth
column is the zero vector. By the previous remark, det(A′) = 0. But
by a repeated multiplication by shearing matrices:

A = A′ ·
∏
i 6=j

Scii+j gives det(A) = det(A′) = 0

Now, suppose f has an inverse map f−1 with matrix A−1. Then

A · A−1 = id gives det(A) · det(A−1) = det(id) = 1

by Proposition 2.1 and (b), which was just proved. So det(A) 6= 0.

Conversely, suppose f is not injective. Then there is some vector
~w = (w1, ..., wn) 6= ~0, for which f(~w) = w1f(e1) + ...+ wnf(en) = ~0 by
Proposition 2.2. Suppose wj 6= 0. Then:

f(ej) =
∑
i 6=j

wi
wj
f(ei)

exhibits f(ej) as a linear combination of other column vectors, so
det(A) = 0 by the final remark above. One the other hand, if f is
not surjective, then the dual map f∨ is not injective by Corollary 2.1,
so det(A) = det(AT ) = 0, since AT is the matrix for the dual map. �
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Exercises.

2.1. Show that:

(a) The identity map idV : V → V on a vector space is linear.

(b) The composition of a pair of linear maps of vector spaces is linear.

(c) The inverse of a linear map (if it exists) is linear.

2.2. Explain in two different ways why the determinants of upper and
lower triangular matrices are the products of their diagonal terms:

(a) Directly from the definition of the determinant.

(b) By expressing an upper (lower) triangular matrix as the product
of its diagonal and shearing matrices.

2.3. Theorem 2.1(a) only says that the linear map f associated to an
n × n matrix A is invertible if and only if det(A) 6= 0. It is also true
that the associated map f is injective if and only if it is surjective,
which is not implied by the theorem. Prove this using a more refined
consequence of row and column operations:

Basic linear algebra fact: Any n× n matrix A is diagonalizable by
invertible matrices B and C:

BAC = D

where B and C are products of permutation and shearing matrices.

2.4. Sketch an algorithm to come up with B and C as above, given A.

A vector space V is finitely generated if there is a surjective map:

f : kN → V for some N

A vector space V has dimension n if there is an invertible map:

f : kn → V for some n

in which case the n vectors f(e1), ..., f(en) are called a basis of V .

2.5. (a) Prove that the dimension of a vector space is well-defined, i.e.
prove that kn is not isomorphic to km if n 6= m.

(b) Prove that if V is finitely generated, then V has finite dimension.

Definition. An n× n matrix A (or the associated linear map f) over
C is semi-simple if we may take C = B−1 above, so that:

BAB−1 = D

Obviously, finding such a B is more challenging, but:
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Definition. Let A be an n× n matrix. Then a nonzero vector ~v ∈ kn
is an eigenvector of A if:

A~v = λ~v

and the scalar λ is called the associated eigenvalue.

2.6. (a) Find a matrix A ∈ GL(2,R) with no (real) eigenvectors.

(b) Show that any matrix A ∈ GL(n,C) has an eigenvector.
Hint: Look for roots of the characteristic polynomial

det(A− xIn) = 0

where In is the identity matrix and use the fact that a polynomial with
complex coefficients has (at least one) complex root.

(c) Find the eigenvalues and eigenvectors of rotation by θ.

(d) Show that the subset of kn consisting of all eigenvectors of A with
the same eigenvalue λ is a subspace of kn. This is called the eigenspace
associated to the eigenvalue λ.

2.7. Show that an n × n matrix A over C is semi-simple if and only
if Cn has a basis consisting of eigenvectors. Show how to assemble
matrices B and D above from a basis of eigenvectors of A.

2.8. Obviously a diagonal matrix is semi-simple. Show that:

(a) A shearing matrix is not semi-simple.

(b) A permutation matrix is semi-simple (always over C).

Definition. The trace of A = (ai,j) is the sum of its diagonal terms:

tr(A) =
n∑
i=1

ai,i

2.9. If A and B are n× n matrices, prove that:

(a) tr(AB) = tr(BA), and use this to conclude that:

(b) tr(BAB−1) = tr(A) if B is invertible.

Thus, in particular, if A is semi-simple, then:

det(A) =
n∏
i=1

λi and tr(A) =
n∑
i=1

λi

are the product and sum of the eigenvalues of A, as they appear in the
diagonal matrix D (possibly with some appearing more than once).

(c) Reprove (b) by noticing that:

B(xIn − A)B−1 = xIn −BAB−1
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and therefore that the characteristic polynomials of A and BAB−1 are
the same. But the characteristic polynomial of A is:

xn − tr(A)xn−1 + · · ·+ (−1)n−1 det(A)

so in particular, tr(A) = tr(BAB−1).

2.10. Contemplate why Definition 2.9 is well-defined.

2.11. (a) Contemplate a throw-away remark from Corollary 2.1. The
assertion was made that if a vector space V is not zero, then its dual
V ∨ is not zero. How would you prove this? I.e. How would you find a
non-zero element of the dual space?

(b) Find a “natural” linear map from V to its “double dual” (V ∨)∨.
Is such a map injective? (If so, then this shows that V ∨ is not zero.) For
finitely generated vector spaces, argue that this map is invertible. For
vector spaces that are not finitely generated, it might not be invertible.
Why?

Zen master problems.

The collection of arrows f : X → Y in a category C is denoted:

Hom(X, Y )

In the category of vector spaces over k, this is commonly denoted by:

Homk(V,W )

where V and W are vector spaces.

2.12. Show that each Homk(V,W ) is a vector space over k, and that
if dim(V ) = n and dim(W ) = m, then dim(Homk(V,W )) = nm.

A functor F : C → D on categories consists of maps:

F : ob(C)→ ob(D)

and, for every pair of objects X, Y from C, a map:

F : Hom(X, Y )→ Hom(F (X), F (Y ))

on the arrows, such that:

F (idX) = idF (X) and F (f ◦ g) = F (f) ◦ F (g)

for all objects X and all composable arrows g : X → Y and f : Y → Z.

2.13. Show that “forgetting the extra linear structure” is a functor
from each category of vector spaces over k to the category of sets.
But notice that “forgetting the complex structure” does not define a
functor from vector spaces over C to vector spaces over R. Why not?
After all, a vector space over C is a vector space over R!


