Lecture 1. The Category of Sets

PCMI Summer 2015 Undergraduate Lectures on Flag Varieties
Lecture 1. Some basic set theory, a moment of categorical zen, and some facts about the permutation groups on n letters.

A set is a collection of elements. The standard finite sets are:

$$
[n]:=\{1,2,3, \ldots, n\}
$$

i.e. the collections of the first n natural numbers.

Remark. The empty set \emptyset is the unique set with zero elements.
Notation. $|S|$ is the number of elements (cardinality) of a finite set S.
A map:

$$
f: S \rightarrow T
$$

is a rule for assigning a unique element $t \in T$ to each element $s \in S$. This is written in "function notation" as: $f(s)=t$.

The map f is injective, surjective or bijective, respectively, if:
(inj) Each $t \in T$ is assigned to at most one $s \in S$.
(surj) Each $t \in T$ is assigned to at least one $s \in S$.
(bij) Each $t \in T$ is assigned to exactly one $s \in S$.
Maps can be composed. If $f: S \rightarrow T$ and $g: T \rightarrow U$, then:

$$
(g \circ f)(s)=g(f(s))
$$

defines the composition $g \circ f: S \rightarrow U$, and if $h: U \rightarrow V$, then:

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

In other words, composition of maps is an associative operation.
Every set S comes equipped with the identity self-map:

$$
\operatorname{id}_{S}: S \rightarrow S \operatorname{id}_{S}(s)=s
$$

Each bijective map $b: S \rightarrow T$ has a two-sided inverse $b^{-1}: T \rightarrow S$, i.e.

$$
b^{-1} \circ b=\mathrm{id}_{S} \text { and } b \circ b^{-1}=\mathrm{id}_{T}
$$

Remark. The fact that the left and right inverses of a bijection are the same is a consequence of associativity and the properties of the identity. If b_{l}^{-1} and b_{r}^{-1} are "left" and "right" inverses of b, respectively, then:

$$
b_{l}^{-1}=b_{l}^{-1} \circ \mathrm{id}_{T}=b_{l}^{-1} \circ\left(b \circ b_{r}^{-1}\right)=\left(b_{l}^{-1} \circ b\right) \circ b_{r}^{-1}=\operatorname{id}_{S} \circ b_{r}^{-1}=b_{r}^{-1}
$$

so they are the same!

Moment of Zen. The category of sets consists of the two collections: (a) The collection of all sets, (b) The collection of all maps of sets which we visualize as a universe of points (sets) and arrows (maps).

More precisely:
Definition 1.1. A category \mathcal{C} consists of two collections:
(a) The collection $o b(\mathcal{C})$ of objects X of \mathcal{C}, and
(b) The collection $\operatorname{mor}(\mathcal{C})$ of morphisms $f: X \rightarrow Y$ between objects equipped with a composition law with the following properties:
(i) The composition law is associative (in the sense we discussed).
(ii) Each object has an identity morphism $\operatorname{id}_{X}: X \rightarrow X$ such that $f \circ \mathrm{id}_{X}=f=\operatorname{id}_{Y} \circ f$ for all objects X, Y and morphisms $f: X \rightarrow Y$
(iii) By the argument above, inverses (when they exist) are two-sided.

This is designed so that sets and maps form the category Sets.
The morphisms from an object to itself are called endomorphisms and the morphisms with (two-sided) inverses are called isomorphisms. An automorphism is an endomorphism that is also an isomorphism.

Let:

$$
\operatorname{End}(S) \text { and } \operatorname{Aut}(S)
$$

be the sets of endomorphisms and automorphisms of a set S.
Tuple Notation. Each map $f:[n] \rightarrow S$ "is" the n-tuple of its values:

$$
(f(1), f(2), \ldots, f(n)) \in S^{n}
$$

In particular, an n-tuple of elements of $[n]$ is an element $f \in \operatorname{End}([n])$, and if the elements are distinct, then $f \in \operatorname{Aut}([n])$. We conclude that

$$
|\operatorname{End}([n])|=n^{n} \text { and }|\operatorname{Aut}([n])|=n!
$$

Since every pair of endomorphisms can be composed, we can form a composition table for the endomorphisms of a finite set:
Example 1.1. The elements of $\operatorname{End}([2])$ are $(1,1),(1,2),(2,1),(2,2)$ with composition table:

$g \circ f$	$g=(1,1)$	$(1,2)$	$(2,1)$	$(2,2)$
$f=(1,1)$	$(1,1)$	$(1,1)$	$(2,2)$	$(2,2)$
$(1,2)$	$(1,1)$	$(1,2)$	$(2,1)$	$(2,2)$
$(2,1)$	$(1,1)$	$(2,1)$	$(1,2)$	$(2,2)$
$(2,2)$	$(1,1)$	$(2,2)$	$(1,1)$	$(2,2)$

Notice that already in this case, composition is not commutative!
Our first interesting example of a representation is the following:
Definition 1.2: Let $f \in \operatorname{End}([n])$. Then:

$$
\operatorname{sgn}(f)=\prod_{\text {pairs } \mathrm{i}<\mathrm{j}} \frac{f(j)-f(i)}{j-i}
$$

is the characteristic sign function of the endomorphism.
Remark. We could have also chosen $i>j$ in a pair, since:

$$
\frac{f(j)-f(i)}{j-i}=\frac{f(i)-f(j)}{i-j}
$$

Proposition 1.1. (a) $\operatorname{sgn}(f)=0$ if and only if $f \notin \operatorname{Aut}([n])$.
(b) Otherwise $\operatorname{sgn}(f)= \pm 1$.
(c) sgn is a multiplicative function, i.e.

$$
\operatorname{sgn}(f \circ g)=\operatorname{sgn}(f) \cdot \operatorname{sgn}(g)
$$

for all pairs of endomorphisms f, g.
Proof. Since $[n]$ is finite, f fails to be an automorphism if and only if it fails to be injective, and f fails to be injective if and only if the numerator of some factor of $\operatorname{sgn}(f)$ is zero. This is (a).

For (b), let $f \in \operatorname{Aut}([n])$. Then the pairs $\{f(i), f(j)\}$ vary over all two-element subsets of $[n]$ as the pairs $\{i, j\}$ vary over all two-element subsets. It follows that $\prod_{i<j}|f(j)-f(i)|=\prod_{i<j}|j-i|$ and therefore that $\prod_{i<j}(f(j)-f(i))= \pm \prod_{i<j}(j-i)$, which gives (b). Notice that it may be the case that $i<j$ but $f(i)>f(j)$. In fact, the number of such "crossings" determines whether $\operatorname{sgn}(f)$ is +1 or -1 .

Let $h=f \circ g$. If f or g is not an automorphism, then h is not, and:

$$
\operatorname{sgn}(h)=0=\operatorname{sgn}(f) \cdot \operatorname{sgn}(g)
$$

Otherwise, g in particular is an automorphism, and:

$$
\operatorname{sgn}(h)=\prod_{i<j} \frac{f(g(j))-f(g(i))}{j-i}=\prod_{i<j} \frac{f(g(j))-f(g(i))}{g(j)-g(i)} \cdot \frac{g(j)-g(i)}{j-i}
$$

The product of the second factors gives $\operatorname{sgn}(g)$, and the product of the first factors (and the remark above) gives $\operatorname{sgn}(f)$.

Remark. The inverse of a composition of automorphisms satisfies:

$$
(f \circ g)^{-1}=g^{-1} \circ f^{-1}
$$

Notation. Self-compositions of an automorphism are written as powers:

$$
f^{2}=f \circ f, f^{3}=f \circ f \circ f, \text { etc }
$$

Definition 1.3. Aut $([n])$ is called the permutation group $\operatorname{Perm}(n)$.
Example 1.2. Perm(3) consists of six elements:

$$
\mathrm{id}=(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)
$$

These elements fall into three distinct "classes:"
(id) id $=(1,2,3)$ fixes each element.
(tr) $(1,3,2),(2,1,3)$ and $(3,2,1)$ each "transpose" two elements.
(cyc) $(2,3,1),(3,1,2)$ each "cycle" through all the elements.
Permutations have an extremely useful cycle notation:
Definition 1.4. Let $s \in S$ and $f \in \operatorname{Aut}(S)$. The sequence:

$$
s, f(s), f^{2}(s), f^{3}(s), \ldots
$$

of elements of S is the orbit of s under the automorphism f.
Proposition 1.2. The orbit of each $i \in[n]$ cycles under a permutation $\sigma \in \operatorname{Perm}(n)$, i.e. there is a distinct sequence $i_{1}, \ldots, i_{k} \in[n]$ so that:

$$
\sigma(i)=i_{1}, \sigma^{2}(i)=i_{2}, \ldots, \sigma^{k}(i)=i_{k}=i
$$

Proof. Because [n] is finite, the elements of the orbit $i, \sigma(i), \sigma^{2}(i), \ldots$ eventually repeat. Suppose the first repetition is:

$$
\sigma^{m}(i)=\sigma^{n}(i) \text { with } m<n
$$

Then composing both sides with the permutation $\left(\sigma^{m}\right)^{-1}=\left(\sigma^{-1}\right)^{m}$ gives $i=\sigma^{n-m}(i)$, and the Proposition holds with $k=n-m$.
Cycle Notation. The cycle notation for $\sigma \in \operatorname{Perm}(\mathrm{n})$ lists the distinct elements of the orbit of 1 (in parentheses without commas), followed by the distinct elements of the orbit of the first element not contained in the orbit of 1 , etc. until all elements of $[n]$ are exhausted.

For example, in cycle notation the elements of Perm(3) are:

$$
\begin{gathered}
(1,2,3)=(1)(2)(3) \\
(1,3,2)=(1)(23),(2,1,3)=\left(\begin{array}{ll}
1 & 2)(3),(3,2,1)=(13)(2) \\
(2,3,1)=(123),(3,1,2)=\left(\begin{array}{ll}
1 & 3
\end{array}\right)
\end{array}\right.
\end{gathered}
$$

Simplification. Singleton orbits are left out of the cycle notation, with the assumption that any missing element is fixed by the permutation.

For example: $(1,3,2)=(1)(23)=(23)$ in the simplified notation.

The composition table for the six elements of Perm(3) is:

$g \circ f$	$g=\mathrm{id}$	(12)	(13)	(2 3)	(123)	$\left(\begin{array}{l}1 \\ 3\end{array} 2\right)$
$f=\mathrm{id}$	id	(12)	(13)	(2 3)	(123)	(132)
(12)	(12)	id	(123)	(132)	(13)	(2 3)
(13)	(13)	(132)	id	(123)	(2 3)	(12)
(2 3)	(2 3)	(123)	(132)	id	(1 2)	(13)
(123)	(123)	(2 3)	(12)	(13)	(132)	id
(132)	(132)	(13)	(23)	(12)	id	(123)

Example 1.3. The 24 elements of Perm(4) fit into one of five classes:
(i) The identity id
(ii) Transpositions

$$
(12),(13),(14),(23),(24),(34)
$$

(iii) Three-cycles
(123), (13 2), (12 4), (142), (134), (143), (2 34), (2 43)
(iv) Four-cycles
(1234), (1243), (1324), (1342), (1423), (1432)
(v) Transposition pairs

$$
(12)(34),(13)(24),(14)(23)
$$

We leave the 24×24 composition table for Perm(4) as an exercise.
Exercise 1.1. The sign of a transposition (for any n) is:

$$
\operatorname{sgn}(i j)=-1
$$

Corollary 1.1. The sign of an m-cycle is $(-1)^{m-1}$.
Proof. An m-cycle is a composition of $m-1$ transpositions:

$$
\left(i_{1} i_{2} i_{3} \ldots i_{m}\right)=\left(i_{1} i_{m}\right) \circ \cdots \circ\left(i_{1} i_{3}\right) \circ\left(i_{1} i_{2}\right)
$$

so by the Exercise and Prop 1.1, we have $\operatorname{sgn}\left(i_{1} i_{2} i_{3} \ldots i_{m}\right)=(-1)^{m-1}$.

Corollary 1.2. Every permutation $\sigma \in \operatorname{Perm}(n)$ is a composition of transpositions. Although the number of such transpositions is not well-defined, the parity (even or odd) of the number is well-defined.

Proof. The cycle notation presents a permutation as a composition of (disjoint) cycles. Each cycle is a composition of transpositions, as in the Proof of Corollary 1.1 above. The parity is determined by the sign of σ, which was well-defined in Definition 1.2.

Exercises.

1.1. Prove that the sign of a transposition $(i j) \in \operatorname{Perm}(n)$ is -1 .
1.2. Work out the composition table for Perm(4).

A subset of $\operatorname{Perm}(n)$ that contains the identity $\operatorname{id}_{[n]}$ and is closed under inverses and compositions is a subgroup.
1.3. Find all the subgroups of Perm(3) and Perm(4).

Hint: The number of elements in a subgroup of $\operatorname{Perm}(n)$ divides $n!$.
The order of $\sigma \in \operatorname{Perm}(n)$ is the smallest value of k so that $\sigma^{k}=\mathrm{id}_{[n]}$.
1.4. (a) Obtain the order of $\sigma \in \operatorname{Perm}(n)$ from its cycle notation.
(Conclude that the order of any permutation is finite!)
(b) Find the largest order of an element of $\operatorname{Perm}(n)$ for small n.

A nonempty set S is finite if there is a surjective map $f:[n] \rightarrow S$.
1.5. (a) If S is finite and non-empty, contemplate why there is a bijective map $f:[m] \rightarrow S$ for a unique integer m.
(b) Find two infinite sets that have no bijection between them.
(c) Find an injection from the set \mathbb{Z} to itself that is not a bijection.
(d) Show that (c) cannot happen for finite sets.

And now for some zenmaster problems.
1.6. Let S be a fixed set and consider the following pair of collections:
(a) The collection of subsets of S, (b) Inclusions of subsets

This is a category! Draw pictures of it when $S=[2]$ and [3].
What are compositions and isomorphisms in this category?
1.7. The Cartesian product of two sets S and T is the set:

$$
S \times T=\{(s, t) \mid s \in S \text { and } t \in T\}
$$

of ordered pairs. This comes equipped with "projection" maps:

$$
p: S \times T \rightarrow S \text { and } q: S \times T \rightarrow T
$$

defined by setting $p(s, t)=s$ and $q(s, t)=t$.
(a) Show that this data (the set $S \times T$ with the maps p and q) is universal in the category \mathcal{S} ets in the following sense. Suppose (U, a, b) is another triple, consisting of a set U with maps $a: U \rightarrow S$ and $b: U \rightarrow T$, then there is a unique map $f: U \rightarrow S \times T$ with the property that $p \circ f=a$ and $q \circ f=b$. (Draw a picture!)
(a) Show that if (U, a, b) happens to also be universal, then the unique map f is a bijection, and so U is indistinguishable from $S \times T$.

We say that objects X, Y of a category \mathcal{C} have a product in \mathcal{C} if there exists (U, a, b) with the universal property above. Notice that this gives a categorical notion of the product, which can apply even in categories in which the objects are not sets!
(b) Show that in the category of subsets of S (from Exercise 1.6.), the intersection $T_{1} \cap T_{2}$, together with the inclusions into T_{1} and T_{2}, is the product of T_{1} and T_{2}.
(c) What universal property holds for unions $T_{1} \cup T_{2}$ together with the inclusions $i: T_{1} \subset T_{1} \cup T_{2}$ and $j: T_{2} \subset T_{1} \cup T_{2}$ in the category of subsets of S ? A triple satisfying this property is called a coproduct.
(d) Are there coproducts of sets in the category of sets?
1.8. We tacitly assumed that S and T were not empty when we formed their Cartesian product. What happens if one or the other is empty? What's the product, and does it still satisfy the universal properties? How many maps from the empty set to another set are there? Are there any maps from a nonempty set to the empty set?

