
Lecture 1. The Category of Sets
PCMI Summer 2015 Undergraduate Lectures on Flag Varieties

Lecture 1. Some basic set theory, a moment of categorical zen, and
some facts about the permutation groups on n letters.

A set is a collection of elements. The standard finite sets are:

[n] := {1, 2, 3, ..., n}
i.e. the collections of the first n natural numbers.

Remark. The empty set ∅ is the unique set with zero elements.

Notation. |S| is the number of elements (cardinality) of a finite set S.

A map:
f : S → T

is a rule for assigning a unique element t ∈ T to each element s ∈ S.
This is written in “function notation” as: f(s) = t.

The map f is injective, surjective or bijective, respectively, if:

(inj) Each t ∈ T is assigned to at most one s ∈ S.

(surj) Each t ∈ T is assigned to at least one s ∈ S.

(bij) Each t ∈ T is assigned to exactly one s ∈ S.

Maps can be composed. If f : S → T and g : T → U , then:

(g ◦ f)(s) = g(f(s))

defines the composition g ◦ f : S → U , and if h : U → V , then:

h ◦ (g ◦ f) = (h ◦ g) ◦ f
In other words, composition of maps is an associative operation.

Every set S comes equipped with the identity self-map:

idS : S → S idS(s) = s

Evidently, f ◦ idS = f and idT ◦ f = f for all maps f : S → T .

Each bijective map b : S → T has a two-sided inverse b−1 : T → S,
i.e.

b−1 ◦ b = idS and b ◦ b−1 = idT

Remark. The fact that the left and right inverses of a bijection are the
same is a consequence of associativity and the properties of the identity.
If b−1

l and b−1
r are “left” and “right” inverses of b, respectively, then:

b−1
l = b−1

l ◦ idT = b−1
l ◦ (b ◦ b−1

r ) = (b−1
l ◦ b) ◦ b

−1
r = idS ◦ b−1

r = b−1
r

so they are the same!
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Moment of Zen. The category of sets consists of the two collections:

(a) The collection of all sets, (b) The collection of all maps of sets

which we visualize as a universe of points (sets) and arrows (maps).

More precisely:

Definition 1.1. A category C consists of two collections:

(a) The collection ob(C) of objects X of C, and

(b) The collection mor(C) of morphisms f : X → Y between objects
equipped with a composition law with the following properties:

(i) The composition law is associative (in the sense we discussed).

(ii) Each object has an identity morphism idX : X → X such that

f ◦ idX = f = idY ◦ f for all objects X, Y and morphisms f : X → Y

(iii) By the argument above, inverses (when they exist) are two-sided.

This is designed so that sets and maps form the category Sets.
The morphisms from an object to itself are called endomorphisms

and the morphisms with (two-sided) inverses are called isomorphisms.
An automorphism is an endomorphism that is also an isomorphism.

Let:
End(S) and Aut(S)

be the sets of endomorphisms and automorphisms of a set S.

Tuple Notation. Each map f : [n]→ S “is” the n-tuple of its values:

(f(1), f(2), . . . , f(n)) ∈ Sn

In particular, an n-tuple of elements of [n] is an element f ∈ End([n]),
and if the elements are distinct, then f ∈ Aut([n]). We conclude that

|End([n])| = nn and |Aut([n])| = n!

Since every pair of endomorphisms can be composed, we can form a
composition table for the endomorphisms of a finite set:

Example 1.1. The elements of End([2]) are (1, 1), (1, 2), (2, 1), (2, 2)
with composition table:

g ◦ f g = (1, 1) (1, 2) (2, 1) (2, 2)
f = (1, 1) (1, 1) (1, 1) (2, 2) (2, 2)

(1, 2) (1, 1) (1, 2) (2, 1) (2, 2)
(2, 1) (1, 1) (2, 1) (1, 2) (2, 2)
(2, 2) (1, 1) (2, 2) (1, 1) (2, 2)
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Notice that already in this case, composition is not commutative!

Our first interesting example of a representation is the following:

Definition 1.2: Let f ∈ End([n]). Then:

sgn(f) =
∏

pairs i<j

f(j)− f(i)

j − i

is the characteristic sign function of the endomorphism.

Remark. We could have also chosen i > j in a pair, since:

f(j)− f(i)

j − i
=
f(i)− f(j)

i− j

Proposition 1.1. (a) sgn(f) = 0 if and only if f 6∈ Aut([n]).

(b) Otherwise sgn(f) = ±1.

(c) sgn is a multiplicative function, i.e.

sgn(f ◦ g) = sgn(f) · sgn(g)

for all pairs of endomorphisms f, g.

Proof. Since [n] is finite, f fails to be an automorphism if and only
if it fails to be injective, and f fails to be injective if and only if the
numerator of some factor of sgn(f) is zero. This is (a).

For (b), let f ∈ Aut([n]). Then the pairs {f(i), f(j)} vary over all
two-element subsets of [n] as the pairs {i, j} vary over all two-element
subsets. It follows that

∏
i<j |f(j)− f(i)| =

∏
i<j |j − i| and therefore

that
∏

i<j(f(j) − f(i)) = ±
∏

i<j(j − i), which gives (b). Notice that

it may be the case that i < j but f(i) > f(j). In fact, the number of
such “crossings” determines whether sgn(f) is +1 or −1.

Let h = f ◦ g. If f or g is not an automorphism, then h is not, and:

sgn(h) = 0 = sgn(f) · sgn(g)

Otherwise, g in particular is an automorphism, and:

sgn(h) =
∏
i<j

f(g(j))− f(g(i))

j − i
=

∏
i<j

f(g(j))− f(g(i))

g(j)− g(i)
· g(j)− g(i)

j − i

The product of the second factors gives sgn(g), and the product of the
first factors (and the remark above) gives sgn(f). �

Remark. The inverse of a composition of automorphisms satisfies:

(f ◦ g)−1 = g−1 ◦ f−1
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Notation. Self-compositions of an automorphism are written as powers:

f 2 = f ◦ f, f 3 = f ◦ f ◦ f, etc

Definition 1.3. Aut([n]) is called the permutation group Perm(n).

Example 1.2. Perm(3) consists of six elements:

id = (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)

These elements fall into three distinct “classes:”

(id) id = (1, 2, 3) fixes each element.

(tr) (1, 3, 2), (2, 1, 3) and (3, 2, 1) each “transpose” two elements.

(cyc) (2, 3, 1), (3, 1, 2) each “cycle” through all the elements.

Permutations have an extremely useful cycle notation:

Definition 1.4. Let s ∈ S and f ∈ Aut(S). The sequence:

s, f(s), f 2(s), f 3(s), . . .

of elements of S is the orbit of s under the automorphism f .

Proposition 1.2. The orbit of each i ∈ [n] cycles under a permutation
σ ∈ Perm(n), i.e. there is a distinct sequence i1, . . . , ik ∈ [n] so that:

σ(i) = i1, σ
2(i) = i2, . . . , σ

k(i) = ik = i

Proof. Because [n] is finite, the elements of the orbit i, σ(i), σ2(i), . . .
eventually repeat. Suppose the first repetition is:

σm(i) = σn(i) with m < n

Then composing both sides with the permutation (σm)−1 = (σ−1)m

gives i = σn−m(i), and the Proposition holds with k = n−m. �

Cycle Notation. The cycle notation for σ ∈ Perm(n) lists the distinct
elements of the orbit of 1 (in parentheses without commas), followed
by the distinct elements of the orbit of the first element not contained
in the orbit of 1, etc. until all elements of [n] are exhausted.

For example, in cycle notation the elements of Perm(3) are:

(1, 2, 3) = (1)(2)(3)

(1, 3, 2) = (1)(2 3), (2, 1, 3) = (1 2)(3), (3, 2, 1) = (1 3)(2)

(2, 3, 1) = (1 2 3), (3, 1, 2) = (1 3 2)

Simplification. Singleton orbits are left out of the cycle notation, with
the assumption that any missing element is fixed by the permutation.

For example: (1, 3, 2) = (1)(2 3) = (2 3) in the simplified notation.
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The composition table for the six elements of Perm(3) is:

g ◦ f g = id (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
f = id id (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
(1 2) (1 2) id (1 2 3) (1 3 2) (1 3) (2 3)
(1 3) (1 3) (1 3 2) id (1 2 3) (2 3) (1 2)
(2 3) (2 3) (1 2 3) (1 3 2) id (1 2) (1 3)

(1 2 3) (1 2 3) (2 3) (1 2) (1 3) (1 3 2) id
(1 3 2) (1 3 2) (1 3) (2 3) (1 2) id (1 2 3)

Example 1.3. The 24 elements of Perm(4) fit into one of five classes:

(i) The identity id

(ii) Transpositions

(1 2), (1 3), (1 4), (2 3), (2 4), (3 4)

(iii) Three-cycles

(1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3)

(iv) Four-cycles

(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)

(v) Transposition pairs

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

We leave the 24× 24 composition table for Perm(4) as an exercise.

Exercise 1.1. The sign of a transposition (for any n) is:

sgn(i j) = −1

Corollary 1.1. The sign of an m-cycle is (−1)m−1.

Proof. An m-cycle is a composition of m− 1 transpositions:

(i1 i2 i3 ... im) = (i1 im) ◦ · · · ◦ (i1 i3) ◦ (i1 i2)

so by the Exercise and Prop 1.1, we have sgn(i1 i2 i3 ... im) = (−1)m−1.
�

Corollary 1.2. Every permutation σ ∈ Perm(n) is a composition
of transpositions. Although the number of such transpositions is not
well-defined, the parity (even or odd) of the number is well-defined.

Proof. The cycle notation presents a permutation as a composition
of (disjoint) cycles. Each cycle is a composition of transpositions, as in
the Proof of Corollary 1.1 above. The parity is determined by the sign
of σ, which was well-defined in Definition 1.2. �
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Exercises.

1.1. Prove that the sign of a transposition (i j) ∈ Perm(n) is −1.

1.2. Work out the composition table for Perm(4).

A subset of Perm(n) that contains the identity id[n] and is closed
under inverses and compositions is a subgroup.

1.3. Find all the subgroups of Perm(3) and Perm(4).

Hint: The number of elements in a subgroup of Perm(n) divides n!.

The order of σ ∈ Perm(n) is the smallest value of k so that σk = id[n].

1.4. (a) Obtain the order of σ ∈ Perm(n) from its cycle notation.

(Conclude that the order of any permutation is finite!)

(b) Find the largest order of an element of Perm(n) for small n.

A nonempty set S is finite if there is a surjective map f : [n]→ S.

1.5. (a) If S is finite and non-empty, contemplate why there is a
bijective map f : [m]→ S for a unique integer m.

(b) Find two infinite sets that have no bijection between them.

(c) Find an injection from the set Z to itself that is not a bijection.

(d) Show that (c) cannot happen for finite sets.

And now for some zenmaster problems.

1.6. Let S be a fixed set and consider the following pair of collections:

(a) The collection of subsets of S, (b) Inclusions of subsets

This is a category! Draw pictures of it when S = [2] and [3].

What are compositions and isomorphisms in this category?

1.7. The Cartesian product of two sets S and T is the set:

S × T = {(s, t) | s ∈ S and t ∈ T}
of ordered pairs. This comes equipped with “projection” maps:

p : S × T → S and q : S × T → T

defined by setting p(s, t) = s and q(s, t) = t.

(a) Show that this data (the set S × T with the maps p and q) is
universal in the category Sets in the following sense. Suppose (U, a, b)
is another triple, consisting of a set U with maps a : U → S and
b : U → T , then there is a unique map f : U → S × T with the
property that p ◦ f = a and q ◦ f = b. (Draw a picture!)
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(a) Show that if (U, a, b) happens to also be universal, then the
unique map f is a bijection, and so U is indistinguishable from S×T .

We say that objects X, Y of a category C have a product in C if
there exists (U, a, b) with the universal property above. Notice that
this gives a categorical notion of the product, which can apply even
in categories in which the objects are not sets!

(b) Show that in the category of subsets of S (from Exercise 1.6.),
the intersection T1 ∩ T2, together with the inclusions into T1 and T2,
is the product of T1 and T2.

(c) What universal property holds for unions T1 ∪ T2 together with
the inclusions i : T1 ⊂ T1 ∪ T2 and j : T2 ⊂ T1 ∪ T2 in the category of
subsets of S? A triple satisfying this property is called a coproduct.

(d) Are there coproducts of sets in the category of sets?

1.8. We tacitly assumed that S and T were not empty when we formed
their Cartesian product. What happens if one or the other is empty?
What’s the product, and does it still satisfy the universal properties?
How many maps from the empty set to another set are there? Are
there any maps from a nonempty set to the empty set?


