Lecture 4. G-Modules

PCMI Summer 2015 Undergraduate Lectures on Flag Varieties
Lecture 4. The categories of G-modules, mostly for finite groups, and a recipe for finding "every" irreducible G-module of a finite group G.

Let's start by thinking about direct sums of vector spaces:
Definition 4.1. A vector space V is the direct sum:

$$
V=U_{1} \oplus \cdots \oplus U_{m}
$$

of subspaces $U_{1}, \ldots, U_{m} \subset V$ if each $\vec{v} \in V$ has a unique expression: $\vec{v}=\vec{u}_{1}+\ldots .+\vec{u}_{m}$ as a sum of vectors $\vec{u}_{i} \in U_{i}$ from each subspace.

Example 4.1. (a) If $\vec{v}_{1}, \ldots, \vec{v}_{n} \in V$ are a basis, then V is the direct sum of the one-dimensional subspaces (i.e. lines) $L_{i}:=\left\{c \vec{v}_{i} \mid c \in k\right\}$.
(b) If $U, W \subset V$ are a pair of subspaces that satisfy:

$$
U \cap W=\{\overrightarrow{0}\} \text { and } \operatorname{dim}(U)+\operatorname{dim}(W)=\operatorname{dim}(V),
$$

then $V=U \oplus W$. (Exercise 4.1)
(c) Three distinct lines L_{1}, L_{2}, L_{3} in the $x y$-plane inside \mathbb{R}^{3} satisfy:

$$
L_{i} \cap L_{j}=\{\overrightarrow{0}\} \text { and } \operatorname{dim}\left(L_{1}\right)+\operatorname{dim}\left(L_{2}\right)+\operatorname{dim}\left(L_{3}\right)=3
$$

but \mathbb{R}^{3} is not a direct sum of L_{1}, L_{2}, L_{3}.
Remark. Since every finite dimensional vector space has a basis, it follows that every vector space is the direct sum of lines. We say that all vector spaces other than lines and $\{\overrightarrow{0}\}$ are reducible.

Proposition 4.1. Suppose V has finite dimension and $U \subset V$ is a subspace. Then there is a complementary subspace $W \subset V$ such that:

$$
q: W \rightarrow V / U
$$

is an isomorphism, and $V=U \oplus W$.
Proof. Let $\vec{u}_{1}, \ldots, \vec{u}_{m}$ be a basis of U, and add linearly independent vectors (in V) until a basis: $\vec{u}_{1}, \ldots, \vec{u}_{m}, \vec{w}_{1}, \ldots . ., \vec{w}_{n-m}$ of V is obtained. Then $W=\left\{c_{1} \vec{w}_{1}+\cdots+c_{n-m} \vec{w}_{n-m}\right\}$ has the desired properties.
Remark. The analogue of this Proposition is false for abelian groups. Consider, for example, the subgroup of even integers:

$$
2 \mathbb{Z} \subset \mathbb{Z} \text { with coset group } \mathbb{Z} / 2 \mathbb{Z}
$$

Evidently there is no subgroup $A \subset \mathbb{Z}$ that maps isomorphically to $\mathbb{Z} / 2 \mathbb{Z}$, because such a subgroup would produce an integer $a \in \mathbb{Z}$ with the property that $2 a=0$. The question of whether a group of cosets G / H of a normal subgroup "lifts" to a subgroup of G is subtle.

Let G be a group.
Definition 4.2. (a) A G-module is a pair consisting of a vector space V (over a field k) together with a representation $\rho: G \rightarrow \mathrm{GL}(V)$.
(b) A subspace $U \subset V$ fixed by $\rho(g)$ for all $g \in G$ is a G-submodule.
(c) A linear map $f: V \rightarrow W$ of G-modules is G-linear if:

$$
f(g \vec{v})=g f(\vec{v}) \text { for all } g \in G \text { and all } \vec{v} \in V
$$

Remark. Although a G-module is a pair, it is often just written as V, with ρ understood. Similarly, unless we need to be careful, we'll write $g \vec{v}$ when we mean $\rho(g)(\vec{v})$ (as we did in (c) above).
Exercise 4.2. (a) The identity map on G-modules is G-linear.
(b) A composition of G-linear maps is G-linear.
(c) The inverse of an invertible G-linear map is G-linear.
(d) The kernel and image of a G-linear map are G-submodules.
(e) The space of cosets of a G-linear map is a G-module in such a way that the $\operatorname{map} q: V \rightarrow V / U$ is G-linear.

Moment of Zen. The category $G \mathcal{M o d}$ (fixed G) consists of:
(a) the collection of all G-modules, and (b) all G-linear maps

Example 4.2. (a) The trivial representation $\left(\rho(g)=\mathrm{id}_{V}\right.$ for all g) makes any vector space into a trivial G-module. Every subspace of a trivial G-module is a G-submodule.
(b) Let $G=\operatorname{Perm}(n)$ and consider the G-module k^{n} with the natural representation $\tau \cdot e_{i}=e_{\tau(i)}$. Then the addition of coordinates:

$$
a: k^{n} \rightarrow k ; a(\vec{v})=v_{1}+\ldots+v_{n}
$$

is a G-linear map to the trivial G-module k since:

$$
\tau \vec{v}=\left(v_{\tau^{-1}(1)}, \ldots, v_{\tau^{-1}(n)}\right) \text { and } a(\tau \vec{v})=\sum_{i=1}^{n} v_{\tau^{-1}(i)}=a(\vec{v})=\tau a(\vec{v})
$$

The G-submodule $\operatorname{ker}(a)$ is the standard representation of $\operatorname{Perm}(n)$.
(c) Consider the two-dimensional standard representation of Perm(3). In terms of the basis $e_{1}-e_{2}, e_{2}-e_{3}$, matrices for the action include:

$$
\rho\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left[\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right] \text { and } \rho(23)=\left[\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right]
$$

The other matrices are left as an exercise.

Definition 4.3. A G-module V with representation ρ is irreducible if the only G-submodules of V are $\{\overrightarrow{0}\}$ and V itself.

Example 4.3. (a) Any one-dimensional G-module is irreducible. These include the trivial one-dimensional G-modules, but also any character:

$$
\chi: G \rightarrow k^{*} ; \quad \chi(g h)=\chi(g) \cdot \chi(h)
$$

E.g. The characters of C_{n} from Example 3.7(a) are $\chi_{m}(x)=e^{\frac{2 \pi i m}{n}}$.

Consider next the action of $D_{2 n}$ from Example 3.7(b), consisting of the rotation action of C_{n} augmented by the reflections
(b) The rotation action of $C_{n} \subset D_{2 n}$ on \mathbb{R}^{2} is already irreducible when $n>2$ because no line is left invariant under the rotations. But:
(c) The same rotation action of C_{n} on \mathbb{C}^{2} is reducible, with two invariant lines, the eigenspaces of x (and all powers of x), spanned by:

$$
(1, i) \text { and }(1,-i) \text {, respectively }
$$

(d) Since the reflection given by y switches the two invariant lines for x, it follows that \mathbb{C}^{2} with the action of $D_{2 n}$ is irreducible.

Proposition 4.2. The only irreducible G-modules over \mathbb{C} for an abelian group G are the one-dimensional characters of G. In other words, any set of commuting matrices has a common eigenvector.

Proof. If V is a vector space over \mathbb{C}, then every element of $\mathrm{GL}(V)$ has an eigenvector. Suppose A and B are commuting elements of GL (V), and \vec{v} is an eigenvector of A with eigenvalue λ. Then:

$$
A(B \vec{v})=B(A \vec{v})=B(\lambda \vec{v})=\lambda(B \vec{v})
$$

so $B \vec{v}$ is another eigenvector of A with eigenvalue λ. In other words, B acts on the λ eigenspace for A, and therefore B has an eigenvector in this eigenspace, and so A and B share an eigenvector.

If A_{1}, \ldots, A_{n} are elements of GL (V) sharing a common eigenvector and A_{n+1} commutes with each of them, then by the same argument, A_{n+1} acts on the common eigenspaces and therefore shares an eigenvector with A_{1}, \ldots, A_{n}. This proves that every finite set of commuting matrices shares an eigenvector. If an infinite set of commuting matrices failed to share an eigenvector, then some finite subset would also fail to share an eigenvector (by induction on the dimensions of the shared eigenspaces), so the result applies to infinite abelian groups as well.

Example 4.4. Consider the two-dimensional representation of the abelian group \mathbb{C} (with addition):

$$
\rho(z)=\left[\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right]
$$

These matrices share a single one-dimensional eigenspace, the x-axis.
Definition 4.4. A G-module V is the direct sum:

$$
V=U_{1} \oplus \cdots \oplus U_{m}
$$

of G-submodules $U_{1}, \ldots, U_{m} \subset V$ if each $\vec{v} \in V$ has a unique expression: $\vec{v}=\vec{u}_{1}+\ldots .+\vec{u}_{m}$ as a sum of vectors $\vec{u}_{i} \in U_{i}$ from each submodule.

Remark. This is identical to Definition 4.1, but Proposition 4.1 for G modules is more subtle. The problem is that complementary subspaces to a G-submodule $U \subset V$ are not usually G-submodules. In Example 4.4 above, the y-axis is complementary to the x-axis, but it is not invariant under the action of \mathbb{C}, and in fact, in that Example, there is no complementary subspace of \mathbb{C}^{2} that is a \mathbb{C}-submodule!

Consider again the dot product on \mathbb{R}^{n} from Lecture 2. This is bilinear (linear on each vector) and positive definite:

$$
\vec{v} \cdot \vec{v}=\sum_{i=1}^{n} v_{i}^{2}>0 \text { unless } \vec{v}=\overrightarrow{0}
$$

Similarly, there is a standard Hermitian product on \mathbb{C}^{n}, namely,

$$
\langle\vec{v}, \vec{w}\rangle=\sum_{j=1}^{n} v_{j} \bar{w}_{j} \in \mathbb{C}
$$

that is linear in the first vector and conjugate linear in the second, i.e. $\left\langle\vec{v}_{1}+\vec{v}_{2}, \vec{w}\right\rangle=\left\langle\vec{v}_{1}, \vec{w}\right\rangle+\left\langle\vec{v}_{2}, \vec{w}\right\rangle$ and $\left\langle\vec{v}, \vec{w}_{1}+\vec{w}_{2}\right\rangle=\left\langle\vec{v}, \vec{w}_{1}\right\rangle+\left\langle\vec{v}, \vec{w}_{2}\right\rangle$ and $\langle c \vec{v}, \vec{w}\rangle=c\langle\vec{v}, \vec{w}\rangle$ but $\langle\vec{v}, c \vec{w}\rangle=\bar{c}\langle\vec{v}, \vec{w}\rangle$. The Hermitian product is conjugate symmetric, in the sense that $\langle\vec{v}, \vec{w}\rangle=\overline{\langle\vec{w}, \vec{v}\rangle}$.
Remark. We have avoided complex conjugation thus far, but no longer. If $c=a+i b$, then $\bar{c}=a-i b$, and $c \bar{c}=a^{2}+b^{2}=|c|^{2}$. It follows that the Hermitian dot product is also positive definite, in the sense that:

$$
\langle\vec{v}, \vec{v}\rangle=\sum_{i=1}^{n}\left|v_{i}\right|^{2} \text { is real and positive unless } \vec{v}=0
$$

Let $U \subset V$ be a subspace of a vector space V defined over \mathbb{R} or \mathbb{C}.
Definition 4.5. The orthogonal complement $U^{\perp} \subset V$ is the set of vectors in V such that $\vec{u} \cdot \vec{v}=0$ (if over \mathbb{R}) or $\langle\vec{u}, \vec{v}\rangle=0$ (if over \mathbb{C}).

Exercise 4.3. When V is a vector space over \mathbb{R} or \mathbb{C}, then $U^{\perp} \subset V$ is a complementary subspace to $U \subset V$ in the sense of Proposition 4.1. In particular,

$$
V=U \oplus U^{\perp} \text { and } \operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)=\operatorname{dim}(V)
$$

This doesn't (yet) help with our conundrum. If $U \subset V$ is a G submodule, there is no reason to expect that U^{\perp} is also a G-submodule. The key is to recognize that there are many positive definite products and to find one that is G-invariant.

Definition 4.6. (a) Let V be a vector space over \mathbb{R}. A map

$$
b: V \times V \rightarrow \mathbb{R}
$$

is a positive definite inner product if it is symmetric and bilinear and

$$
b(\vec{v}, \vec{v})>0 \text { for all } \vec{v} \neq \overrightarrow{0}
$$

(b) Let V be a vector space over \mathbb{C}. A map

$$
h: V \times V \rightarrow \mathbb{C}
$$

is a positive definite Hermitian product if it is conjugate symmetric, and linear in the first vector (and conjugate linear in the second), and

$$
h(\vec{v}, \vec{v})>0 \text { for all } \vec{v} \neq \overrightarrow{0}
$$

Note. $h(\vec{v}, \vec{v})=\overrightarrow{h(\vec{v}, \vec{v})}$ is automatically a real number.
Matrix Notation. An inner product is represented by the matrix:

$$
B=\left(b\left(e_{i}, e_{j}\right)\right) \text { with } B=B^{T} \text { and } b(\vec{v}, \vec{w})=(\vec{v})^{T} B \vec{w}
$$

where \vec{v} and \vec{w} are regarded as one-column matrices. Notice that the ordinary dot product is represented by the identity matrix.

Similarly, a Hermitian product is represented by the matrix:

$$
H=\left(h\left(e_{i}, e_{j}\right)\right) \text { with } H=\bar{H}^{T} \text { and } h(\vec{v}, \vec{w})=(\vec{v})^{T} H \overline{\vec{w}}
$$

and the standard Hermitian product is represented by the identity.
The orthogonal complement W^{\perp} of a subspace $W \subset V$ can now be taken relative to any positive definite inner (or Hermitian) product and the conclusions from Exercise 4.3 hold, namely that $V=W \oplus W^{\perp}$.

Let G be a finite group.

Definition 4.7. If V is a G-module over \mathbb{R} (or \mathbb{C}), then the G-invariant inner product (or Hermitian product) on V is:

$$
b(\vec{v}, \vec{w})=\frac{1}{|G|} \sum_{g \in G} g \vec{v} \cdot g \vec{w} \quad\left(\text { or } \quad h(\vec{v}, \vec{w})=\frac{1}{|G|} \sum_{g \in G}\langle g \vec{v}, g \vec{w}\rangle\right)
$$

Notice that these are both positive definite!
Proposition 4.3. The orthogonal complement $W^{\perp} \subset V$ of a G submodule $W \subset V$ with respect to the G-invariant inner (or Hermitian) product on V is another G-submodule of V.

Proof. The G-invariance of the inner product gives:

$$
b(\vec{v}, \vec{w})=\frac{1}{|G|} \sum_{g \in G} g \vec{v} \cdot g \vec{w}=\frac{1}{|G|} \sum_{g \in G}(g h) \vec{v} \cdot(g h) \vec{w}=b(h \vec{v}, h \vec{w})
$$

for any $h \in G$. Suppose $\vec{v} \in W^{\perp}$, i.e. $b(\vec{v}, \vec{w})=0$ for all $w \in W$. Then $b(h \vec{v}, \vec{w})=b\left(\vec{v}, h^{-1} \vec{w}\right)=0$ for all $\vec{w} \in W$. The same argument holds in the Hermitian case.

Corollary 4.1. Suppose V is a vector space over \mathbb{C} and $A \in \operatorname{GL}(V)$ has finite order, i.e. $A^{n}=\mathrm{id}$ for some n. Then A is semi-simple.

Proof. Let $G=C_{n}$ and let V be a G-module via $\rho(x)=A$. We know that the matrix A has (at least) one eigenvector $\vec{v} \in V$ with eigenvalue λ. The line L spanned by \vec{v} is a G-submodule of V, whose orthogonal complement under the G-invariant Hermitian product is a G-submodule. The matrix A acts on the orthogonal complement L^{\perp} with an eigenvector in L^{\perp}, and then A acts on the G-invariant orthogonal complement to that eigenvector in L^{\perp}, etc.

Example 4.5. Consider the matrix from Example 4.2(c):

$$
A=\left[\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right] ; \quad A^{2}=\mathrm{id}
$$

Then \mathbb{R}^{2} is a C_{2}-space, and the eigenvector $(1,0)$ spans an invariant subspace. The C_{2}-invariant inner product is:

$$
b(\vec{v}, \vec{w})=\frac{1}{2}(\vec{v} \cdot \vec{w}+A \vec{v} \cdot A \vec{w})
$$

which is represented by the matrix:

$$
B=\left[\begin{array}{rr}
1 & -\frac{1}{2} \\
-\frac{1}{2} & \frac{3}{2}
\end{array}\right]
$$

Then $b((1,2),(1,0))=0$ so $(1,2)$ is "the other" eigenvector of A.

Corollary 4.2. When G is a finite group, any finite-dimensional G module V over \mathbb{R} or \mathbb{C} is completely reducible, i.e.

$$
V=U_{1} \oplus U_{2} \oplus \cdots \oplus U_{n}
$$

for some set of irreducible G-submodules $U_{1}, \ldots, U_{n} \subset V$.
Proof. Either V is irreducible, and there is nothing to prove, or else V has a nonempty sub G-module $U \subset V$. With respect to the invariant dot (or Hermitian) product, the orthogonal complement $W=U^{\perp}$ is also a G-module, and $V=U \oplus W$. By induction on dimension, we may assume that U and W are direct sums of irreducible G-submodules, and so V is as well.

Since every G-module is a direct sum of finitely many irreducible G-modules, it makes sense to try to classify the irreducible G-modules. We will do this over the complex numbers, where, for example, the irreducible G-modules for an abelian group were seen to be the onedimensional characters.

As usual, let G be a finite group.
Definition 4.8. The (left) regular G-module over \mathbb{C} is:

$$
\mathbb{C}[G]=\left\langle e_{g} \mid g \in G\right\rangle \text { with the action } \rho(h)\left(e_{g}\right)=e_{h g}
$$

i.e. the vector space with one basis vector e_{g} for each $g \in G$, made into a G-module by permuting basis vectors by left multiplication.

This is similar to the natural representation of the permutation group, in which the vectors corresponded to elements of the set $[n]$ (rather than elements of the group Perm (n)).
Example 4.6. Let $G=C_{n}$ with the ordering $\left\{\mathrm{id}, x, \ldots, x^{n-1}\right\}$. Then:

$$
\rho(x)\left(e_{x^{i}}\right)=e_{x^{i+1}}
$$

cyclically permutes the basis vectors, so the matrix for the action is:

$$
A=\rho(x)=\left[\begin{array}{cccc}
0 & 0 & \cdots & 1 \\
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

Let $\zeta=e^{\frac{2 \pi i}{n}}$. Then:

$$
\left\{\vec{v}_{\zeta^{m}}=e_{1}+\zeta^{m} e_{2}+\cdots+\zeta^{m(n-1)} e_{n} \mid 0 \leq m<n\right\}
$$

is a basis of eigenvectors for A (and all powers of A), hence:

$$
\mathbb{C}\left[C_{n}\right]=\mathbb{C} \vec{v}_{\zeta} \oplus \mathbb{C} \vec{v}_{\zeta^{2}} \oplus \cdots \oplus \mathbb{C} \vec{v}_{\zeta^{n}}
$$

Notice that $\mathbb{C} \vec{v}_{\zeta^{m}}=\chi_{-m}$ as a one-dimensional character of C_{n}, since:

$$
A \vec{v}_{\zeta^{m}}=e_{2}+\zeta^{m} e_{3}+\cdots+\zeta^{m(n-1)} e_{1}=\zeta^{-m} \vec{v}_{\zeta^{m}}
$$

and in particular, each summand in the direct sum is a distinct onedimensional character, with the last being the trivial character.
Theorem 4.1. Let $\mathbb{C}[G]=\bigoplus_{i=1}^{n} U_{i}$ be a decomposition of the regular representation into irreducible G-submodules over \mathbb{C}. Then:
(a) Every irreducible G-module U is isomorphic to a summand.
(b) If $\operatorname{dim}(U)=d$, then U is isomorphic to d of the summands.

Corollary 4.3. There are only finitely many irreducible G-modules (up to isomorphism), and their dimensions d_{1}, \ldots, d_{m} satisfy:

$$
|G|=d_{1}^{2}+d_{2}^{2}+\cdots+d_{m}^{2}
$$

Proof. Immediate from the Theorem, since $\sum_{i=1}^{n} \operatorname{dim} U_{i}=|G|$.
Before we get to the proof of this, consider some examples:
(a) We've seen $\mathbb{C}\left[C_{n}\right]$ as a direct sum of its n characters.
(b) Since the only irreducible representations of an abelian group G are one-dimensional characters, it follows that there are $|G|$ of them, and that $\mathbb{C}[G]=\oplus \chi$ is the direct sum of the distinct characters.
(c) We've seen three irreducible complex representations of Perm(3):
trivial, sign and standard (two-dimensional)
and since $1+1+2^{2}=6=|\operatorname{Perm}(3)|$, there are no other irreducibles. In particular, since $\operatorname{Perm}(3)=D_{6}$, the rotation/reflection irreducible representation must be isomorphic to the standard representation.

The key ingredient in this proof is Schur's Lemma, which requires us to (finally) think a bit more about the structure of the sets of linear maps between two vector spaces (or G-modules).
Observation. Let V and W be vector spaces over k. Then the set of linear maps (morphisms) from V to W is denoted by $\operatorname{Hom}_{k}(V, W)$ and it is itself a vector space, via:

$$
(f+g)(\vec{v})=f(\vec{v})+g(\vec{v}) \text { and }(c f)(\vec{v})=f(c \vec{v})
$$

Remark. We've already seen one example, namely $V^{\vee}=\operatorname{Hom}_{k}(V, k)$.
If $\operatorname{dim}(V)=m$ and $\operatorname{dim}(W)=n$, then $\operatorname{dim}\left(\operatorname{Hom}_{k}(V, W)\right)=m n$. Indeed:

$$
\operatorname{Hom}_{k}\left(k^{m}, k^{n}\right)=\{m \times n \text { matrices }\}
$$

and the addition is the componentwise addition of matrices.

If V and W are G-modules, the set $\operatorname{Hom}_{G}(V, W)$ of G-linear maps is also a vector space. It is a subspace: $\operatorname{Hom}_{G}(V, W) \subset \operatorname{Hom}_{k}(V, W)$ since G-linear maps sum (and scalar multiply) to G-linear maps.
Schur's Lemma. (a) If V, W are irreducible G-modules, then:

$$
\operatorname{Hom}_{G}(V, W)=\{\overrightarrow{0}\} \text { unless } V \text { and } W \text { are isomorphic }
$$

(b) If V, W are isomorphic G-modules over \mathbb{C}, then:

$$
\operatorname{dim}\left(\operatorname{Hom}_{G}(V, W)\right)=1
$$

In particular, $\operatorname{End}_{G}(V)=\mathbb{C} \cdot \mathrm{id}_{U}$ for an irreducible G-module over \mathbb{C}.
Proof. The only G-submodules of an irreducible V are $\overrightarrow{0}$ and V. If $f \in \operatorname{Hom}_{G}(V, W)$ consider the G-submodule kernel and image of f. Either $\operatorname{ker}(f)=\{\overrightarrow{0}\}$ (f is injective), or $\operatorname{ker}(f)=V$ (f is zero). Either $\operatorname{im}(f)=\{\overrightarrow{0}\},(f$ is zero $)$ or $\operatorname{im}(f)=W$ (f is surjective). Thus either f is zero or else f is a bijection, i.e. an isomorphism. This gives (a).

For (b), suppose $f, g \in \operatorname{Hom}_{G}(V, W)$ are an arbitrary pair of nonzero G-linear maps. By (a) they are isomorphisms, so we may consider:

$$
\mathrm{id}_{W}=g \circ g^{-1} \text { and } h=f \circ g^{-1} \in \operatorname{Hom}_{G}(W, W)
$$

Then for each scalar $\lambda \in \mathbb{C}$, we have:

$$
h-\lambda \cdot \mathrm{id}_{W} \in \operatorname{Hom}_{G}(W, W)
$$

and when λ is an eigenvalue of h (which happens for at least one λ), this G-linear map is not an isomorphism. For such a λ, then, $h-\lambda \cdot \mathrm{id}_{W}=0$, hence $\lambda \cdot \operatorname{id}_{W}=h$ and $f=h \circ g=\lambda \cdot g$, so f is a multiple of g. This proves that $\operatorname{Hom}_{G}(V, W)$ is one-dimensional.
Remark. Part (b) of Schur's Lemma doesn't hold if the field is \mathbb{R}. For example, if $A \in \mathrm{GL}(2, \mathbb{R})$ is the rotation by $2 \pi / n$, then $A \in \operatorname{End}_{C_{n}}\left(\mathbb{R}^{2}\right)$ for the irreducible rotation action. Evidently $A \neq \lambda \cdot$ id for any λ.

Proof of Theorem 4.1. Let U be an irreducible G-module, and let $\vec{u} \in U$ be a nonzero vector. Then the linear map:

$$
f_{\vec{u}}: \mathbb{C}[G] \rightarrow U \text { defined by } f_{\vec{u}}\left(e_{g}\right)=g \cdot \vec{u}
$$

is G-linear, because $f_{\vec{u}}\left(h e_{g}\right)=f_{\vec{u}}\left(e_{h g}\right)=(h g) \vec{u}=h f_{\vec{u}}\left(e_{g}\right)$ for all $h \in G$.
This map is not the zero map, since $f_{\vec{u}}\left(e_{\text {id }}\right)=\vec{u}$. But if:

$$
\mathbb{C}[G]=U_{1} \oplus U_{2} \oplus \cdots \oplus U_{n}
$$

is the decomposition of $\mathbb{C}[G]$, then on each summand, $f_{\vec{u}}: U_{i} \rightarrow U$ is either zero or an isomorphism, by Schur's Lemma (a), so (at least) one of them is a isomorphism! This gives (a) of the Theorem.

For (b) of the Theorem, consider the linear "evaluation" map:

$$
\phi: \operatorname{Hom}_{G}(\mathbb{C}[G], U) \rightarrow U ; \phi(f)=f\left(e_{\mathrm{id}}\right)
$$

If $\phi(f)=\vec{u}$, then $f\left(e_{g}\right)=g f\left(e_{\text {id }}\right)=g \vec{u}$, so $f=f_{\vec{u}}$ defined above! And if $\phi(f)=\overrightarrow{0}$, then $f\left(e_{g}\right)=\overrightarrow{0}$ for all $g \in G$, and f is the zero map. So ϕ is an isomorphism.

This means in particular that $\operatorname{dim}\left(\operatorname{Hom}_{G}(\mathbb{C}[G], U)\right)=\operatorname{dim}(U)$. But by Schur Lemma (b), the dimension of $\operatorname{Hom}_{G}\left(U_{i}, U\right)=1$ for each irreducible summand of $\mathbb{C}[G]$ that is isomorphic to U, and it follows that there are $\operatorname{dim}(U)$ of them.

Exercises.

4.1. Prove that $V=U \oplus W$ for subspaces $U, W \subset V$ if and only if:
(i) $U \cap W=\overrightarrow{0}$ and (ii) $\operatorname{dim}(U)+\operatorname{dim}(W)=\operatorname{dim}(V)$.
4.2. (a) Show that G-modules with G-linear maps are a category.
(b) Show that the kernel and image of a G-linear map are G-modules.
(c) Show that the space of cosets of a G-submodule is a G-module.
4.3. Prove that the orthogonal complement of a subspace $U \subset V$ of a vector spaces over \mathbb{R} or \mathbb{C} satisfies: $V=U \oplus U^{\perp}$.

One cheap way to get new irreducible representations from old ones is to "twist by a character," i.e. given representations $\rho: G \rightarrow \mathrm{GL}(U)$ and $\chi: G \rightarrow \mathbb{C}^{*}$, consider $\rho \otimes \chi \in \mathrm{GL}(U)$ defined by $g \vec{u}=\chi(\vec{u}) \cdot \rho(\vec{u})$.
4.5. What conditions on ρ and χ guarantee that the G-module on U for $\rho \otimes \chi$ is not isomorphic to the G-module for ρ ?
4.6. Find all the irreducible representations of:
(a) D_{8} and D_{10} (do you see a pattern?)
(b) Alt(4) (use the map Alt(4) $\rightarrow C_{3}=\operatorname{Alt}(4) / K_{4}$.)
(c) $\operatorname{Perm}(4)$ (use the map $\left.\operatorname{Perm}(4) \rightarrow \operatorname{Perm}(3)=\operatorname{Perm}(4) / K_{4}\right)$
(d) Alt(5)

The $\operatorname{trace} \operatorname{tr}(\rho(g))$ of an irreducible representation ρ evaluated at an element $g \in G$ is the same for all elements of the same conjugacy class. This is not surprising. It is a consequence of Exercise 2.9. What is surprising is that the number of irreducible representations is equal to the number of conjugacy classes, and:

- There is a Hermitian inner product on the complex vector space $V=\oplus_{c} \mathbb{C} \cdot e_{c}$ of dimension equal to the number of conjugacy classes c in the group G (which is the number of irreducible representations) such that the "trace" vectors of irreducible representations:

$$
\vec{v}_{\rho}=\sum_{c} \operatorname{tr}\left(\rho\left(g_{c}\right)\right) e_{c} \text { for arbitrary choices of } g_{c} \in c
$$

are an orthonormal basis of V (length one and mutually orthogonal).
The matrix with column vectors v_{ρ} is the character table of G.
4.7. Figure out the Hermitian inner product that makes this happen. (Hint: It involves the numbers elements in each conjugacy class) and compute the character tables of cyclic groups and the groups whose representations you found in 4.6.

