Abstract Algebra. Math 6320. Bertram/Utah 2022-23.
Group Representations
Let G be a group and k be a field.

Definition. A representation (over k) of G is a group homomorphism:
p:G— GL(V)

where V is a k-vector space and GL(V') = Autg (V) is the group of k-automorphisms,
The dimension of V is the dimension of the representation (V] p) (or just p).

In other words a representation is an action:
G x V — V, which we write as (g,v) — gv := p(g)(v)

and which satisfies g(v + w) = gv + gw and (gh)v = g(hv). This resembles the
structure of a module, and a group representation is also called a G-module.

Examples. Group characters are one-dimensional (abelian) representations.

Remarks. (a) If V has a basis ey, ...., €,, then in terms of the basis, a representation
is a collection of invertible n x n matrices. When the basis is understood, GL(V)
is called GL(n, k), the group of invertible n x n matrices with entries in the field k.

(b) If G is given in terms of generators g; and relations r;, then p may be
specified by choosing matrices A; € GL(n, k) that satisfy the relations r;. Thus,
for example, a representation of the cyclic group Cy is the choice of a single n x n
matrix p(g) = A (for a generator g of Cy) satisfying A4 = I,,.

Example. Transpositions g; = (1 2) and g2 = (2 3) generate S3 with relations:
g7 =id, g5 = id and (g192)* = id
Letting
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so this determines a two-dimensional representation of S3 in any field, including,
amusingly, the field Fo (in which —1 = 1). For example,

23y =pa2es) =] 7} | w

we check that:

and
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Definition. Given a representation (V,p) of G, a subspace U C V' is invariant if
the image of p|y lies in U, in which case p “induces” the representation (U, p|v).
Evidently, both 0, V' C V are invariant subspaces, and if these are the only invariant
subspaces, then we say (V, p) is an irreducible representation.

Example. One-dim’l characters are irreducible (there are no other subspaces!).
The example above is an irreducible two-dimensional representation of S3.
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Note. The one-dimensional invariant subspaces of (V, p) are spanned by a shared
eigenvector of the matrices A, = p(g) for all elements g € G.

We've already seen that if G is finite, there are at most |G| characters of G, and
exactly |G| of them if k = C and G is abelian. This begs the following;:

Question. How many irreducible representations are there for a fixed G and k7
The answer depends upon the field k, as seen with the following example.

Example. The rotation representation of C,, on R? generated by:

cos(2m/n) —sin(27/n)

plg) = |

sin(2w/n)  cos(2w/n)
is irreducible because this rotation (by 27 /n) has no real eigenvectors. On the other
hand, every automorphism of C? has a complex eigenvector, and here there are two:
(1,7) and (1, —4) with eigenvalues e~27"/" and e*>"/", respectively. Alternatively,
one could view this rotation as a single complex character given by x(g) = €27/,

The category G Repy, of representations of G for a field k consists of:
e Objects (V, p), the k-representations of G, including the zero representation.

e Vector spaces Homg (V, W) C Homg (V, W) of G-linear maps between objects
(V,p) and (W, 1), where a k-linear map f: V — W is G-linear if:

flgv) =gf(v) for all g € G
This is an abelian category. The key observation is:

Proposition 1. The kernel, image and cokernel of a G-linear map f € Homg(V, W)
are also representations of G.

Proof. The kernel K C V is an invariant subspace (hence a representation),
since if f(v) = 0, then f(gv) = gf(v) = g0 = 0. Similarly, the image I = f(V) C W
is invariant, since if w = f(v), then gw = f(gv). Finally, the cokernel is:

W/I ={w+ f(V)} and g(w + f(V)) = gw+ f(V)
and a well-defined action of G, with G-linear map ¢ : W — W/I. O

The rest of the properties of an abelian category follow from the corresponding

properties for the category of k-vector spaces. In particular, the direct sum of

representations (V, p) and (W, 7) is the direct sum of the vector spaces, together
with the “diagonal” action g(v,w) = (gv, gw).

But consider the following subtlety:
Example. The complex representation p of G = (Z,+) on C? given by:

o=y 7]

has one invariant subspace, the line spanned by e;, which is a common eigenvector
(with eigenvalue 1) of each p(n). This gives a G-invariant map C — C? from the
trivial representation, whose cokernel is also the trivial representation. But the
representation p itself is not trivial, and therefore not isomorphic to the direct sum
of the kernel and cokernel representations. Thus, like the case of R-modules, a short
exact sequence of representations (G-modules) need not have a right splitting.

On the other hand, when G is finite, we have the following;:



Proposition 2. If G is a finite group and p : G — Aut(V) is a (finite dimensional)
complex representation, then every invariant subspace U C V has an invariant
complementary subspace W with U @ W =V as complex representations of G.

Proof. The idea is to construct a Hermitian inner product on V' that is invariant
by averaging over the group, and then to take the orthogonal complement with

respect to this averaged inner product. Choose a basis ey, ....,e, of V' and let:
1
(u,v)g = — Z(hu, hv) for vectors u,v € V
=

where (-, -) is the “ordinary” Hermitian inner product: (3 wie;, > yie;) = > 2;7;.
This is rigged so that (u,v)e = (gu, gv)¢ for all g € G and if v # 0, then
1
(v,v)¢ = €] Z lgv|* >0
geG
ie. (-, g is positive definite, and also Hermitian, since it satisfies
(u,v)a = (v,u) and (cru; + coug, v)g = c1(u1, v)g + c2(uz, V)¢

It follows that if U is an invariant subspace of C™, then the orthogonal complement
UL with respect to the G-invariant inner product, is also invariant via:

(u,wyg = 0 for all u € U = (u, hw)g = (h u,w)g =0 forallu € U O

By repeatedly applying this Proposition, we conclude that:
Corollary. If (V, p) is a finite-dimensional complex rep of a finite group G, then:
V=U,® --0U,
is a direct sum of irreducible invariant subspace representations.
We may couple this with:
Proposition 3. Each irreducible complex rep of an abelian group G is a character.
Proof. Let p: G — Aut(C™). We show that the commuting matrices:
p(g) = A, for g € G

all share a common eigenvector. The line spanned by one such eigenvector is then an
invariant subspace for the representation p (and a character of the abelian group).

Select g € G and let v € C™ be an eigenvector of A, with eigenvalue A € C.
Select another h € G. Then because Ay and Aj, commute, we have:

Ag(Ah'U) = Ah(AgU) = Ah(>\ . U) = )\Ah(v)
so Apv is another eigenvector for A, with eigenvalue A. View:
Ap 0V — V) as a symmetry of the A-eigenspace of A4,

Then Aj has an eigenvector in V), with eigenvalue p which is a shared eigenvector.
Continue this process to conclude that any finite number of commuting matrices
share an eigenvector. This also applies to an infinite number of commuting matrices
acting on a finite-dimensional vector space, reasoning by induction on the dimension
of the shared eigenspaces. O

Example. Consider the “cycle” representation of C,, on C" given by:

p(g)(ei) = eiy1 for i <n and p(g)(en) = €1



Then:

00 0 1
10 0 0
A,=|01 0 0
00 -~ 10

has a basis vy, ..., v, of eigenvectors (hence invariant lines for C,,) given by:
U = €1 +wey + wMes + - + WV Me, (with eigenvalue w’)
and, in particular, v, = e; + - -- + e,,. Notice that each of the invariant lines:
({vm), p) is the character x,,(g) = w;'
so that this representation is the direct sum of all the complex characters of C,.
We combine the Propositions to get the following:

Corollary. Every finite dimensional complex representation of a finite abelian
group is a direct sum of characters.

Remark. The subtle two-dimensional representation of (Z,4) above shows that
finiteness of the abelian group is essential to the Corollary (and to Proposition 2),
though Proposition 3 holds also for infinite abelian groups.

Corollary. If A € Aut(C") and A? = I,,, then A is semi-simple.

Proof. Since A semi-simple means that C™ has a basis consisting of eigenvectors
of A, this is just a rewording of the previous Corollary for the representation of the
cyclic group Cy given by p(g) = A.

Corollary. If (C", p) is a representation of a finite group G, then each
p(g) = Ay is semi-simple
Proof. Each of these matrices has order d for some d. g
The Two-Dimensional Dihedral Representations. Let D, be the dihedral
group, generated by two elements g; and g» with relations:
gi =195 =1and (g192)" = 1
One representation of Dy, is given by:
| cos(2m/n) sin(2m/n) |1 0
plor) = [ sin(2w/n) —cos(2w/n) and p(g2) = 0 -1
with
_ | cos(2m/n) —sin(27/n)
Plorg2) = [ sin(2r/n)  cos(2r/n)
Viewed as a real representation, these are the symmetries of a regular n-gon centered
at the origin (with a vertex on the z-axis), generated by the reflection across the -
axis and the reflection across the line y = tan(xw/n)z. But using the same matrices,
we may view this as a compler two-dimensional representation of Do, .

Even as a two-dimensional complex representation, this is irreducible since any
invariant line would be spanned by a common eigenvector for p(g;) and p(g2),
and by virtue of being reflections across different lines of symmetry, they share no
common complex eigenvectors.



Final Example. We’'ve now seen two irreducible two-dim’l representations of Ss:

p(gl){_(l) ” andp(gz)“ _(1)]

T(gl)=l 2 ]andﬁgz):[é 2

viewing S3 as the dihedral group Dg of symmetries of the equilateral triangle.

and:

‘aw\r—'
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I claim that these are the isomorphic representation of S3, with the different
matrix representations an artifact of the choice of different bases for C2. In other
words, we seek a single “change of basis” matrix B such that:

a[-1 17, | -1
b { o 1P 4 %
2 2

and
1|1 0 |1 0
B [1 —I}B{O -1

It is easiest to work with the second equation, and to recall that because the
change of basis B converts to a diagonal matrix, then:

1 0 1 0
B = [v1 va] where { 1 _1]1)1—1)1 and [ 1 _1}112——1)2
i.e. v1 and vy are eigenvectors with +1 and —1 eigenvalues. A bit of fiddling gives:

7]1:)\1|:§:| and’l}2:>\2|:(1):| fOI')\l,)\QE(C*

and then plugging in for B we find that setting Ao /\; = v/3 gives

G117, | -1
B { 0 B=| 2 >
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