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Solvability by Radicals

A Brief History. We’ve known the formula for the roots of an arbitrary quadratic
polynomial since ancient times. A cubic formula emerged in the beginning of the
modern era, followed by a quartic formula a few hundred years later. In these cases,
the roots of an arbitrary polynomial are obtained by a series of square and cube
roots (and arithmetic operations). The triumph of Galois Theory is to relate the
existence of such a formula to the solvability of the Galois group of the polyomial.
Thus, the solvability of the groups of S2, S3 and S4 “explain” the general formulas,
but only the quintic polynomials with solvable Galois groups may be solved in this
way, so in particular there is no general formula for the roots of a general quintic
(or higher degree) polynomial.

Discriminants. Let α1, ..., αd ∈ Q be the roots of

f(x) = xd + cd−1x
d−1 + · · ·+ c0 ∈ Q[x]

with splitting field F = Q(α1, ...., αd)/Q.

Adapting the example from the previous section, we find that the determinant
of the Vandermonde matrix (in the roots αi) is:∏

i<j

(αj − αi) ∈ F which is a square root of ∆ = (−1)(
d
2 )

d∏
i=1

f ′(αi)

where ∆ is the discriminant of the polynomial f(x).

Examples. (a) For a (monic) quadratic polynomial f(x) = x2 + bx+ c, we have:

∆ = −(2α1 + b)(2α2 + b) = −4(α1α2)− 2(α1 + α2)b− b2 = b2 − 4c

(b) After a substitution y = x+ b, a monic cubic polynomial in x becomes:

f(x) = y3 + py + q

which has the additional pleasant property that the roots (in the y variable) satisfy:

α1 + α2 + α3 = 0 in addition to α1α2 + α2α3 + α3α1 = p and − α1α2α3 = q

From this (and a few suppressed calculations), we get

∆ = −(3α2
1 + p)(3α2

2 + p)(3α2
3 + p) = −27q2 − 4p3

Note that these are polynomial functions of the coefficients of f(x).

Proposition 1. Let f(x) ∈ Q[x] be a (monic) polynomial. Then:

(a) The discriminant ∆ of f(x) is a rational number.

(b) Either ∆ = 0 and there is a repeated root (and f(x) is reducible), or else:

the sign of ∆ is the number of conjugate pairs of complex roots of f(x)

Proof. Let deg(f(x)) = d. The discriminant ∆ = ∆(α1, ...., αd) is a symmetric
function of the roots of f(x). In other words, if g ∈ Sd, then:

∆(α1, ...., αd) = ∆(αg(1), ...., αg(d))

(the sign of a square root of ∆ is flipped by transpositions so it is not symmetric)
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The coefficients of f(x) are also symmetric functions of the roots. Since

f(x) = xd + ad−1x
d−1 + · · ·+ a0 =

d∏
i=1

(x− αi)

we see that f(x) is symmetric in the αi so all its (rational) coefficients are symmetric.
Explicitly, these coefficients are:

ad−1 = (−1)
∑

αi, ad−2 =
∑
i<j

αiαj , . . . , a0 = (−1)dα1α2 · · ·αd

and then (a) follows from the:

First Theorem of Invariant Theory. Any symmetric polynomial in x1, ...., xn

(with integer coefficients) is a polynomial function (also with integer coefficients)
of the “elementary symmetric polynomials”

σ1 =
∑
i

xi, σ2 =
∑
i<j

xixj , ..., σd = x1 · · ·xd

(we’ll investigate this further later). Thus in particular the discriminant of f(x) is
a polynomial in the coefficients of f(x), with integer coefficients (as a bonus).

Next, the first part of (b) is obvious from:

∆ =
∏
i<j

(αi − αj)
2

If there are p pairs of conjugate complex roots αi, αi and no repeated roots, then:

∆ =

(
p∏

i=1

(αi − αi)
2

)
· δ2

where δ ∈ R∗ (so its square is positive) since it is invariant under conjugation and
each αi − αi is purely imaginary (so its square is negative). □

Thus, in particular, the roots of an irreducible f(x) = x2 + bx+ c are:

real if ∆ = b2 − 4c ≥ 0 and both complex if ∆ < 0

and similarly, the roots of an irreducible f(x) = y3 + py + q are:

all real if ∆ ≥ 0 and one real and a conjugate pair if ∆ < 0

In other words, the roots of y3+py+q are real (and there are three of them) when:

−∆ = 27q2 + 4p3 < 0

The Quadratic Formula. From ∆ = (α2 − α1)
2, we get:

αi =
(α1 + α2)± (α1 − α2)

2
=

−b±
√
∆

2
and Q(

√
∆) = F

The Cubic Formula. From f(x) = y3 + py + q, we make another substitution:

y = z − p

3z
to obtain z3f(x) = z6 + qz3 −

(p
3

)3
from which we conclude (from the quadratic formula) that:

z3 =
−q ±

√
q2 + 4(p3 )

3

2
= −

(q
2

)
±
√(q

2

)2
+
(p
3

)3
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Interestingly, the intermediate solution for z3 requires taking the square root:√(q
2

)2
+
(p
3

)3
=

√
−3∆

18

Thus, in order to find three real roots (positive ∆), one needs to pass through the
complex numbers (square root of −3∆). This is an essential use of the complex
numbers that is often credited as their “discovery” inherent in this cubic formula.
Notice also that if we replace Q with Q(ω3), then a subsequent extension by the
square root of ∆ or of −3∆ is the same, since

√
−3 ∈ Q(ω3).

Inspired by this formula, we make the following:

Definition. A separable polynomial f(x) ∈ K[x] is solvable by radicals if all of its
roots are contained in a field E obtained as a series of “radical” extensions:

K = E0 ⊂ E1 ⊂ · · · ⊂ Er = E where

Ei+1 = Ei(βi) and βpi

i = bi ∈ Ei for some primes pi.

Examples. Each polynomial f(x) = x2+ bx+ c ∈ Q[x] is solvable by radicals, with:

Q ⊂ Q(
√
∆) = E1

The formula for the roots of y3 + py + q ∈ Q[x] places a root in:

Q ⊂ E1 = Q(
√
−3∆) ⊂ E = E1(z)

where z3 = − q
2 +

√
−3∆
18 . But if we pre-load the cube roots of 1, then:

Q ⊂ F0 = Q(ω3) = Q(
√
−3) ⊂ F1 = F0(

√
∆) ⊂ F1(z)

contains all of the roots (and so it contains a splitting field for f(x)). Hence every
polynomial of degree 3 is solvable by radicals.

The Big Theorem of Galois. Let K be a field of characteristic zero.

(a) If f(x) ∈ K[x] is solvable by radicals, its Galois group G is solvable.

(b) Conversely, if G is a solvable group, then f(x) is solvable by radicals.

The idea is to relate splitting fields with cyclic Galois groups Cp of prime order
to radical extensions. For this, we’ll use the uniquely named Hilbert Theorem 90.

Definition. Let F/K be a separable splitting field with Galois group G. Then:

Nm(α) :=
∏
g∈G

gα ∈ K (since it is invariant under G)

and it satisfies Nm(α1α2) = Nm(α1)Nm(α2), so Nm : F ∗ → K∗ is a character.

Notice that for each β ∈ F and g ∈ G, we have: Nm(β) = Nm(gβ) so that:

Nm(β · (gβ)−1) = 1

Theorem 90 is the converse to this in the case when G is cyclic.

Hilbert’s Theorem 90. If G = Cn in the setting of the definition, generated by
g ∈ G, then each element α ∈ F of norm 1 may be written as:

α = β · (gβ)−1 for some β ∈ F

Proof. For α ∈ F of norm 1, define a sequence of partial norms:

α1 = α, α2 = α · gα, α3 = α · gα · g2α, . . . , αn = Nm(α) = 1
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These obey the recursion:
αi+1 = α · gαi

and by the independence of the characters {1, g, ..., gn−1} : F ∗ → F ∗, we have:

α1 · 1 + α2 · g + · · ·+ αn · gn−1 ̸= 0 as a function from F to F

so that there is a γ ∈ F for which:

β :=

n∑
i=1

αi · gi−1(γ) ̸= 0.

Then:

α · gβ = α ·
n∑

i=1

gαi · gi(γ) =
n−1∑
i=1

αi+1 · gi(γ) + α · γ = α · γ +

n∑
i=2

αi · gi−1(γ) = β

and α = β · (gβ)−1, as desired. □

Example. Complex conjugation generates Gal(Q(i)/Q) and:

Nm(x+ iy) = (x+ iy)(x− iy) = x2 + y2

so by the Theorem, a2 + b2 = 1 for a+ bi ∈ Q(i) if and only if:

a+ ib =
c+ id

c− id
=

c2 − d2

c2 + d2
+ i

2cd

c2 + d2

for some c+ di ∈ Q(i). This is a generation formula for Pythagorean triples!

Let K be a field of characteristic zero containing a primitive pth root ωp of 1.

Corollary. Each splitting field F/K with [F : K] = p is the splitting field of:

xp − b ∈ K[x] for some b ∈ K

Proof. The Galois group of F/K has prime order p, so it is cyclic.

Let α = ωp ∈ K and let g ∈ Cp generate the Galois group. Then

Nm(α) = ωp · (gωp) · · · (gp−1ωp) = ωp
p = 1 since ωp ∈ K is fixed by g

By the Theorem, we may choose β ∈ F so that α = β ·(gβ)−1. Then in particular
β ̸∈ K (since β is not fixed by g), and:

1 = αp = (β · (gβ)−1)p = (βp) · (gβ)−p = (βp) · (gβp)−1

so βp = gβp is invariant under the Galois group, and βp = b ∈ K. Thus F = K(β)
is a splitting field of xp − b with roots β · ωk

p . □

We may now prove Galois’ Theorem (Part (b)).

Suppose K has characteristic zero and F is a splitting field of f(x) ∈ K[x] with
solvable Galois group G = Gal(F/K). Then there is a chain:

1 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gr = G

of normal subgroups (Gi in Gi+1) with prime cyclic quotient groups Gi+1/Gi = Cpi

and there is a corresponding chain of fixed fields:

K = FG ⊂ FGr−1 ⊂ · · · ⊂ FG1 ⊂ F 1 = F

For each i, consider the inclusions:

FGi+1 ⊂ FGi ⊂ F with Gal(F/FGi) = Gi
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Then:
1 → Gi → Gi+1 → Gal(FGi/FGi+1) → 1

so FGi/FGi+1 is a splitting field and an extension of degree pi. If K contains ωpi
,

then by the Corollary above, FGi is obtained from FGi+1 by adjoining a root βi.
Otherwise, we replace K with:

K(ωn) where n is the product of (one of each) prime pi

and we replace the fields FGi above with Ei = FGi(ωn).
Then the extensions Ei/Ei+1 are still splitting fields, of degree pi (or 1), and:

K(ωn) = Er ⊂ Er−1 ⊂ · · · ⊂ E0 = F (ωn)

shows that f(x) is solvable by radicals as a polynomial in K(ωn)[x]. To finish the
proof, it suffices to show that if ωn ̸∈ K, then the splitting field K(ωn)/K can
be solved by radicals. But this is a splitting field with abelian Galois group, and
solvability by radicals follows by induction on the largest prime factor of n.

To see Part (a) of Galois’ Theorem, suppose f(x) ∈ K[x] is solvable by radicals,
i.e. the splitting field F/K is contained in a field E obtained by extensions:

K = E0 ⊂ E1 = E0(β1) ⊂ · · · ⊂ E = Er = Er−1(βr−1) with βpi

i = bi ∈ Ei

as in the definition. If ωn ∈ K and E/K is a splitting field then each:

Ei ⊂ Ei+1 ⊂ E

is an intermediate splitting field, so Gi+1 = Gal(E/Ei+1) ⊂ Gi = Gal(E/Ei) is
a normal subgroup with quotient Cpi , and the Galois group of E/K is solvable.
Then from the intermediate splitting field K ⊂ F ⊂ E we obtain a surjective map
Gal(E/K) → Gal(F/K) and it follows that Gal(F/K) is also solvable.

If ωn ̸∈ K, then we may pre-load it via:

K ⊂ K(ωn) ⊂ E1(ωn) ⊂ · · · ⊂ Er(ωn)

We’ve seen above that ωn is solvable by radicals, and the result follows, assuming
that Er(ωn)/K is a splitting field. Thus to finish, we need to deal with the fact
that E/K may not be a splitting field. To see the problem, consider the following:

Example. Let Q ⊂ Q(i) ⊂ Q(i)(
√
1 + i) = E. Then E/Q is not a splitting field.

Complex conjugation, which is an isomorphism σ : Q(i) → Q(i), does not lift to an
isomorphism τ : Q(i)(

√
1 + i) → Q(i)(

√
1 + i). Instead,

Q ⊂ Q(i) ⊂ Q(i)(
√
1 + i) ⊂ Q(i)(

√
1 + i,

√
1− i)

is a splitting field for the polynomial:

(x2 + 1)(x2 − (1 + i))(x2 − (1− i)) = (x2 + 1)(x4 − 2x2 + 2)

Inspired by this Example, given radical extensions:

K ⊂ E1 ⊂ · · · ⊂ Er = E ⊂ E(β) with βp = b ∈ E

and the property that E/K is a splitting field with Galois group H and polynomial

e(x) ∈ K[x], then f(x) =
∏
h∈H

(xp − hb) ∈ K[x] since f(x) is invariant under H

and Er ⊂ E(β) ⊂ Er+|H| = E(..., p
√
hb, ...) is a splitting field over K for e(x)f(x).

□
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Example. In the cubic formula for f(x) = y3+py+q (and ω3 ∈ K), we determined
that we could find a splitting field for f(x) inside a splitting field E/K, where:

K ⊂ K(
√
∆) ⊂ K(

√
∆)(z1, z2) = E

and

z31 = −q

2
+

√
−3∆

18
and z32 = −q

2
−

√
−3∆

18

The Galois group of K(
√
∆)/K (assuming it has degree 2) is generated by:

g(
√
∆) = −

√
∆

and so E is a splitting field for (x2 −∆)(x6 − qx3 − p3

27 ) (or, if K has no primitive

cube root of 1, for the polynomial (x2 + x+ 1)(x2 −∆)(x6 − qx3 − p3

27 )).

Postponed Issues. First, some invariant theory:

Let f(x1, ..., xn) ∈ Z[x1, ..., xn]d be a homogeneous symmetric polynomial of

degree d, i.e. f is a sum of monomials aIxI = aIx
i1
1 · · ·xin

n of degree d and:

f(x1, ..., xn) = gf := f(xg(1), ...., xg(n)) for all g ∈ Sn

Then we may impose the “lexicographic” order on these monomials, with:

x1 ≺ x2 ≺ · · · ≺ xn

and aIxI ≺ aJxJ if i1 = j1, ...., ik = jk and ik+1 < jk+1 for some 0 ≤ k < n,
so that I would come before J if they were words in a dictionary. Then f is
determined by the coefficients aI of the “initial, non-increasing” monomials xI with
n ≥ i1 ≥ i2 ≥ · · · ≥ in ≥ 0 that appear first in their Sn orbit, and the elementary
polynomials are those with the single initial monomial xI = x1 · · ·xk, so that:

σ0 = 1, σ1 =
∑
i

xi, σ2 =
1

2

∑
i ̸=j

xixj =
∑
i<j

xixj

Now suppose that xI = xi1
1 · · ·xin

n is a non-increasing monomial. Then:

xI = σin
n σ

in−1−in
n−1 · · ·σi1−i2

1 +
∑
J

aJxJ

and each monomial in the error aJ ̸= 0 satisfies xI ≺ xJ . It follows that:

f(x1, ..., xn) ∈ Z[σ1, ..., σn] is a polynomial of (weighted) degree d in σ1, ..., σn

Examples.
n∑

i=1

x2
i = σ2

1 − 2
∑
i<j

xixj = σ2
1 − 2σ2

∑
i<j

x2
ixj = σ1σ2 − 3σ3

n∑
i=1

x3
i = σ3

1−3
∑
i<j

x2
ixj−6

∑
i<j<k

xixjxk = σ3
1−3(σ1σ2−3σ3)−6σ3 = σ3

1−3σ1σ2+3σ3

These generalize to the “Newton” expansion of the power sum.

We will use this technology in our analysis of the:
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Quartic Formula. Since the Galois group of a quartic polynomial

f(x) = y4 + py2 + qy + r =

4∏
i=1

(x− αi)

is a subgroup of S4 which is solvable, Galois’ Theorem explains the existence of a
quartic formula solving f(x) with radicals (and leaving p, q, r as indeterminants).
But more is true. The Theorem tells us how to find the formula. Note that for:

1 ⊂ C2 ⊂ K4 ⊂ A4 ⊂ S4

solving S4, the only prime cyclic quotient groups Cp = Gi+1/Gi have p = 2, 3,
so our first step is to preload ω3 to replace Q with K = Q(ω3). Also note that
there are three choices for the normal subgroup C2 ⊂ K4, unlike the other normal
subgroups, which are uniquely determined and normal subgroups of S4.

The subfields may be associated to the homogeneous polynomials:

D =
∏
i<j

(αi − αj),

a = (α1 − α2)(α3 − α4), b = (α1 − α3)(α2 − α4), c = (α1 − α4)(α2 − α3)

and

u = α1 + α2 − α3 − α4, v = α1 − α2 + α3 − α4, w = α1 − α2 − α3 + α4

of degrees 6, 4 and 1 in the roots of f(x), respectively.

Our first subfield is familiar. Since D is invariant for the action of A4, and

∆ =

∏
i<j

(αi − αj)

2

is invariant for the action of S4, we have the intermediate field:

K ⊂ K(D) = FA4 ⊂ F where F/K is the splitting field for f(x)

and K(D) is the splitting field for x2 −∆ = x2 −D2.

Next up, notice that K4 fixes each of a, b and c, but that

γ(a) = c, γ(b) = −a, γ(c) = −b for γ = (1 2 3),

and τ(a) = −a, τ(b) = c, τ(c) = b for τ = (1 2)

and we conclude that the set {±a,±b,±c} is fixed by the action of S4, and so:

h(x) = (x2 − a2)(x2 − b2)(x2 − c2) ∈ K[x]

This gives us the expected intermediate field:

K ⊂ K(a, b, c) = FK4 ⊂ F as the splitting field for h(x)

whose degree FK4

/K indeed matches |S4/K4|, so this has Galois group S3.

Moreover, note that abc = D, so we can squeeze in the field:

K ⊂ K(D) ⊂ K(a, b, c) ⊂ F

thoughD is not the discriminant of h(x). In fact, D(h) = D(a2−b2)(a2−c2)(b2−c2)
is fixed by the full symmetric group, so it belongs to K.

On the other hand, K(D) ⊂ K(a, b, c) is a splitting field, generated by some
β ∈ K(a, b, c) with β3 ∈ K(D) by the Corollary to Hilbert Theorem 90.
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But we can do better. In K(D)[x], h(x) factors as a product:

h1(x)h2(x) = ((x− a)(x+ b)(x− c)) ((x+ a)(x− b)(x+ c))

since {a,−b, c} is permuted by the alternating group! Thus, the coefficients of:

h1(x) = (x− a)(x+ b)(x− c) = x3 + (b− a− c)x2 + (ac− ab− bc)x+ abc

are invariant. But abc = D and b− a− c = 0. This leaves an S4-invariant term

ac− ab− bc = −α2
1α

2
2 + α2

1α2α3 − 6α1α2α3α4 + non-initial terms

= −σ2
2 + 3α2

1α2α3 + non-initial terms = −σ2
2 + 3σ1σ3 − 12σ4

Keeping in mind that σ1(α) = 0, σ2(α) = p, σ3(α) = −q, σ4(α) = r, we get:

h1(x) = (x3 − (p2 + 12r)x+D) and h2(x) = (x3 − (p2 + 12r)x−D)


