Abstract Algebra. Math 6320. Bertram/Utah 2022-23. Solvability by Radicals

Abstract

A Brief History. We've known the formula for the roots of an arbitrary quadratic polynomial since ancient times. A cubic formula emerged in the beginning of the modern era, followed by a quartic formula a few hundred years later. In these cases, the roots of an arbitrary polynomial are obtained by a series of square and cube roots (and arithmetic operations). The triumph of Galois Theory is to relate the existence of such a formula to the solvability of the Galois group of the polyomial. Thus, the solvability of the groups of S_{2}, S_{3} and S_{4} "explain" the general formulas, but only the quintic polynomials with solvable Galois groups may be solved in this way, so in particular there is no general formula for the roots of a general quintic (or higher degree) polynomial.

Discriminants. Let $\alpha_{1}, \ldots, \alpha_{d} \in \overline{\mathbb{Q}}$ be the roots of

$$
f(x)=x^{d}+c_{d-1} x^{d-1}+\cdots+c_{0} \in \mathbb{Q}[x]
$$

with splitting field $F=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{d}\right) / \mathbb{Q}$.
Adapting the example from the previous section, we find that the determinant of the Vandermonde matrix (in the roots α_{i}) is:

$$
\prod_{i<j}\left(\alpha_{j}-\alpha_{i}\right) \in F \text { which is a square root of } \Delta=(-1)^{\binom{d}{2}} \prod_{i=1}^{d} f^{\prime}\left(\alpha_{i}\right)
$$

where Δ is the discriminant of the polynomial $f(x)$.
Examples. (a) For a (monic) quadratic polynomial $f(x)=x^{2}+b x+c$, we have:

$$
\Delta=-\left(2 \alpha_{1}+b\right)\left(2 \alpha_{2}+b\right)=-4\left(\alpha_{1} \alpha_{2}\right)-2\left(\alpha_{1}+\alpha_{2}\right) b-b^{2}=b^{2}-4 c
$$

(b) After a substitution $y=x+b$, a monic cubic polynomial in x becomes:

$$
f(x)=y^{3}+p y+q
$$

which has the additional pleasant property that the roots (in the y variable) satisfy: $\alpha_{1}+\alpha_{2}+\alpha_{3}=0 \quad$ in addition to $\quad \alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{1}=p$ and $-\alpha_{1} \alpha_{2} \alpha_{3}=q$

From this (and a few suppressed calculations), we get

$$
\Delta=-\left(3 \alpha_{1}^{2}+p\right)\left(3 \alpha_{2}^{2}+p\right)\left(3 \alpha_{3}^{2}+p\right)=-27 q^{2}-4 p^{3}
$$

Note that these are polynomial functions of the coefficients of $f(x)$.
Proposition 1. Let $f(x) \in \mathbb{Q}[x]$ be a (monic) polynomial. Then:
(a) The discriminant Δ of $f(x)$ is a rational number.
(b) Either $\Delta=0$ and there is a repeated root (and $f(x)$ is reducible), or else:
the sign of Δ is the number of conjugate pairs of complex roots of $f(x)$
Proof. Let $\operatorname{deg}(f(x))=d$. The discriminant $\Delta=\Delta\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ is a symmetric function of the roots of $f(x)$. In other words, if $g \in S_{d}$, then:

$$
\Delta\left(\alpha_{1}, \ldots, \alpha_{d}\right)=\Delta\left(\alpha_{g(1)}, \ldots, \alpha_{g(d)}\right)
$$

(the sign of a square root of Δ is flipped by transpositions so it is not symmetric)

The coefficients of $f(x)$ are also symmetric functions of the roots. Since

$$
f(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}=\prod_{i=1}^{d}\left(x-\alpha_{i}\right)
$$

we see that $f(x)$ is symmetric in the α_{i} so all its (rational) coefficients are symmetric. Explicitly, these coefficients are:

$$
a_{d-1}=(-1) \sum \alpha_{i}, a_{d-2}=\sum_{i<j} \alpha_{i} \alpha_{j}, \ldots, a_{0}=(-1)^{d} \alpha_{1} \alpha_{2} \cdots \alpha_{d}
$$

and then (a) follows from the:
First Theorem of Invariant Theory. Any symmetric polynomial in x_{1}, \ldots, x_{n} (with integer coefficients) is a polynomial function (also with integer coefficients) of the "elementary symmetric polynomials"

$$
\sigma_{1}=\sum_{i} x_{i}, \sigma_{2}=\sum_{i<j} x_{i} x_{j}, \ldots, \sigma_{d}=x_{1} \cdots x_{d}
$$

(we'll investigate this further later). Thus in particular the discriminant of $f(x)$ is a polynomial in the coefficients of $f(x)$, with integer coefficients (as a bonus).

Next, the first part of (b) is obvious from:

$$
\Delta=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

If there are p pairs of conjugate complex roots $\alpha_{i}, \bar{\alpha}_{i}$ and no repeated roots, then:

$$
\Delta=\left(\prod_{i=1}^{p}\left(\alpha_{i}-\bar{\alpha}_{i}\right)^{2}\right) \cdot \delta^{2}
$$

where $\delta \in \mathbb{R}^{*}$ (so its square is positive) since it is invariant under conjugation and each $\alpha_{i}-\bar{\alpha}_{i}$ is purely imaginary (so its square is negative).

Thus, in particular, the roots of an irreducible $f(x)=x^{2}+b x+c$ are:

$$
\text { real if } \Delta=b^{2}-4 c \geq 0 \text { and both complex if } \Delta<0
$$

and similarly, the roots of an irreducible $f(x)=y^{3}+p y+q$ are:
all real if $\Delta \geq 0$ and one real and a conjugate pair if $\Delta<0$
In other words, the roots of $y^{3}+p y+q$ are real (and there are three of them) when:

$$
-\Delta=27 q^{2}+4 p^{3}<0
$$

The Quadratic Formula. From $\Delta=\left(\alpha_{2}-\alpha_{1}\right)^{2}$, we get:

$$
\alpha_{i}=\frac{\left(\alpha_{1}+\alpha_{2}\right) \pm\left(\alpha_{1}-\alpha_{2}\right)}{2}=\frac{-b \pm \sqrt{\Delta}}{2} \text { and } \mathbb{Q}(\sqrt{\Delta})=F
$$

The Cubic Formula. From $f(x)=y^{3}+p y+q$, we make another substitution:

$$
y=z-\frac{p}{3 z} \text { to obtain } z^{3} f(x)=z^{6}+q z^{3}-\left(\frac{p}{3}\right)^{3}
$$

from which we conclude (from the quadratic formula) that:

$$
z^{3}=\frac{-q \pm \sqrt{q^{2}+4\left(\frac{p}{3}\right)^{3}}}{2}=-\left(\frac{q}{2}\right) \pm \sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}
$$

Interestingly, the intermediate solution for z^{3} requires taking the square root:

$$
\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}=\frac{\sqrt{-3 \Delta}}{18}
$$

Thus, in order to find three real roots (positive Δ), one needs to pass through the complex numbers (square root of -3Δ). This is an essential use of the complex numbers that is often credited as their "discovery" inherent in this cubic formula. Notice also that if we replace \mathbb{Q} with $\mathbb{Q}\left(\omega_{3}\right)$, then a subsequent extension by the square root of Δ or of -3Δ is the same, since $\sqrt{-3} \in \mathbb{Q}\left(\omega_{3}\right)$.

Inspired by this formula, we make the following:
Definition. A separable polynomial $f(x) \in K[x]$ is solvable by radicals if all of its roots are contained in a field E obtained as a series of "radical" extensions:

$$
K=E_{0} \subset E_{1} \subset \cdots \subset E_{r}=E \text { where }
$$

$E_{i+1}=E_{i}\left(\beta_{i}\right)$ and $\beta_{i}^{p_{i}}=b_{i} \in E_{i}$ for some primes p_{i}.
Examples. Each polynomial $f(x)=x^{2}+b x+c \in \mathbb{Q}[x]$ is solvable by radicals, with:

$$
\mathbb{Q} \subset \mathbb{Q}(\sqrt{\Delta})=E_{1}
$$

The formula for the roots of $y^{3}+p y+q \in \mathbb{Q}[x]$ places a root in:

$$
\mathbb{Q} \subset E_{1}=\mathbb{Q}(\sqrt{-3 \Delta}) \subset E=E_{1}(z)
$$

where $z^{3}=-\frac{q}{2}+\frac{\sqrt{-3 \Delta}}{18}$. But if we pre-load the cube roots of 1 , then:

$$
\mathbb{Q} \subset F_{0}=\mathbb{Q}\left(\omega_{3}\right)=\mathbb{Q}(\sqrt{-3}) \subset F_{1}=F_{0}(\sqrt{\Delta}) \subset F_{1}(z)
$$

contains all of the roots (and so it contains a splitting field for $f(x)$). Hence every polynomial of degree 3 is solvable by radicals.
The Big Theorem of Galois. Let K be a field of characteristic zero.
(a) If $f(x) \in K[x]$ is solvable by radicals, its Galois group G is solvable.
(b) Conversely, if G is a solvable group, then $f(x)$ is solvable by radicals.

The idea is to relate splitting fields with cyclic Galois groups C_{p} of prime order to radical extensions. For this, we'll use the uniquely named Hilbert Theorem 90.

Definition. Let F / K be a separable splitting field with Galois group G. Then:

$$
\operatorname{Nm}(\alpha):=\prod_{g \in G} g \alpha \in K \text { (since it is invariant under } G \text {) }
$$

and it satisfies $\operatorname{Nm}\left(\alpha_{1} \alpha_{2}\right)=\operatorname{Nm}\left(\alpha_{1}\right) \mathrm{Nm}\left(\alpha_{2}\right)$, so $\mathrm{Nm}: F^{*} \rightarrow K^{*}$ is a character.
Notice that for each $\beta \in F$ and $g \in G$, we have: $\operatorname{Nm}(\beta)=\operatorname{Nm}(g \beta)$ so that:

$$
\operatorname{Nm}\left(\beta \cdot(g \beta)^{-1}\right)=1
$$

Theorem 90 is the converse to this in the case when G is cyclic.
Hilbert's Theorem 90. If $G=C_{n}$ in the setting of the definition, generated by $g \in G$, then each element $\alpha \in F$ of norm 1 may be written as:

$$
\alpha=\beta \cdot(g \beta)^{-1} \text { for some } \beta \in F
$$

Proof. For $\alpha \in F$ of norm 1, define a sequence of partial norms:

$$
\alpha_{1}=\alpha, \alpha_{2}=\alpha \cdot g \alpha, \alpha_{3}=\alpha \cdot g \alpha \cdot g^{2} \alpha, \ldots, \alpha_{n}=\operatorname{Nm}(\alpha)=1
$$

These obey the recursion:

$$
\alpha_{i+1}=\alpha \cdot g \alpha_{i}
$$

and by the independence of the characters $\left\{1, g, \ldots, g^{n-1}\right\}: F^{*} \rightarrow F^{*}$, we have:

$$
\alpha_{1} \cdot 1+\alpha_{2} \cdot g+\cdots+\alpha_{n} \cdot g^{n-1} \neq 0 \text { as a function from } F \text { to } F
$$

so that there is a $\gamma \in F$ for which:

$$
\beta:=\sum_{i=1}^{n} \alpha_{i} \cdot g^{i-1}(\gamma) \neq 0
$$

Then:

$$
\alpha \cdot g \beta=\alpha \cdot \sum_{i=1}^{n} g \alpha_{i} \cdot g^{i}(\gamma)=\sum_{i=1}^{n-1} \alpha_{i+1} \cdot g^{i}(\gamma)+\alpha \cdot \gamma=\alpha \cdot \gamma+\sum_{i=2}^{n} \alpha_{i} \cdot g^{i-1}(\gamma)=\beta
$$

and $\alpha=\beta \cdot(g \beta)^{-1}$, as desired.
Example. Complex conjugation generates $\operatorname{Gal}(\mathbb{Q}(i) / \mathbb{Q})$ and:

$$
\operatorname{Nm}(x+i y)=(x+i y)(x-i y)=x^{2}+y^{2}
$$

so by the Theorem, $a^{2}+b^{2}=1$ for $a+b i \in \mathbb{Q}(i)$ if and only if:

$$
a+i b=\frac{c+i d}{c-i d}=\frac{c^{2}-d^{2}}{c^{2}+d^{2}}+i \frac{2 c d}{c^{2}+d^{2}}
$$

for some $c+d i \in \mathbb{Q}(i)$. This is a generation formula for Pythagorean triples!
Let K be a field of characteristic zero containing a primitive p th root ω_{p} of 1 .
Corollary. Each splitting field F / K with $[F: K]=p$ is the splitting field of:

$$
x^{p}-b \in K[x] \text { for some } b \in K
$$

Proof. The Galois group of F / K has prime order p, so it is cyclic.
Let $\alpha=\omega_{p} \in K$ and let $g \in C_{p}$ generate the Galois group. Then
$\operatorname{Nm}(\alpha)=\omega_{p} \cdot\left(g \omega_{p}\right) \cdots\left(g^{p-1} \omega_{p}\right)=\omega_{p}^{p}=1$ since $\omega_{p} \in K$ is fixed by g
By the Theorem, we may choose $\beta \in F$ so that $\alpha=\beta \cdot(g \beta)^{-1}$. Then in particular $\beta \notin K$ (since β is not fixed by g), and:

$$
1=\alpha^{p}=\left(\beta \cdot(g \beta)^{-1}\right)^{p}=\left(\beta^{p}\right) \cdot(g \beta)^{-p}=\left(\beta^{p}\right) \cdot\left(g \beta^{p}\right)^{-1}
$$

so $\beta^{p}=g \beta^{p}$ is invariant under the Galois group, and $\beta^{p}=b \in K$. Thus $F=K(\beta)$ is a splitting field of $x^{p}-b$ with roots $\beta \cdot \omega_{p}^{k}$.

We may now prove Galois' Theorem (Part (b)).
Suppose K has characteristic zero and F is a splitting field of $f(x) \in K[x]$ with solvable Galois group $G=\operatorname{Gal}(F / K)$. Then there is a chain:

$$
1 \subset G_{1} \subset G_{2} \subset \cdots \subset G_{r}=G
$$

of normal subgroups (G_{i} in G_{i+1}) with prime cyclic quotient groups $G_{i+1} / G_{i}=C_{p_{i}}$ and there is a corresponding chain of fixed fields:

$$
K=F^{G} \subset F^{G_{r-1}} \subset \cdots \subset F^{G_{1}} \subset F^{1}=F
$$

For each i, consider the inclusions:

$$
F^{G_{i+1}} \subset F^{G_{i}} \subset F \text { with } \operatorname{Gal}\left(F / F^{G_{i}}\right)=G_{i}
$$

Then:

$$
1 \rightarrow G_{i} \rightarrow G_{i+1} \rightarrow \operatorname{Gal}\left(F^{G_{i}} / F^{G_{i+1}}\right) \rightarrow 1
$$

so $F^{G_{i}} / F^{G_{i+1}}$ is a splitting field and an extension of degree p_{i}. If K contains $\omega_{p_{i}}$, then by the Corollary above, $F^{G_{i}}$ is obtained from $F^{G_{i+1}}$ by adjoining a root β_{i}. Otherwise, we replace K with:

$$
K\left(\omega_{n}\right) \text { where } n \text { is the product of (one of each) prime } p_{i}
$$

and we replace the fields $F^{G_{i}}$ above with $E_{i}=F^{G_{i}}\left(\omega_{n}\right)$.
Then the extensions E_{i} / E_{i+1} are still splitting fields, of degree p_{i} (or 1), and:

$$
K\left(\omega_{n}\right)=E_{r} \subset E_{r-1} \subset \cdots \subset E_{0}=F\left(\omega_{n}\right)
$$

shows that $f(x)$ is solvable by radicals as a polynomial in $K\left(\omega_{n}\right)[x]$. To finish the proof, it suffices to show that if $\omega_{n} \notin K$, then the splitting field $K\left(\omega_{n}\right) / K$ can be solved by radicals. But this is a splitting field with abelian Galois group, and solvability by radicals follows by induction on the largest prime factor of n.

To see Part (a) of Galois' Theorem, suppose $f(x) \in K[x]$ is solvable by radicals, i.e. the splitting field F / K is contained in a field E obtained by extensions:

$$
K=E_{0} \subset E_{1}=E_{0}\left(\beta_{1}\right) \subset \cdots \subset E=E_{r}=E_{r-1}\left(\beta_{r-1}\right) \text { with } \beta_{i}^{p_{i}}=b_{i} \in E_{i}
$$

as in the definition. If $\omega_{n} \in K$ and E / K is a splitting field then each:

$$
E_{i} \subset E_{i+1} \subset E
$$

is an intermediate splitting field, so $G_{i+1}=\operatorname{Gal}\left(E / E_{i+1}\right) \subset G_{i}=\operatorname{Gal}\left(E / E_{i}\right)$ is a normal subgroup with quotient $C_{p_{i}}$, and the Galois group of E / K is solvable. Then from the intermediate splitting field $K \subset F \subset E$ we obtain a surjective map $\operatorname{Gal}(E / K) \rightarrow \operatorname{Gal}(F / K)$ and it follows that $\operatorname{Gal}(F / K)$ is also solvable.

If $\omega_{n} \notin K$, then we may pre-load it via:

$$
K \subset K\left(\omega_{n}\right) \subset E_{1}\left(\omega_{n}\right) \subset \cdots \subset E_{r}\left(\omega_{n}\right)
$$

We've seen above that ω_{n} is solvable by radicals, and the result follows, assuming that $E_{r}\left(\omega_{n}\right) / K$ is a splitting field. Thus to finish, we need to deal with the fact that E / K may not be a splitting field. To see the problem, consider the following:
Example. Let $\mathbb{Q} \subset \mathbb{Q}(i) \subset \mathbb{Q}(i)(\sqrt{1+i})=E$. Then E / \mathbb{Q} is not a splitting field. Complex conjugation, which is an isomorphism $\sigma: \mathbb{Q}(i) \rightarrow \mathbb{Q}(i)$, does not lift to an isomorphism $\tau: \mathbb{Q}(i)(\sqrt{1+i}) \rightarrow \mathbb{Q}(i)(\sqrt{1+i})$. Instead,

$$
\mathbb{Q} \subset \mathbb{Q}(i) \subset \mathbb{Q}(i)(\sqrt{1+i}) \subset \mathbb{Q}(i)(\sqrt{1+i}, \sqrt{1-i})
$$

is a splitting field for the polynomial:

$$
\left(x^{2}+1\right)\left(x^{2}-(1+i)\right)\left(x^{2}-(1-i)\right)=\left(x^{2}+1\right)\left(x^{4}-2 x^{2}+2\right)
$$

Inspired by this Example, given radical extensions:

$$
K \subset E_{1} \subset \cdots \subset E_{r}=E \subset E(\beta) \text { with } \beta^{p}=b \in E
$$

and the property that E / K is a splitting field with Galois group H and polynomial

$$
e(x) \in K[x], \text { then } f(x)=\prod_{h \in H}\left(x^{p}-h b\right) \in K[x] \text { since } f(x) \text { is invariant under } H
$$

and $E_{r} \subset E(\beta) \subset E_{r+|H|}=E(\ldots, \sqrt[p]{h b}, \ldots)$ is a splitting field over K for $e(x) f(x)$.

Example. In the cubic formula for $f(x)=y^{3}+p y+q$ (and $\omega_{3} \in K$), we determined that we could find a splitting field for $f(x)$ inside a splitting field E / K, where:

$$
K \subset K(\sqrt{\Delta}) \subset K(\sqrt{\Delta})\left(z_{1}, z_{2}\right)=E
$$

and

$$
z_{1}^{3}=-\frac{q}{2}+\frac{\sqrt{-3 \Delta}}{18} \text { and } z_{2}^{3}=-\frac{q}{2}-\frac{\sqrt{-3 \Delta}}{18}
$$

The Galois group of $K(\sqrt{\Delta}) / K$ (assuming it has degree 2) is generated by:

$$
g(\sqrt{\Delta})=-\sqrt{\Delta}
$$

and so E is a splitting field for $\left(x^{2}-\Delta\right)\left(x^{6}-q x^{3}-\frac{p^{3}}{27}\right)$ (or, if K has no primitive cube root of 1 , for the polynomial $\left.\left(x^{2}+x+1\right)\left(x^{2}-\Delta\right)\left(x^{6}-q x^{3}-\frac{p^{3}}{27}\right)\right)$.
Postponed Issues. First, some invariant theory:
Let $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]_{d}$ be a homogeneous symmetric polynomial of degree d, i.e. f is a sum of monomials $a_{I} x_{I}=a_{I} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ of degree d and:

$$
f\left(x_{1}, \ldots, x_{n}\right)=g f:=f\left(x_{g(1)}, \ldots, x_{g(n)}\right) \text { for all } g \in S_{n}
$$

Then we may impose the "lexicographic" order on these monomials, with:

$$
x_{1} \prec x_{2} \prec \cdots \prec x_{n}
$$

and $a_{I} x_{I} \prec a_{J} x_{J}$ if $i_{1}=j_{1}, \ldots, i_{k}=j_{k}$ and $i_{k+1}<j_{k+1}$ for some $0 \leq k<n$, so that I would come before J if they were words in a dictionary. Then f is determined by the coefficients a_{I} of the "initial, non-increasing" monomials x_{I} with $n \geq i_{1} \geq i_{2} \geq \cdots \geq i_{n} \geq 0$ that appear first in their S_{n} orbit, and the elementary polynomials are those with the single initial monomial $x_{I}=x_{1} \cdots x_{k}$, so that:

$$
\sigma_{0}=1, \sigma_{1}=\sum_{i} x_{i}, \sigma_{2}=\frac{1}{2} \sum_{i \neq j} x_{i} x_{j}=\sum_{i<j} x_{i} x_{j}
$$

Now suppose that $x_{I}=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ is a non-increasing monomial. Then:

$$
x_{I}=\sigma_{n}^{i_{n}} \sigma_{n-1}^{i_{n-1}-i_{n}} \cdots \sigma_{1}^{i_{1}-i_{2}}+\sum_{J} a_{J} x_{J}
$$

and each monomial in the error $a_{J} \neq 0$ satisfies $x_{I} \prec x_{J}$. It follows that:

$$
f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[\sigma_{1}, \ldots, \sigma_{n}\right] \text { is a polynomial of (weighted) degree } d \text { in } \sigma_{1}, \ldots, \sigma_{n}
$$

Examples.

$$
\begin{gathered}
\sum_{i=1}^{n} x_{i}^{2}=\sigma_{1}^{2}-2 \sum_{i<j} x_{i} x_{j}=\sigma_{1}^{2}-2 \sigma_{2} \\
\sum_{i<j} x_{i}^{2} x_{j}=\sigma_{1} \sigma_{2}-3 \sigma_{3} \\
\sum_{i=1}^{n} x_{i}^{3}=\sigma_{1}^{3}-3 \sum_{i<j} x_{i}^{2} x_{j}-6 \sum_{i<j<k} x_{i} x_{j} x_{k}=\sigma_{1}^{3}-3\left(\sigma_{1} \sigma_{2}-3 \sigma_{3}\right)-6 \sigma_{3}=\sigma_{1}^{3}-3 \sigma_{1} \sigma_{2}+3 \sigma_{3}
\end{gathered}
$$

These generalize to the "Newton" expansion of the power sum.
We will use this technology in our analysis of the:

Quartic Formula. Since the Galois group of a quartic polynomial

$$
f(x)=y^{4}+p y^{2}+q y+r=\prod_{i=1}^{4}\left(x-\alpha_{i}\right)
$$

is a subgroup of S_{4} which is solvable, Galois' Theorem explains the existence of a quartic formula solving $f(x)$ with radicals (and leaving p, q, r as indeterminants). But more is true. The Theorem tells us how to find the formula. Note that for:

$$
1 \subset C_{2} \subset K_{4} \subset A_{4} \subset S_{4}
$$

solving S_{4}, the only prime cyclic quotient groups $C_{p}=G_{i+1} / G_{i}$ have $p=2,3$, so our first step is to preload ω_{3} to replace \mathbb{Q} with $K=\mathbb{Q}\left(\omega_{3}\right)$. Also note that there are three choices for the normal subgroup $C_{2} \subset K_{4}$, unlike the other normal subgroups, which are uniquely determined and normal subgroups of S_{4}.

The subfields may be associated to the homogeneous polynomials:

$$
\begin{gathered}
D=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right) \\
a=\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{3}-\alpha_{4}\right), b=\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{2}-\alpha_{4}\right), c=\left(\alpha_{1}-\alpha_{4}\right)\left(\alpha_{2}-\alpha_{3}\right) \\
\text { and } \\
u=\alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{4}, v=\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}, w=\alpha_{1}-\alpha_{2}-\alpha_{3}+\alpha_{4}
\end{gathered}
$$

of degrees 6,4 and 1 in the roots of $f(x)$, respectively.
Our first subfield is familiar. Since D is invariant for the action of A_{4}, and

$$
\Delta=\left(\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)\right)^{2}
$$

is invariant for the action of S_{4}, we have the intermediate field:

$$
K \subset K(D)=F^{A_{4}} \subset F \text { where } F / K \text { is the splitting field for } f(x)
$$

and $K(D)$ is the splitting field for $x^{2}-\Delta=x^{2}-D^{2}$.
Next up, notice that K_{4} fixes each of a, b and c, but that

$$
\begin{gathered}
\gamma(a)=c, \gamma(b)=-a, \gamma(c)=-b \text { for } \gamma=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \\
\text { and } \tau(a)=-a, \tau(b)=c, \tau(c)=b \text { for } \tau=\left(\begin{array}{ll}
1 & 2
\end{array}\right)
\end{gathered}
$$

and we conclude that the set $\{ \pm a, \pm b, \pm c\}$ is fixed by the action of S_{4}, and so:

$$
h(x)=\left(x^{2}-a^{2}\right)\left(x^{2}-b^{2}\right)\left(x^{2}-c^{2}\right) \in K[x]
$$

This gives us the expected intermediate field:

$$
K \subset K(a, b, c)=F^{K_{4}} \subset F \text { as the splitting field for } h(x)
$$

whose degree $F^{K^{4}} / K$ indeed matches $\left|S^{4} / K^{4}\right|$, so this has Galois group S_{3}.
Moreover, note that $a b c=D$, so we can squeeze in the field:

$$
K \subset K(D) \subset K(a, b, c) \subset F
$$

though D is not the discriminant of $h(x)$. In fact, $D(h)=D\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)\left(b^{2}-c^{2}\right)$ is fixed by the full symmetric group, so it belongs to K.

On the other hand, $K(D) \subset K(a, b, c)$ is a splitting field, generated by some $\beta \in K(a, b, c)$ with $\beta^{3} \in K(D)$ by the Corollary to Hilbert Theorem 90.

But we can do better. In $K(D)[x], h(x)$ factors as a product:

$$
h_{1}(x) h_{2}(x)=((x-a)(x+b)(x-c))((x+a)(x-b)(x+c))
$$

since $\{a,-b, c\}$ is permuted by the alternating group! Thus, the coefficients of:

$$
h_{1}(x)=(x-a)(x+b)(x-c)=x^{3}+(b-a-c) x^{2}+(a c-a b-b c) x+a b c
$$ are invariant. But $a b c=D$ and $b-a-c=0$. This leaves an S_{4}-invariant term

$$
\begin{aligned}
a c & -a b-b c=-\alpha_{1}^{2} \alpha_{2}^{2}+\alpha_{1}^{2} \alpha_{2} \alpha_{3}-6 \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}+\text { non-initial terms } \\
& =-\sigma_{2}^{2}+3 \alpha_{1}^{2} \alpha_{2} \alpha_{3}+\text { non-initial terms }=-\sigma_{2}^{2}+3 \sigma_{1} \sigma_{3}-12 \sigma_{4}
\end{aligned}
$$

Keeping in mind that $\sigma_{1}(\alpha)=0, \sigma_{2}(\alpha)=p, \sigma_{3}(\alpha)=-q, \sigma_{4}(\alpha)=r$, we get:

$$
h_{1}(x)=\left(x^{3}-\left(p^{2}+12 r\right) x+D\right) \text { and } h_{2}(x)=\left(x^{3}-\left(p^{2}+12 r\right) x-D\right)
$$

