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Products and Automorphisms

Let N ⊂ G be a normal subgroup, and view it as a short exact sequence:

(∗) 1 → N
i→ G

q→ G/N → 1

with inclusion map i(n) = n and quotient map q(g) = gN .

Remark. We’ll use “1” instead of “0” to reflect the fact that the operation is
multiplication, and we will only name the inclusion map when it is lends clarity.

Unlike the case with abelian groups or categories, there is a difference in this non-
abelian setting between left splittings and right splittings of a sequence (∗). Recall
that the sequence is left-split by a “backwards” (surjective) group homomorphism

ϕ : G → N such that ϕ ◦ i = idN : N → N

and it is right-split by a “backwards” (injective) group homomorphism

f : G/N → G such that q ◦ f = idG/N : G/N → G/N

Given a left splitting, the kernel K = ker(ϕ) satisfies N ∩K = {e} since:

i(n) ∈ i(N) ∩K implies n = ϕ(i(n)) = e

Thus, the map q|K : K → G/N is injective. Now suppose gN = q(g). Then:

(a) q(g · (i ◦ ϕ(g))−1) = q(g) since i(ϕ(g))−1 ∈ N , and

(b) ϕ(g · (i ◦ ϕ(g))−1) = ϕ(g) · (ϕ ◦ i)(ϕ(g))−1 = e so g · (i ◦ ϕ(g))−1) ∈ K.

Thus q|K : K → G/N is surjective, and an isomorphism. Its inverse:

f = (q|K)−1 : G/N → K is a right splitting of the sequence!

Thus a left split sequence is both left and right split, NK = G, and:

(ϕ, f ◦ q) : G = NK → N ×K is an isomorphism with inverse (n, k) 7→ nk

This is what one would expect from our work on abelian categories.

A right splitting, however, may not split the group G. Given a right splitting of
(∗), let H = im(f) ⊂ G. Then N ∩H = {e} and G = NH, as with a left splitting,
but in this case G = NH is not (in general) isomorphic to N ×H. The failure to
split will be measured by a group homomorphism.

Examples. The following sequence is right-split but not a product:

1 → C3 → S3 → C2 → 1, C2
∼= {e, (1 2)} ⊂ S3

This generalizes to the (non-abelian!) dihedral groups with right-split sequences:

1 → Cn → D2n → C2 → 1; C2
∼= {e, r} where r is a reflection

It also directly generalizes to the other symmetric groups via right-split sequences:

1 → An → Sn → C2 → 1, C2
∼= {e, τ} for any transposition τ ∈ Sn

There are, of course, short exact sequences that do not have any splittings.

Examples. (a) Recall that the short exact sequence of abelian groups:

1 → C2 → C4 → C2 → 1

does not right-split (otherwise C4 would be isomorphic to C2 × C2).
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(b) For a non-abelian example, consider the group Q8 = {±1,±i,±j,±k} with
quaternionic multiplication. Then Q8 has three normal cyclic subgroups generated
by each of i, j, k (or their negatives). But none of the resulting short exact sequences:

1 → C4 → Q8
q→ C2 → 1

is right-split since the only C2 subgroup of Q8 is {±1}, which is contained in every
C4 subgroup and therefore maps to {e} under q in every short exact sequence.

Proposition 1. Given a right-split sequence (∗) andH = f(G/N), the conjugation
group homomorphism (of elements of N by elements of H):

c : H → AutGr(N); ch(n) = hnh−1

exaplains how to multiply elements n1h1 and n2h2 in NH = G.

Proof. Recall that conjugation by h is a group homomorphism:

ch(e) = heh−1 = e and ch(n1n2) = h(n1n2)h
−1 = (hn1h

−1)(hn2h
−1) = ch(n1)ch(n2)

and overall, conjugation c is a group homomorphism from H:

ch1h2
(n) = (h1h2)n(h1h2)

−1 = h1(h2nh
−1
2 )h−1

1 = (ch1
◦ ch2

)(n)

and in particular, ch ◦ ch−1 = ce = idN so each ch is a group automorphism of N .
From this, we get hnh−1 = ch(n) and hn = ch(n) · h, and the multiplication:

(n1h1)(n2h2) = n1(h1n2)h2 = (n1ch1
(n2))(h1h2) □

Corollary. If H ⊂ G is normal for a right-split sequence (∗), then:
ch(n) = n for all h and n, i.e. G = NH = N ×H

Proof. If H ⊂ G is normal, it gives a short exact sequence:

(∗∗) 1 → H → G → G/H → 1

that is left-split by the right splitting G/N
∼→ H of (∗), so it is also right-split!

Turning this around, (∗) is left-split by the right splitting of (∗∗) and then, as
we’ve seen already, G = NH = N ×H and ch(n) = n in this split group. □

We have a converse to Proposition 1,

Proposition 2. Groups N,H and a group homomorphism ϕ : H → AutGr(N)
define a “twisted” multiplication on the Cartesian product H ×N via:

(n1h1)(n2h2) = (n1 · ϕh1
(n2))(h1h2)

This group, denoted by N ⋊ϕ H (or just N ⋊H) fits in a right-split sequence:

1 → N → N ⋊H → H → 1

for which ch(n) = ϕh(n).

Proof. One shows that the multiplication is associative (exercise). Then:

(n1e)(n2e) = (n1n2)e and (eh1)(eh2) = e(h1h2)

shows that N,H are subgroups of N⋊H, and 1 → N → N⋊H → H → 1 is a short
exact (right-split) sequence via the group homomorphism (nh) 7→ h. Moreover,
since the product (n1n2)(h1h2) = (n1ch1(n2))(h1h2) it follows that ϕh = ch for all
h ∈ H. Thus the homomorphism ϕ converts to conjugation in N ⋊H! □

In the previous section we used the Sylow Theorems to find normal subgroups.
We can also use them to classify groups of various orders.
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Application. If G has “complementary” subgroups N,H ⊂ G satisfying:

N ∩H = {e}, HN = G and N is normal

then G is a semi-direct product N⋊H for some homomorphism ϕ : H → AutGr(N).
If H = K is also normal, then ϕ = id, and G = N ×H.

Proposition 3. If |G| = pq for primes p < q and:

(i) p does not divide q − 1, then G = Cq × Cp = Cpq is cyclic.

(ii) p does divide q − 1, then G is a semi-direct product G = Cq ⋊ Cp.

Proof. By the Sylow theorems Cq = N ⊂ G (the q-Sylow subgroup) is normal
and Cp = H ⊂ G is a p-Sylow subgroup, which is normal in case (i), so G = Cq×Cp.
But it may not be normal in (ii), so we only conclude thatG is a semi-direct product.

So in case (ii), how many isomorphism classes of semi-direct products are there?
To understand this, we need to begin to understand the groups of automorphisms:

AutGr(N) of an arbitrary group N

We start with essentially the only easy case:

Proposition 4. If N = Cn is cyclic, then AutGr(N) ∼= ((Z/nZ)∗, ·).
Proof. Let g ∈ Cn be a generator. Then a group automorphism f : Cn → Cn is

entirely determined by f(g) = gk, and to be invertible, we need gcd(k, n) = 1, i.e.
we need k ∈ (Z/nZ)∗. But then the composition of f1(g) = gk1 and f2(g) = gk2 is:

f1(f2(g)) = f1(g
k2) = (gk2)k1 = gk1k2

and so composition (of automorphisms) corresponds to multiplication in (Z/nZ)∗.

Thus a semidirect product Cn ⋊H corresponds to a homomorphism:

ϕ : H → (Z/nZ)∗

Recall also that if n = p is prime, then (Z/nZ)∗ = Cp−1 is cyclic.

Definition. The dihedral group D2n is the semi-direct product:

1 → Cn → D2n → C2 → 1

given by ϕ(h) = −1, i.e. ϕh(g) = g−1 for g ∈ Cn and the non-trivial h ∈ C2.

Corollary. If |G| = 2q, then G is either the cyclic group or the dihedral group.

Proof. The q-Sylow subgroup Cq ⊂ G is unique and normal and any of the 2-
Sylow subgroups C2 ⊂ G is complementary to Cq in the sense of the application. So
G is a semi-direct product Cq ⋊C2. Since (Z/qZ)∗ = Cq−1 has only one element of
order two, it follows that the only non-trivial homomorphism ϕ : C2 → (Z/qZ)∗ is
the map ϕ(h) = q−1, i.e. ϕh(g) = gq−1 = g−1, which gives the dihedral group. □

In particular, we have now classified all groups of order:

2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 22, 23, 25, 26, 29

leaving us to deal with (among groups of order < 30):

8, 12, 16, 18, 20, 24, 27, 28

When |G| = 28, both the 7-Sylow subgroup and 2-Sylow subgroups are normal,
so G = C7 ×C4 = C28 or G = C7 ×C2 ×C2 (depending on the 2-Sylow subgroup).
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Of the rest of the orders, we know that:

|G| = 18 = 9 · 2 implies that G = N ⋊ C2 for |N | = 9

|G| = 20 = 5 · 4 implies that G = C5 ⋊H for |H| = 4

|G| = 21 = 7 · 3 implies that G = C7 ⋊ C3

We handle the case |G| = 21 first with a strengthening of Proposition 3.

Proposition 5. In the setting of Proposition 3(b), G is either:

Cq × Cp or it is isomorphic to a single semi-direct product Cq ⋊ Cp

Proof. If p divides q − 1, then the equation xp ≡ 1 (mod q) has exactly p
solutions, including the trivial solution x = 1 (by Fermat’s Little Theorem). If we
let h ∈ H = Cp and g ∈ Cq be generators, this gives p semi-direct products:

ϕr : H → (Z/qZ)∗; ϕr(h) = r for roots r of the equation xp ≡ 1 (mod q)

Since p is prime, there is a “primitive” p-th root ρ of the equation and all other
roots are of the form r = ρi for i = 1, ..., p. This translates to:

ϕρ(hi) = ρi = r = ϕr(h)

so ϕr and ϕρ are related by the “change of variables” h ↔ hi replacing one generator
h by the other generator hi (as long as i ̸= p). Since the choice of generator of H
was arbitrary, it follows that the semi-direct product groups are isomorphic.

Thus, there are exactly two groups of order 21 (and 55 and 57...).

The Case |G| = 20. H = C4 or C2 ×C2 (and N = C5), and there are five groups.

(a) Let H = C4. We mimic the argument in the proof of Proposition 5 with the
equation x4 ≡ 1 (mod 5), and define homomorphisms ϕr as above for the roots of
the equation in (Z/5Z)∗. But now only:

ϕ2(h) = 2 and ϕ3(h) = 3 = ϕ2(h3) (for a given generator h of C4)

are related by a change of variables, since h2 is not a generator of H = C4. Thus
there are three semi-direct products, giving groups:

C5 × C4 = C20, C5 ⋊ϕ2 C4 and C5 ⋊ϕ4 C4

Thus we get a cyclic group and two “mystery groups.”

(b) If H = C2 × C2 (the Klein group), generated by h1 = (h, e) and h2 = (e, h),
then this accounts for four homomorphisms ϕ (including the trivial one) with:

ϕh1
(g) = g or g−1 and ϕh2

(g) = g or g−1

but as before, some of these give isomorphic semi-direct products when the given
choice of generators for H are replaced by others. In fact, we are left with only two
semi-direct products (up to change of variables): ϕhi

(g) = g (trivial product), and
ϕh1

(g) = g, ϕh2
(g) = g−1 resulting in C5 ×H = C10 × C2 and D10 × C2 = D20.

Remark. The first mystery group from (a) isn’t all that mysterious. Letting:

g = (1 2 3 4 5) and h = (2 3 5 4) gives us hgh−1 = (1 3 5 2 4) = g2

which is enough to pin down G = C5 ⋊ϕ2 C4 as this very concrete subgroup of S5.
The second mystery group is a “dicyclic” group...a close cousin of the group Q8.
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The Case |G| = 18. Here N = C9 or C3 × C3 and H = C2.

(a) If N = C9, then G is either a product and C18 or else it is a semi-direct
product and D18 since Aut(C9) ∼= C6 has a single element of order two.

(b) If N = C3×C3, then either G is the product, or else it is a semidirect product
coming from an element of order two in Aut(C3 ×C3), and we are therefore tasked
with finding elements of order two in this group and deciding when they differ by
a change of variables. We’ll take this up in a bit.

Let’s tackle 12 and 24 “modulo semi-direct products of Sylow subgroups”

The Case |G| = 12 = 22 · 3 = 3 · 4. There are five groups here, too.

We claim that G has either a normal 2-Sylow subgroup N , and therefore is:

C4 ⋊ C3 (= C4 × C3) or (C2 × C2)⋊ C3

(A4 is in this collection) or else G has a normal 3-Sylow subgroup and is:

C3 ⋊ C4 (another dicyclic group) or C3 ⋊ (C2 × C2)

(D12 is in this collection) and we’ve already seen that G is one (or both) of these.

The Case |G| = 24 = 23 · 3 = 3 · 8.
There is a group G with |G| = 24 and no normal Sylow subgroups. Namely,

G = S4

with the three dihedral 2-Sylow subgroups and the eight 3-Sylow cyclic subgroups.
Thus in general, we cannot assume that one of the Sylow subgroups is normal, even
when G fails to be a simple group.

Automorphisms

We’ve seen that the automorphism group of a cyclic group is abelian. Namely:

Aut(Cn) ∼= (Z/nZ)∗

When n = p is prime, this is a cyclic group, but what is it when n is not prime?
Paralleling the computation of the Euler “totient” function:

ϕ(n) = |(Z/nZ)∗|
we see that if n =

∏
pi

ki is the prime factorization of n, then:

Cn =
∏

C
p
ki
i

and Aut(Cn) =
∏

Aut(C
p
ki
i

) =
∏

(Z/pki
i Z)∗

since an automorphism respects the product decomposition.

We know further that the totient function factors:

ϕ(pk) = pk−1(p− 1)

and then by a theorem of Gauss (deeper than anything we’ve done so far):

(Z/pkZ)∗ = Cϕ(pk) (for all powers of an odd prime)

When p = 2, this isn’t the case, since, for example:

(Z/8Z)∗ = C2 × C2 is the Klein group

Note that (Z/nZ)∗ is not cyclic if n has at least two odd prime factors, e.g.

(Z/55Z)∗ = (Z/5Z)∗ × (Z/11Z)∗ = C4 × C10 = C2 × C20
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In our classifications above, we’ve also encountered:

Aut(C2 × C2) and Aut(C3 × C3)

The automorphism groups of these are not even abelian groups!

Proposition 6. The automorphism groups of (Cp)
n are the general linear groups:

GL(n,Fp)

of invertible n× n matrices with entries in the field Fp = Z/pZ.
Proof. Let g generate Cp and let gi generate the ith factor of the product Cn

p .
Then a group homomorphism f : Cn

p → Cn
p is given by:

f(gi) =
∏

g
aij

j for aij ∈ Fp

and A = (aij) converts the group homomorphism to a matrix, with composition of
homomorphisms corresponding to multiplication of matrices. Thus, in particular,
the invertible matrices correspond to the automorphisms of the group Cn

p . □

Extended Examples. The six elements of Aut(C2 × C2) = GL(2,F2) are:[
1 0
0 1

]
(the identity)

[
1 1
0 1

]
,

[
1 0
1 1

]
,

[
0 1
1 0

]
(order two)[

1 1
1 0

]
,

[
0 1
1 1

]
(order three)

This group is therefore isomorphic to S3. One can use this knowledge, for example,
to show that A4 is the only semi-direct product of the form (C2 × C2) ⋊ C3 since
the two elements of order three in GL(2,F2) are conjugate.

There are 48 elements of Aut(C3×C3) = GL(2,F3) (see below). We can whittle
this group down twice by taking the kernel of the determinant map:

1 → SL(2,F3) → GL(2,F3)
det→ (F3)

∗ = GL(1,F3) → 1

and then noticing that SL(2,F3) has a center equal to ±I2, giving us:

1 → Z(SL(2,F3)) → SL(2,F3) → PSL(2,F3) → 1

where PSL(2,F3), the projective special linear group, is thought of as the matrices
of determinant one modulo ±I2. There are 12 = 48/4 elements of this group:[

1 0
0 1

]
,

[
0 1

−1 0

]
,

[
−1 1
1 1

]
,

[
1 1
1 −1

]
(all of order two: the Klein group!)

[
1 1
0 1

]
,

[
1 −1
0 1

]
,

[
1 0
1 1

]
,

[
1 0

−1 1

]
(two pair of order three elements)

[
1 1

−1 0

]
,

[
0 1

−1 −1

]
,

[
−1 1
−1 0

]
,

[
1 0
1 −1

]
(two pair of order three elements)

This is the alternating group A4.
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Proposition 7. There are:

(a) (p2 − 1)(p2 − p) = (p+ 1)p(p− 1)2 elements in the group GL(2,Fp), and

(b) (p+ 1) ·
(
p
2

)
elements in the group PSL(2,Fp) = SL(2,Fp)/± I2.

Proof. Thinking of the columns of A ∈ GL(2,Fp) as vectors in Fp × Fp, there
are p2−1 possibilities for the first column (every vector other than zero) and, given
the first column, there are p2 − p possibilities for the second column (every vector
not in the line spanned by the first vector is fair game). This gives (a). Then
SL(2,Fp) is the kernel of the determinant map to F∗

p, which gives (b). □

Note that the next two numbers are:

|PSL(2,F5)| = 60 and |PSL(2,F7)| = 168

and these groups (and all of the groups PSL(n,Fp) for p ≥ 5) are simple!

Before we leave the topic of automorphisms, consider some automorphism groups
of non-abelian groups. Here we have the conjugation homomorphism:

Definition. The inner automorphism group Inn(G) is the image of:

c : G → AutGr(G); cg(h) = ghg−1

Remark. Recall that the kernel of conjugation is the center Z(G).

Proposition 8. The inner automorphisms form a normal subgroup of Aut(G).

Proof. For f ∈ Aut(G) and inner automorphism cg ∈ Inn(G),

(f ◦ cg ◦ f−1)(h) = f(cg(f
−1(h))) = f(gf−1(h)g−1) = f(g)hf(g)−1 = cf(g)(h)

is another inner automorphism. □

Definition. The outer automorphisms are the elements of the quotient group

Out(G) := Aut(G)/Inn(G)

Of course if G is abelian, there are no inner automorphisms and therefore the
outer automorphisms carry all the information. But the situation is reversed for
symmetric groups. All the automorphisms of Sn are inner (with one exception).

Proposition 9. For the symmetric groups Sn with n ≥ 3,

(a) Z(Sn) = {e}, so Inn(Sn) = Sn, and

(b) Out(Sn) = {e} unless n = 6, in which case Out(S6) = Z/2Z.

Proof. We’ve seen that if f : [n] → [n] is a permutation, then

f ◦ (a1 a2 · · · am) ◦ f−1 = (f(a1) f(a2) · · · f(am))

From this it is clear that the center is trivial when n ≥ 3.

For (b), consider that the symmetric group is generated by transpositions, in
fact by transpositions of the form: (a1 a2), (a2 a3), · · · , (an−1 an) for distinct ai.
If ϕ ∈ Aut(Sn) takes transpositions to transpositions, then there is a pair of lists
a1, ...., an and b1, ...., bn so that ϕ(ai ai+1) = (bi bi+1) for all i. But this determines
the automorphism ϕ (since these are generators). Moreover, such an automorphism
is necessarily inner, achieved as: ϕ = cf with f(ai) = bi.
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So why should an automorphism take transpositions to transpositions? Because
an automorphism necessarily takes conjugacy classes of elements of a given order
to conjugacy classes of elements of the same order.

Among all the symmetric groups Sn for n ≥ 3, there is only one time that a
conjugacy class of elements of order two has the same size as the conjugacy class
of transpositions, namely when n = 6 and:

|(∗∗)| =
(
6

2

)
and |(∗∗)(∗∗)(∗∗)| =

(
6

2

)
·
(
4

2

)
/3!

and there is indeed an outer automorphism of C6 that exchanges them. When
composed with itself, however, this unique (non-trivial) outer automorphism reverts
to an inner automorphism.


