Abstract Algebra. Math 6320. Bertram/Utah 2022-23.
 Groups

We start this semester with groups.
Definition. A group (G, \cdot) is a set G with a multiplication operation:

$$
\cdot: G \times G \rightarrow G \text { that is }
$$

(i) Associative: $g_{1}\left(g_{2} \cdot g_{3}\right)=\left(g_{1} \cdot g_{2}\right) g_{3}$ for all $g_{1}, g_{2}, g_{3} \in G$.
(ii) Equipped with a two-sided multiplicative identity $e \in G$, i.e. for all $g \in G$:

$$
e \cdot g=g \text { (left identity) and } g \cdot e=g \text { (right identity) }
$$

(iii) Pairs each $g \in G$ with a two-sided inverse g^{-1}, i.e. $g^{-1} \cdot g=e=g \cdot g^{-1}$

Examples. Abelian groups, which are also commutative (with + as the operation)
The group S_{n} of permutations of the set $[n]=\{1, \ldots, n\}$. More generally, we will write $\operatorname{Perm}(S)$ for the automorphism group of a set S.
The group $\operatorname{GL}(n, k)$ of linear automorphisms of k^{n}. More generally, we will write $\mathrm{GL}_{k}(V)$ for the group of linear transformations of a vector space V over k.
These last two examples are instances of the:
MetaExample. $G=\operatorname{Aut}_{\mathcal{C}}(X)$ for an object X of a category \mathcal{C}.
Let's dispose of some uniqueness properties first:
Uniqueness of the Identity. If e^{\prime} is any (right) identity, then in particular,

$$
e e^{\prime}=e \text { in addition to the equality } e e^{\prime}=e^{\prime}
$$

since e is a left identity. So $e=e^{\prime}$ and there is no other right identity than the two-sided identity e. Similarly, there is no other left identity.
Uniqueness of the Inverse. Suppose that h is a (right) inverse to g. Then:

$$
g^{-1}(g h)=g^{-1} \text { in addition to the equality }\left(g^{-1} g\right) h=h
$$

so by the associative property and the fact that g^{-1} is a left inverse of g, we have $g^{-1}=h$ and there is no other right inverse. Similarly, there is no other left inverse.
Corollary. Given a group G, there is a well-defined inverse map:

$$
i: G \rightarrow G ; i(g)=g^{-1} \text { satisfying } i \circ i=1_{G}
$$

Definition. A set mapping $f: G \rightarrow G^{\prime}$ of groups is a homomorphism if:

$$
f(e)=e^{\prime} \text { and } f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right)
$$

for all $g_{1}, g_{2} \in G$. This defines a category $\mathcal{G} r$ of groups (G, \cdot) since the composition:

$$
\left(f^{\prime} \circ f\right)\left(g_{1} \cdot g_{2}\right)=f^{\prime}\left(f\left(g_{1}\right) \cdot f\left(g_{2}\right)\right)=\left(f^{\prime} \circ f\right)\left(g_{1}\right) \cdot\left(f^{\prime} \circ f\right)\left(g_{2}\right)
$$

of group homomorphisms is a group homomorphisms.
Proposition 1. A bijective group homomorphism $f: G \rightarrow G^{\prime}$ is an isomorphism.
Proof. Given a bijective homomorphism $f: G \rightarrow G^{\prime}$, we note that $f^{-1}\left(e^{\prime}\right)=e$ and given $g_{1}^{\prime}=f\left(g_{1}\right), g_{2}^{\prime}=f\left(g_{2}\right)$, then $g_{1}^{\prime} \cdot g_{2}^{\prime}=f\left(g_{1}\right) f\left(g_{2}\right)=f\left(g_{1} g_{2}\right)$, and so

$$
f^{-1}\left(g_{1}^{\prime} \cdot g_{2}^{\prime}\right)=g_{1} g_{2}=f^{-1}\left(g_{1}^{\prime}\right) f^{-1}\left(g_{2}^{\prime}\right)
$$

Examples. (a) The determinant det: $\operatorname{GL}(n, k) \rightarrow\left(k^{*}, \cdot\right)=\operatorname{GL}(1, k)$
(b) The inverse $i: G \rightarrow G$ is not a homomorphism since:

$$
i(g \cdot h)=(g \cdot h)^{-1}=h^{-1} \cdot g^{-1}=i(h) \cdot i(g)
$$

i.e. the inverse mapping reverses the product.
(c) Left multiplication by an element $g \neq e$ is not a homomorphism, since:

$$
g\left(g_{1} g_{2}\right) \neq\left(g g_{1}\right)\left(g g_{2}\right) \text { (for most } g \text { in most groups) }
$$

However, left multiplication by g, denoted by l_{g}, defines a homomorphism

$$
l: G \rightarrow \operatorname{Perm}(G) ; g \mapsto l_{g}
$$

from G to the group of permutations of G, since $l_{e}=1_{G}$ and $l_{g h}=l_{g} \circ l_{h}$. Moreover, since $l_{g}(e)=g$ recovers the left translator, the l homomorphism is injective.
(d) Similarly, right multiplication by the inverse of $g \in G$ is a homomorphism:

$$
r: G \rightarrow \operatorname{Perm}(G) ; g \mapsto r_{g^{-1}}
$$

since $r_{(g h)^{-1}}(a)=a \cdot(g h)^{-1}=\left(a h^{-1}\right) g^{-1}=r_{g^{-1}} \circ r_{h^{-1}}(a)$.
(e) Conjugation by $g \in G$ is given by:

$$
c: G \rightarrow \operatorname{Aut}_{\mathcal{G}_{r}}(G) \subset \operatorname{Perm}(G) ; c_{g}(h)=\left(l_{g} \circ r_{g^{-1}}\right)(h)=g h g^{-1}
$$

Each c_{g} is a group automorphism of G since $c_{e}=1_{G}$, and:

$$
c_{g}\left(h_{1} h_{2}\right)=g h_{1} h_{2} g^{-1}=\left(g h_{1} g^{-1}\right) \cdot\left(g h_{2} g^{-1}\right)=c_{g}\left(h_{1}\right) \cdot c_{g}\left(h_{2}\right)
$$

Definition. A subset $H \subset G$ is a subgroup if:
(i) $e \in H$, (ii) $h \in H$ implies $h^{-1} \in H$, and (iii) $h_{1}, h_{2} \in H$ imply $h_{1} \cdot h_{2} \in H$

In other words, (H, \cdot) is a group sitting inside G (with the same multiplication).
Example. The image $f(G) \subset G^{\prime}$ of a homomorphism $f: G \rightarrow G^{\prime}$ is a subgroup. Also, if $H^{\prime} \subset G^{\prime}$ is a subgroup, then the preimage $f^{-1}\left(H^{\prime}\right) \subset G$ is a subgroup.

This, together with Example (c) above give:
Cayley's Theorem. Every group G is isomorphic to a subgroup of $\operatorname{Perm}(G)$.
In fact, it is a subgroup in potentially two distinct ways, since both left and right multiplication (by the inverse) are injections of G into $\operatorname{Perm}(G)$. Note, however, that conjugation is not (usually) an injection of G into $\operatorname{Aut}_{\mathcal{G}_{r}}(G)$.

Definition. Given a subgroup $H \subset G$, the left cosets of H are:

$$
g H=\{g h \mid h \in H\}
$$

and the right cosets are defined analogously.
Proposition 2. The left cosets are equivalence classes for the equivalence relation:

$$
g_{1} \sim g_{2} \text { if and only if } g_{1} h=g_{2} \text { for some (unique) } h \in H
$$

In particular, if H is finite, then each equivalence class has the same number:

$$
|g H|=|H| \text { of elements }
$$

and if G is finite, then we have:
Lagrange's Theorem: $|G|=|H| \cdot|G / H|$ where $|G / H|$ is the number of left cosets.

Definition. The order of $g \in G$ is the smallest $d \geq 1$ so that $g^{d}=e$, or else, if there is no such d, we say that g has infinite order.
Proposition 3. If $|G|=n$, then the order of each $g \in G$ divides n.
Proof. Consider the $n+1$ elements $e, g, g^{2}, \ldots ., g^{n} \in G$. Since $|G|=n$, at least two of them must coincide. Let $d \geq 1$ be the minimal "gap" so that $g^{a}=g^{a+d}$ for some a. Then $e=g^{d}$ (multiplying by g^{-a}), and so $H=\left\{e, g, g^{2}, \ldots, g^{d-1}\right\}$ is a cyclic subgroup of G consisting of d distinct elements. Thus $d=|H|$ divides n.
Remark. As a consequence of the Proposition, $g^{n}=e$ for all $g \in G$ if $|G|=n$.
Corollary (Euler). The units in the ring $\mathbb{Z} / n \mathbb{Z}$, consisting of the elements that are relatively prime to n, form a group $(\mathbb{Z} / n \mathbb{Z})^{*}$, whose order is $\phi(n)$. Then:

$$
a^{\phi(n)} \equiv 1(\bmod n) \text { if } \operatorname{gcd}(a, n)=1
$$

by the Proposition. In particular, we have Fermat's Little Theorem:

$$
a^{p-1} \equiv 1(\bmod p)
$$

when p is prime not dividing a.
Proposition 4. The kernel $K \subset G$ of a homomorphism $f: G \rightarrow G^{\prime}$, is a subgroup with the additional property:

$$
c_{g}(K)=K \text { for all } g \in G
$$

This follows directly from the definitions. For example,
$f\left(g k g^{-1}\right)=f(g) f(k) f\left(g^{-1}\right)=f(g) e^{\prime} f\left(g^{-1}\right)=f(g) f\left(g^{-1}\right)=f\left(g g^{-1}\right)=f(e)=e^{\prime}$ so $g k g^{-1} \in K$ whenever $k \in K$ showing that $c_{g}(K) \subset K$.
Definition. A subgroup $N \subset G$ with the additional property:

$$
c_{g}(N)=N \text { for all } g \in G
$$

is called a normal subgroup of G.
Remark. All subgroups of an abelian group are normal, but we will see that there are plenty of subgroups of a general group G that are not normal.

Example. Let $H \subset \mathrm{GL}(2, k)$ be the subgroup of linear transformations that fix the x-axis. Such matrices are all of the form:

$$
\left[\begin{array}{ll}
* & * \\
0 & *
\end{array}\right]
$$

but if we conjugate these by the reflection matrix:

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

we get the matrices that fix the y-axis, which are all of the form:

$$
\left[\begin{array}{ll}
* & 0 \\
* & *
\end{array}\right]
$$

Thus H is not normal.
Definition. The center $Z(G) \subset G$ of a group G is the set:

$$
Z(G)=\left\{h \in G \mid c_{g}(h)=g h g^{-1}=h \text { for all } g \in G\right\}
$$

i.e. $Z(G)$ consists of the elements of G that commute with all elements of G.

Remarks. (i) The center of a group always contains the identity element e.
(ii) Every subgroup $H \subset Z(G)$ is a normal, abelian subgroup of G.

Example. The center of $\mathrm{GL}(n, k)$ consists of the (nonzero) scalar multiples of $e=I_{n}$.
First Isomorphism Theorem. Each normal subgroup $N \subset G$ is the kernel of a surjective group homomorphism to the quotient group of (left) cosets:

$$
q: G \rightarrow G / N=\{g N \mid g \in G\}
$$

and conversely, if $K \subset G$ is the kernel of a group homomorphism $f: G \rightarrow G^{\prime}$, then f factors through q followed by an isomorphism with the image: $\bar{f}: G / K \cong f(G)$.

Proof. The product of cosets:

$$
\left(g_{1} H\right)\left(g_{2} H\right)=\left(g_{1} g_{2}\right) H
$$

is not automatically well-defined for a general subgroup of G, since multiplication is not commutative. However, because N is a normal subgroup of G, we have:

$$
g_{2}^{-1} N g_{2}=N \text { and so } N g_{2}=g_{2} N
$$

i.e. the left cosets and right cosets are the same. But then:

$$
\left(g_{1} N\right)\left(g_{2} N\right)=\left(g_{1} N\right)\left(N g_{2}\right)=g_{1} N g_{2}=\left(g_{1} g_{2}\right) N
$$

is well-defined, and the rest of the proof is the same as we've seen in the context of commutative rings and ideals.

For the rest of this section, we introduce ourselves to:

The Permutation Groups S_{n}

Definition. A d-cycle is a permutation $f:[n] \rightarrow[n]$ with the property that:

$$
f(a), f^{2}(a), f^{3}(a), \ldots, f^{d}(a)=a
$$

are distinct, for some $a \in[n]$, and all other elements $b \in[n]$ satisfy $f(b)=b$.
The notation for the cycle is: $C=\left(a f(a) f^{2}(a) \cdots f^{d-1}(a)\right)$ which is ambiguous only in the choice of the initial element of the cycle.

Example. The two-cycles (transpositions) ($a b$) and ($b a$) are the same, as are

$$
(a b c),(b c a) \text { and }(c a b)
$$

Remarks.(i) The identity $e \in S_{n}$ is the only one-cycle.
(ii) Disjoint cycles commute with each other, but:

$$
(a b)(b c)=(a b c) \neq(a c b)=(b c)(a b)
$$

when $a \neq b \neq c$. Thus, for example, S_{n} is not abelian when $n \geq 3$.
Cycle Notation. Every permutation $f \in S_{n}$ is a product of disjoint cycles.
Proof. Start with $a_{1}=a \in[n]$ and consider the list of elements.

$$
a, f(a), f^{2}(a), \ldots \ldots, f^{n}(a)
$$

There must be a repetition in the list (since this consists of $n+1$ elements of $[n]$). Let $f^{b}(a)=f^{b+d}(a)$ with the smallest (positive) gap value d. Then:

$$
a=f^{-b} f^{b}(a)=f^{-b} f^{b+d}(a)=f^{d}(a)
$$

and each of $a, f(a), \cdots, f^{d-1}(a)$ are distinct. So this determines a cycle C_{1}.

Given cycles C_{1}, \ldots, C_{i} with initial elements a_{1}, \ldots, a_{i} associated to f, choose a_{i+1} distinct from the list of elements in the cycles, and consider the cycle:

$$
C_{i+1}=\left(a_{i+1}, f\left(a_{i+1}\right), \ldots ., f^{d_{i+1}-1}\left(a_{i+1}\right)\right)
$$

constructed as above. Then C_{i+1} is disjoint from each of the cycles C_{1}, \ldots, C_{i}. Eventually this process uses up all elements of $[n]$ and produces:

$$
C_{1} \cdot C_{2} \cdots C_{m}
$$

which accounts for every value $f(a)$ for $a \in[n]$. This represents the permutation.
Uniqueness. The disjoint cycles commute with each other and can start with any element in their list. Thus, the expression: $f=C_{1} \cdots C_{m}$ is uniquely determined by f, if we make the convention that:
(a) Each cycle C_{i} commences with the smallest element a_{i} in the list, and
(b) The cycles are ordered so that $a_{1}<a_{2}<\cdots<a_{m}$

Moreover, since one-cycles are redundant, they are left out of the notation.
Lists of Elements. $S_{2}=\left\{e,\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}, S_{3}=\left\{e,\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$

$$
S_{4}=\{e,(* *),(* * *),(* * * *),(* *)(* *)\}
$$

i.e. every element of S_{4} is either a single cycle or a product of disjoint two-cycles.

These are easily counted:
(i) $\{(* *)\}$ is comprised of $\binom{4}{2}=6$ elements.
(ii) $\{(* * *)\}$ is comprised of $\binom{4}{3} \times 2=8$ elements.
(iii) $\{(* * * *)\}$ is comprised of $\binom{4}{4} \times 3!=6$ elements.
(iv) $\{(* *)(* *)\}$ is comprised of the 3 elements $(12)(34),(13)(24)$ and (14)(23)
which, including the identity, accounts for the $1+6+8+6+3=4$! elements of S_{4}.

Lists of Subgroups.

The only (proper) subgroup of S_{2} is $\{e\}$.
The subgroups of S_{3} are $\{e\},\left\{e,\left(\begin{array}{ll}1 & 2\end{array}\right)\right\},\left\{e,\left(\begin{array}{ll}1 & 3\end{array}\right)\right\},\left\{e,\left(\begin{array}{ll}2 & 3\end{array}\right)\right\},\left\{e,\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$. Notice that all of these are cyclic (of order dividing 6).
The subgroups of S_{4} are of the following types:

- The cyclic subgroups $\left\{e, f, f^{2}, \ldots, f^{d-1}\right\}$ with $f^{d}=e$.

Typical examples are the subgroups:

$$
\{e,(12)\},\{e,(123),(132)\},\left\{e,\left(\begin{array}{lll}
1 & 2 & 4
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right),\left(\begin{array}{lll}
1 & 4 & 3
\end{array}\right)\right\},\{e,(12)(34)\}
$$

- The Klein group (isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$):

$$
K_{4}:=\{e,(12)(34),(13)(24),(14)(23)\}
$$

- The four subgroups (isomorphic to S_{3}) each fixing one element of [4]:

$$
H_{i}=\{f:[4] \rightarrow[4] \mid f(i)=i\} \text { for } i=1,2,3,4
$$

- The three dihedral subgroups (symmetries of a square) with 8 elements each.
- The group A_{4} of rotations of a regular tethahedron (with 12 elements):

$$
\{e,(* * *),(* *)(* *)\}
$$

Observation. S_{4} is the group of rotational symmetries of a cube, permuting the four long diagonals (joining pairs of opposite vertices). This group also permutes the three short diagonals (joining midpoints of opposite faces), resulting in a surjective group homomorphism:

$$
S_{4} \rightarrow S_{3} \rightarrow 1
$$

with kernel equal to the Klein group K_{4}, which is therefore a normal subgroup.
There is another way to see that the Klein group is normal:
Conjugacy Classes. Let G be a group. Then:

$$
h_{1} \sim h_{2} \text { if and only if } h_{2}=c_{g}\left(h_{1}\right)=g h_{1} g^{-1} \text { for some } g \in G
$$

defines an equivalence relation on G. The equivalence classes $\mathrm{Cl}(h)$ for this relation are the conjugacy classes of G.

Thus a subgroup $N \subset G$ is normal if and only if it is a union of conjugacy classes.
Proposition 5. The conjugacy classes of S_{n} are in bijection with the partitions
$n=d_{1}+d_{2}+\cdots+d_{k}$ (in weakly decreasing order) $d_{1} \geq d_{2} \geq \cdots \geq d_{k}$
corresponding to the permutations of the form $C_{1} \cdots C_{k}$ with $\left|C_{i}\right|=d_{i}$.
Remark. This ordering of cycles may not conform to the "unique" form.
Proof. When $C=\left(\begin{array}{lllll}a_{1} & a_{2} & a_{3} & \cdots & a_{d}\end{array}\right)$ is conjugated by $f \in S_{n}$, the result is:

$$
f \circ C \circ f^{-1}=\left(f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{d}\right)\right)
$$

since

$$
f \circ C \circ f^{-1}\left(f\left(a_{i}\right)\right)=f \circ C\left(a_{i}\right)=f\left(a_{i+1}\right)
$$

i.e. it is another cycle of the same length with entries specified by the permutation. The proposition now follows.
Examples. The conjugacy classes of S_{2} are:

$$
\mathrm{Cl}(e)=\{e\} \text { and } \mathrm{Cl}(12)=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right\}
$$

In fact, the conjugacy classes of any abelian group are the singleton sets.
There are three conjugacy classes of S_{3}, corresponding to the partitions:

$$
\left.\begin{array}{c}
3=3 \text { with }\{(* * *)\}=\mathrm{Cl}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left\{\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)
\end{array}\right\},
$$

(and recall that we've agreed to suppress the singletons from the notation), and

$$
3=1+1+1 \text { with } \mathrm{Cl}(e)=\{e\}
$$

Comparing with the list of subgroups, we see that:

$$
\left\{e,\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right\}=\mathrm{Cl}(e) \cup\{(* * *)\}
$$

is the only (nontrivial) normal subgroup of S_{3}.
Moving on to S_{4}, we see that the conjugacy classes are:

$$
\{(* * * *)\},\{(* * *)\},\{(* *)\},\{(* *)(* *)\},\{e\}
$$

corresponding, in order, to the partitions $4,3+1,2+1+1,2+2,1+1+1+1$.
Thus we get another verification that K_{4} is a normal subgroup since:

$$
K_{4}=\{e\} \cup\{(* *)(* *)\}
$$

Similarly, the alternating group A_{4} is normal since:

$$
A_{4}=\{e\} \cup\{(* *)(* *)\} \cup\{(* * *)\}
$$

and as a bonus, we see that K_{4} is a normal subgroup of A_{4}.
Proposition 6. There is a "sign" group homomorphism:

$$
\operatorname{sgn}: S_{n} \rightarrow(\{ \pm 1\}, \cdot)
$$

with the property that $\operatorname{sgn}(a b)=-1$ for all transpositions (two-cycles) (a, b).
Corollary. The sign of a d-cycle is $(-1)^{d-1}$ since

$$
\left(a_{1} a_{2} \cdots a_{d}\right)=\left(a_{1} a_{2}\right)\left(a_{2} a_{3}\right) \cdots\left(a_{d-1} a_{d}\right)
$$

Proof. We need a definition of the sign. Given $f:[n] \rightarrow[n]$, let:

$$
\operatorname{sgn}(f)=\prod_{1 \leq i<j \leq n} \frac{f(j)-f(i)}{j-i}
$$

Then:
(i) Each factor is unchanged if i and j are switched.
(ii) Applying f permutes the two-element subsets of $[n]$.

Thus by (i), the product may be unambiguously taken over the set of two-element subsets of $[n]$ (instead of pairs $i<j$), and by (ii), we have:

$$
\prod_{\{i, j\}}|j-i|=\prod_{\{f(i), f(j)\}}|f(j)-f(i)|=\prod_{\{i, j\}}|f(j)-f(i)|
$$

so $|\operatorname{sgn}(f)|=1$.
(iii) The sgn function is a group homomorphism. Given $f_{1}, f_{2}:[n] \rightarrow[n]$,

$$
\begin{aligned}
& \prod_{\{i, j\}} \frac{f_{2}\left(f_{1}(j)\right)-f_{2}\left(f_{1}(i)\right)}{j-i}=\prod_{\{i, j\}} \frac{f_{2}\left(f_{1}(j)\right)-f_{2}\left(f_{1}(i)\right)}{f_{1}(j)-f_{1}(i)} \cdot \frac{f_{1}(j)-f_{1}(i)}{j-i} \\
& \quad=\prod_{\{i, j\}} \frac{f_{2}\left(f_{1}(j)\right)-f_{2}\left(f_{1}(i)\right)}{f_{1}(j)-f_{1}(i)} \cdot \prod_{\{i, j\}} \frac{f_{1}(j)-f_{1}(i)}{j-i} \\
& \quad=\prod_{\left\{f_{1}(i), f_{1}(j)\right\}} \frac{f_{2}\left(f_{1}(j)\right)-f_{2}\left(f_{1}(i)\right)}{f_{1}(j)-f_{1}(i)} \cdot \prod_{\{i, j\}} \frac{f_{1}(j)-f_{1}(i)}{j-i} \\
& \quad=\prod_{\{i, j\}} \frac{f_{2}(j)-f_{2}(i)}{j-i} \cdot \prod_{\{i, j\}} \frac{f_{1}(j)-f_{1}(i)}{j-i}
\end{aligned}
$$

again using (i) and (ii).
(iv) Applying $\tau=(a b)$ (with $a<b$) has the following effect on pairs $(i<j)$.
(a) Pairs $(i<j)$ with $i=a$ and $j \in[a+1, b]$ satisfy $(\tau(i)>\tau(j))$
(b) Pairs $(i<j)$ with $i \in[a, b-1]$ and $j=b$ satisfy $(\tau(i)>\tau(j))$.
(c) All other pairs satisfy $(\tau(i)<\tau(j))$.

Thus, counting the sign switches in (a) and (b), we get:

$$
(b-a)+(b-a)
$$

but the pair $(i, j)=(a, b)$ is counted twice, so there are an odd number overall.

Definition. The alternating group A_{n} is the kernel of the sign homomorphism:

$$
\operatorname{sgn}: S_{n} \rightarrow\{ \pm 1\}
$$

and therefore it is a normal subgroup of S_{n}, with two cosets, and

$$
\left|S_{n}\right|=2\left|A_{n}\right|
$$

by Lagrange's Theorem.
Looking back over the examples, we see that:

$$
\begin{aligned}
& \operatorname{sgn}(* *)=-1 \\
& \operatorname{sgn}(* * *)=1, \\
& \operatorname{sgn}(* * * *)=-1, \\
& \operatorname{sgn}(* *)(* *)=1
\end{aligned}
$$

so that the normal cyclic subgroup of S_{3} is A_{3}, and A_{4} is indeed aptly named.
One More Example. The alternating group A_{5} consists of:

$$
\{e,(* * *),(* *)(* *) \text { and }(* * * * *)\}
$$

We will see that this group with 60 elements, unlike $K_{4} \subset A_{4}$, has no non-trivial normal subgroups.

