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Groups

We start this semester with groups.

Definition. A group (G, ·) is a set G with a multiplication operation:

· : G×G → G that is

(i) Associative: g1(g2 · g3) = (g1 · g2)g3 for all g1, g2, g3 ∈ G.

(ii) Equipped with a two-sided multiplicative identity e ∈ G, i.e. for all g ∈ G:

e · g = g (left identity) and g · e = g (right identity)

(iii) Pairs each g ∈ G with a two-sided inverse g−1, i.e. g−1 · g = e = g · g−1

Examples. Abelian groups, which are also commutative (with + as the operation)

The group Sn of permutations of the set [n] = {1, ...., n}. More generally,

we will write Perm(S) for the automorphism group of a set S.

The group GL(n, k) of linear automorphisms of kn. More generally, we will

write GLk(V ) for the group of linear transformations of a vector space V over k.

These last two examples are instances of the:

MetaExample. G =AutC(X) for an object X of a category C.
Let’s dispose of some uniqueness properties first:

Uniqueness of the Identity. If e′ is any (right) identity, then in particular,

ee′ = e in addition to the equality ee′ = e′

since e is a left identity. So e = e′ and there is no other right identity than the
two-sided identity e. Similarly, there is no other left identity.

Uniqueness of the Inverse. Suppose that h is a (right) inverse to g. Then:

g−1(gh) = g−1 in addition to the equality (g−1g)h = h

so by the associative property and the fact that g−1 is a left inverse of g, we have
g−1 = h and there is no other right inverse. Similarly, there is no other left inverse.

Corollary. Given a group G, there is a well-defined inverse map:

i : G → G; i(g) = g−1 satisfying i ◦ i = 1G

Definition. A set mapping f : G → G′ of groups is a homomorphism if:

f(e) = e′ and f(g1g2) = f(g1)f(g2)

for all g1, g2 ∈ G. This defines a category Gr of groups (G, ·) since the composition:

(f ′ ◦ f)(g1 · g2) = f ′(f(g1) · f(g2)) = (f ′ ◦ f)(g1) · (f ′ ◦ f)(g2)
of group homomorphisms is a group homomorphisms.

Proposition 1. A bijective group homomorphism f : G → G′ is an isomorphism.

Proof. Given a bijective homomorphism f : G → G′, we note that f−1(e′) = e
and given g′1 = f(g1), g

′
2 = f(g2), then g′1 · g′2 = f(g1)f(g2) = f(g1g2), and so

f−1(g′1 · g′2) = g1g2 = f−1(g′1)f
−1(g′2). □
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Examples. (a) The determinant det : GL(n, k) → (k∗, ·) = GL(1, k)

(b) The inverse i : G → G is not a homomorphism since:

i(g · h) = (g · h)−1 = h−1 · g−1 = i(h) · i(g)
i.e. the inverse mapping reverses the product.

(c) Left multiplication by an element g ̸= e is not a homomorphism, since:

g(g1g2) ̸= (gg1)(gg2) (for most g in most groups)

However, left multiplication by g, denoted by lg, defines a homomorphism

l : G → Perm(G); g 7→ lg

from G to the group of permutations of G, since le = 1G and lgh = lg ◦lh. Moreover,
since lg(e) = g recovers the left translator, the l homomorphism is injective.

(d) Similarly, right multiplication by the inverse of g ∈ G is a homomorphism:

r : G → Perm(G); g 7→ rg−1

since r(gh)−1(a) = a · (gh)−1 = (ah−1)g−1 = rg−1 ◦ rh−1(a).

(e) Conjugation by g ∈ G is given by:

c : G → AutGr(G) ⊂ Perm(G); cg(h) = (lg ◦ rg−1)(h) = ghg−1

Each cg is a group automorphism of G since ce = 1G, and:

cg(h1h2) = gh1h2g
−1 = (gh1g

−1) · (gh2g
−1) = cg(h1) · cg(h2)

Definition. A subset H ⊂ G is a subgroup if:

(i) e ∈ H, (ii) h ∈ H implies h−1 ∈ H, and (iii) h1, h2 ∈ H imply h1 · h2 ∈ H

In other words, (H, ·) is a group sitting inside G (with the same multiplication).

Example. The image f(G) ⊂ G′ of a homomorphism f : G → G′ is a subgroup.
Also, if H ′ ⊂ G′ is a subgroup, then the preimage f−1(H ′) ⊂ G is a subgroup.

This, together with Example (c) above give:

Cayley’s Theorem. Every group G is isomorphic to a subgroup of Perm(G).

In fact, it is a subgroup in potentially two distinct ways, since both left and right
multiplication (by the inverse) are injections of G into Perm(G). Note, however,
that conjugation is not (usually) an injection of G into AutGr(G).

Definition. Given a subgroup H ⊂ G, the left cosets of H are:

gH = {gh | h ∈ H}
and the right cosets are defined analogously.

Proposition 2. The left cosets are equivalence classes for the equivalence relation:

g1 ∼ g2 if and only if g1h = g2 for some (unique) h ∈ H

In particular, if H is finite, then each equivalence class has the same number:

|gH| = |H| of elements

and if G is finite, then we have:

Lagrange’s Theorem: |G| = |H|·|G/H| where |G/H| is the number of left cosets.
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Definition. The order of g ∈ G is the smallest d ≥ 1 so that gd = e, or else, if
there is no such d, we say that g has infinite order.

Proposition 3. If |G| = n, then the order of each g ∈ G divides n.

Proof. Consider the n+ 1 elements e, g, g2, ...., gn ∈ G. Since |G| = n, at least
two of them must coincide. Let d ≥ 1 be the minimal “gap” so that ga = ga+d

for some a. Then e = gd (multiplying by g−a), and so H = {e, g, g2, ..., gd−1} is a
cyclic subgroup of G consisting of d distinct elements. Thus d = |H| divides n. □

Remark. As a consequence of the Proposition, gn = e for all g ∈ G if |G| = n.

Corollary (Euler). The units in the ring Z/nZ, consisting of the elements that
are relatively prime to n, form a group (Z/nZ)∗, whose order is ϕ(n). Then:

aϕ(n) ≡ 1 (mod n) if gcd(a, n) = 1

by the Proposition. In particular, we have Fermat’s Little Theorem:

ap−1 ≡ 1 (mod p)

when p is prime not dividing a.

Proposition 4. The kernel K ⊂ G of a homomorphism f : G → G′, is a subgroup
with the additional property:

cg(K) = K for all g ∈ G

This follows directly from the definitions. For example,

f(gkg−1) = f(g)f(k)f(g−1) = f(g)e′f(g−1) = f(g)f(g−1) = f(gg−1) = f(e) = e′

so gkg−1 ∈ K whenever k ∈ K showing that cg(K) ⊂ K.

Definition. A subgroup N ⊂ G with the additional property:

cg(N) = N for all g ∈ G

is called a normal subgroup of G.

Remark. All subgroups of an abelian group are normal, but we will see that there
are plenty of subgroups of a general group G that are not normal.

Example. Let H ⊂ GL(2, k) be the subgroup of linear transformations that fix
the x-axis. Such matrices are all of the form:[

∗ ∗
0 ∗

]
but if we conjugate these by the reflection matrix:[

0 1
1 0

]
we get the matrices that fix the y-axis, which are all of the form:[

∗ 0
∗ ∗

]
Thus H is not normal.

Definition. The center Z(G) ⊂ G of a group G is the set:

Z(G) = {h ∈ G | cg(h) = ghg−1 = h for all g ∈ G}
i.e. Z(G) consists of the elements of G that commute with all elements of G.



4

Remarks. (i) The center of a group always contains the identity element e.

(ii) Every subgroup H ⊂ Z(G) is a normal, abelian subgroup of G.

Example. The center of GL(n, k) consists of the (nonzero) scalar multiples of e = In.

First Isomorphism Theorem. Each normal subgroup N ⊂ G is the kernel of a
surjective group homomorphism to the quotient group of (left) cosets:

q : G → G/N = {gN | g ∈ G}
and conversely, if K ⊂ G is the kernel of a group homomorphism f : G → G′, then
f factors through q followed by an isomorphism with the image: f : G/K ∼= f(G).

Proof. The product of cosets:

(g1H)(g2H) = (g1g2)H

is not automatically well-defined for a general subgroup of G, since multiplication
is not commutative. However, because N is a normal subgroup of G, we have:

g−1
2 Ng2 = N and so Ng2 = g2N

i.e. the left cosets and right cosets are the same. But then:

(g1N)(g2N) = (g1N)(Ng2) = g1Ng2 = (g1g2)N

is well-defined, and the rest of the proof is the same as we’ve seen in the context of
commutative rings and ideals. □

For the rest of this section, we introduce ourselves to:

The Permutation Groups Sn

Definition. A d-cycle is a permutation f : [n] → [n] with the property that:

f(a), f2(a), f3(a), ...., fd(a) = a

are distinct, for some a ∈ [n], and all other elements b ∈ [n] satisfy f(b) = b.

The notation for the cycle is: C = (a f(a) f2(a) · · · fd−1(a)) which is ambiguous
only in the choice of the initial element of the cycle.

Example. The two-cycles (transpositions) (a b) and (b a) are the same, as are

(a b c), (b c a) and (c a b)

Remarks.(i) The identity e ∈ Sn is the only one-cycle.

(ii) Disjoint cycles commute with each other, but:

(a b)(b c) = (a b c) ̸= (a c b) = (b c)(a b)

when a ̸= b ̸= c. Thus, for example, Sn is not abelian when n ≥ 3.

Cycle Notation. Every permutation f ∈ Sn is a product of disjoint cycles.

Proof. Start with a1 = a ∈ [n] and consider the list of elements.

a, f(a), f2(a), ....., fn(a)

There must be a repetition in the list (since this consists of n+ 1 elements of [n]).
Let f b(a) = f b+d(a) with the smallest (positive) gap value d. Then:

a = f−bf b(a) = f−bf b+d(a) = fd(a)

and each of a, f(a), · · · , fd−1(a) are distinct. So this determines a cycle C1.
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Given cycles C1, ..., Ci with initial elements a1, ..., ai associated to f , choose ai+1

distinct from the list of elements in the cycles, and consider the cycle:

Ci+1 = (ai+1, f(ai+1), ...., f
di+1−1(ai+1))

constructed as above. Then Ci+1 is disjoint from each of the cycles C1, ..., Ci.
Eventually this process uses up all elements of [n] and produces:

C1 · C2 · · ·Cm

which accounts for every value f(a) for a ∈ [n]. This represents the permutation.

Uniqueness. The disjoint cycles commute with each other and can start with any
element in their list. Thus, the expression: f = C1 · · ·Cm is uniquely determined
by f , if we make the convention that:

(a) Each cycle Ci commences with the smallest element ai in the list, and

(b) The cycles are ordered so that a1 < a2 < · · · < am

Moreover, since one-cycles are redundant, they are left out of the notation.

Lists of Elements. S2 = {e, (1 2)}, S3 = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}
S4 = {e, (∗∗), (∗ ∗ ∗), (∗ ∗ ∗∗), (∗∗)(∗∗)}

i.e. every element of S4 is either a single cycle or a product of disjoint two-cycles.

These are easily counted:

(i) {(∗∗)} is comprised of
(
4
2

)
= 6 elements.

(ii) {(∗ ∗ ∗)} is comprised of
(
4
3

)
× 2 = 8 elements.

(iii) {(∗ ∗ ∗∗)} is comprised of
(
4
4

)
× 3! = 6 elements.

(iv) {(∗∗)(∗∗)} is comprised of the 3 elements (1 2)(3 4), (1 3)(2 4) and (1 4)(2 3)

which, including the identity, accounts for the 1+6+8+6+3 = 4! elements of S4.

Lists of Subgroups.

The only (proper) subgroup of S2 is {e}.
The subgroups of S3 are {e}, {e, (1 2)}, {e, (1 3)}, {e, (2 3)}, {e, (1 2 3), (1 3 2)}.
Notice that all of these are cyclic (of order dividing 6).

The subgroups of S4 are of the following types:

• The cyclic subgroups {e, f, f2, ..., fd−1} with fd = e.

Typical examples are the subgroups:

{e, (1 2)}, {e, (1 2 3), (1 3 2)}, {e, (1 2 3 4), (1 3)(2 4), (1 4 3 2)}, {e, (1 2)(3 4)}
• The Klein group (isomorphic to Z/2Z× Z/2Z):

K4 := {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
• The four subgroups (isomorphic to S3) each fixing one element of [4]:

Hi = {f : [4] → [4] | f(i) = i} for i = 1, 2, 3, 4

• The three dihedral subgroups (symmetries of a square) with 8 elements each.

• The group A4 of rotations of a regular tethahedron (with 12 elements):

{e, (∗ ∗ ∗), (∗∗)(∗∗)}
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Observation. S4 is the group of rotational symmetries of a cube, permuting the
four long diagonals (joining pairs of opposite vertices). This group also permutes the
three short diagonals (joining midpoints of opposite faces), resulting in a surjective
group homomorphism:

S4 → S3 → 1

with kernel equal to the Klein group K4, which is therefore a normal subgroup.

There is another way to see that the Klein group is normal:

Conjugacy Classes. Let G be a group. Then:

h1 ∼ h2 if and only if h2 = cg(h1) = gh1g
−1 for some g ∈ G

defines an equivalence relation on G. The equivalence classes Cl(h) for this relation
are the conjugacy classes of G.

Thus a subgroup N ⊂ G is normal if and only if it is a union of conjugacy classes.

Proposition 5. The conjugacy classes of Sn are in bijection with the partitions

n = d1 + d2 + · · ·+ dk (in weakly decreasing order) d1 ≥ d2 ≥ · · · ≥ dk

corresponding to the permutations of the form C1 · · ·Ck with |Ci| = di.

Remark. This ordering of cycles may not conform to the “unique” form.

Proof. When C = (a1 a2 a3 · · · ad) is conjugated by f ∈ Sn, the result is:

f ◦ C ◦ f−1 = (f(a1) f(a2) · · · f(ad))

since
f ◦ C ◦ f−1(f(ai)) = f ◦ C(ai) = f(ai+1)

i.e. it is another cycle of the same length with entries specified by the permutation.
The proposition now follows. □

Examples. The conjugacy classes of S2 are:

Cl(e) = {e} and Cl(1 2) = {(1 2)}
In fact, the conjugacy classes of any abelian group are the singleton sets.

There are three conjugacy classes of S3, corresponding to the partitions:

3 = 3 with {(∗ ∗ ∗)} = Cl(1 2 3) = {(1 2 3), (1 3 2)}
3 = 2 + 1 with {(∗∗)} = Cl(1 2) = {(1 2)(3), (1 3)(2), (2 3)(1)}

(and recall that we’ve agreed to suppress the singletons from the notation), and

3 = 1 + 1 + 1 with Cl(e) = {e}
Comparing with the list of subgroups, we see that:

{e, (1 2 3), (1 3 2)} = Cl(e) ∪ {(∗ ∗ ∗)}
is the only (nontrivial) normal subgroup of S3.

Moving on to S4, we see that the conjugacy classes are:

{(∗ ∗ ∗∗)}, {(∗ ∗ ∗)}, {(∗∗)}, {(∗∗)(∗∗)}, {e}
corresponding, in order, to the partitions 4, 3 + 1, 2 + 1 + 1, 2 + 2, 1 + 1 + 1 + 1.

Thus we get another verification that K4 is a normal subgroup since:

K4 = {e} ∪ {(∗∗)(∗∗)}
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Similarly, the alternating group A4 is normal since:

A4 = {e} ∪ {(∗∗)(∗∗)} ∪ {(∗ ∗ ∗)}
and as a bonus, we see that K4 is a normal subgroup of A4.

Proposition 6. There is a “sign” group homomorphism:

sgn : Sn → ({±1}, ·)
with the property that sgn(a b) = −1 for all transpositions (two-cycles) (a, b).

Corollary. The sign of a d-cycle is (−1)d−1 since

(a1 a2 · · · ad) = (a1 a2)(a2 a3) · · · (ad−1 ad).

Proof. We need a definition of the sign. Given f : [n] → [n], let:

sgn(f) =
∏

1≤i<j≤n

f(j)− f(i)

j − i

Then:

(i) Each factor is unchanged if i and j are switched.

(ii) Applying f permutes the two-element subsets of [n].

Thus by (i), the product may be unambiguously taken over the set of two-element
subsets of [n] (instead of pairs i < j), and by (ii), we have:∏

{i,j}

|j − i| =
∏

{f(i),f(j)}

|f(j)− f(i)| =
∏
{i,j}

|f(j)− f(i)|

so |sgn(f)| = 1.

(iii) The sgn function is a group homomorphism. Given f1, f2 : [n] → [n],∏
{i,j}

f2(f1(j))− f2(f1(i))

j − i
=

∏
{i,j}

f2(f1(j))− f2(f1(i))

f1(j)− f1(i)
· f1(j)− f1(i)

j − i

=
∏
{i,j}

f2(f1(j))− f2(f1(i))

f1(j)− f1(i)
·
∏
{i,j}

f1(j)− f1(i)

j − i

=
∏

{f1(i),f1(j)}

f2(f1(j))− f2(f1(i))

f1(j)− f1(i)
·
∏
{i,j}

f1(j)− f1(i)

j − i

=
∏
{i,j}

f2(j)− f2(i)

j − i
·
∏
{i,j}

f1(j)− f1(i)

j − i

again using (i) and (ii).

(iv) Applying τ = (a b) (with a < b) has the following effect on pairs (i < j).

(a) Pairs (i < j) with i = a and j ∈ [a+ 1, b] satisfy (τ(i) > τ(j))

(b) Pairs (i < j) with i ∈ [a, b− 1] and j = b satisfy (τ(i) > τ(j)).

(c) All other pairs satisfy (τ(i) < τ(j)).

Thus, counting the sign switches in (a) and (b), we get:

(b− a) + (b− a)

but the pair (i, j) = (a, b) is counted twice, so there are an odd number overall. □
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Definition. The alternating group An is the kernel of the sign homomorphism:

sgn : Sn → {±1}
and therefore it is a normal subgroup of Sn, with two cosets, and

|Sn| = 2|An|
by Lagrange’s Theorem.

Looking back over the examples, we see that:

sgn(∗∗) = −1,

sgn(∗ ∗ ∗) = 1,

sgn(∗ ∗ ∗∗) = −1,

sgn(∗∗)(∗∗) = 1

so that the normal cyclic subgroup of S3 is A3, and A4 is indeed aptly named.

One More Example. The alternating group A5 consists of:

{e, (∗ ∗ ∗), (∗∗)(∗∗) and (∗ ∗ ∗ ∗ ∗)}
We will see that this group with 60 elements, unlike K4 ⊂ A4, has no non-trivial
normal subgroups.


