Abstract Algebra. Math 6320. Bertram/Utah 2022-23. Generators and Commutators

Let $S \subset G$ be a subset of a group. The subgroup $H(S) \subset G$ generated by S is the smallest subgroup containing S. Since the intersection of (any number of) subgroups is a subgroup, $H(S)$ is the intersection of all subgroups that contain S. Constructively,

$$
H(S)=\{g \in G \mid g=w(S)\}
$$

is the set of finite-length words in the elements of S, where a word is a finite product of elements of S and their inverses (with repetitions).
Example. As we noted earlier, the symmetric group S_{n} is generated by

$$
S=\{(12),(23), \cdots,(n-1 n)\}
$$

Remark. The permutation that requires the longest word is the transposition:

$$
(1 n)=(12)(23) \ldots(n-1 n) \ldots(23)(12)
$$

Definition. The commutator subgroup $[G, G] \subset G$ is the group generated by:

$$
\left\{[a, b]:=a b a^{-1} b^{-1} \mid a, b \in G\right\}
$$

the set of all "commutators" of elements a and b.
Example. The commutator subgroup of an abelian group is trivial. On the other hand, within the symmetric group, the commutator of overlapping transpositions:

$$
[(i j),(j k)]=(i j)(j k)(i j)(j k)=(i k j)
$$

is a three-cycle, so all three-cycles are commutators, and $\left[S_{n}, S_{n}\right]=A_{n}$.
Proposition 1. (a) The commutator subgroup $[G, G]$ is normal in G.
(b) The quotient "abelianization" group $G^{\mathrm{ab}}:=G /[G, G]$ is abelian and universal in the sense that every homomorphism $f: G \rightarrow A$ to an abelian group factors through $\bar{f}: G^{\mathrm{ab}} \rightarrow A$. In particular, G is abelian if and only if $[G, G]=\{e\}$.
(c) G is solvable if and only if the sequence of commutator subgroups:

$$
\cdots \subset G_{2} \subset G_{1} \subset G_{0}=G \text { with } G_{i+1}=\left[G_{i}, G_{i}\right]
$$

is eventually trivial.
Proof. (a) Note that $[a, b][b, a]=\left(a b a^{-1} b^{-1}\right)\left(b a b^{-1} a^{-1}\right)=e$, so the inverse of a commutator is a commutator and every word in commutators is a product of commutators. Moreover, commutators conjugate to commutators:

$$
g[a, b] g^{-1}=\left[g a g^{-1}, g b g^{-1}\right]=\left[c_{g}(a), c_{g}(b)\right]
$$

from which it follows that $g\left[a_{1}, b_{1}\right] \cdots\left[a_{n}, b_{n}\right] g^{-1}=\left[c_{g}\left(a_{1}\right), c_{g}\left(b_{1}\right)\right] \cdots\left[c_{g}\left(a_{n}\right), c_{g}\left(b_{n}\right)\right]$ so conjugation preserves words in commutators, i.e. $[G, G]$ is normal.
(b) Let $N=[G, G]$. Then G / N is abelian, since: $a b N=a b\left(b^{-1} a^{-1} b a\right) N=b a N$ and if $f: G \rightarrow A$ is a group homomorphism to an abelian group, then:

$$
f\left(a b a^{-1} b^{-1}\right)=f(a) f(b) f(a)^{-1} f(b)^{-1}=e
$$

so $[G, G] \subset \operatorname{ker}(f)$, and f factors through $G^{\mathrm{ab}}=G /[G, G]$.
(c) A solvable group has a string of normal subgroups (one in the next) with abelian quotient groups, and conversely, so this follows from (b).

Remark. There is no direct analogue for abelan subgroups of a group G. The only canonical abelian subgroup is the center $Z(G)$, but this not generally the largest subgroup, nor is there a single largest abelian subgroup, since unlike intersections, the unions of subgroups are not subgroups.
Examples. (i) The commutator subgroup of a simple group G is $\{e\}$ when $G=C_{p}$ and is G itself when G is (simple and) not abelian.
(ii) The commutator subgroup of a dihedral group satisfies:

$$
D_{2 n} /\left[D_{2 n}, D_{2 n}\right]=C_{2} \text { when } n \text { is odd, and } C_{2} \times C_{2} \text { when } n \text { is even }
$$

If $g \in C_{n}$ is a generator, and $h \in C_{2}$ is a generator, then $h g h^{-1} g^{-1}=g^{-2} \in D_{2 n}$ (from the realization of $D_{2 n}$ as a semi-direct product), and g^{-2} generates C_{n} when n is odd, but only half of C_{n} when n is even.
(iii) The fundamental group π_{1} and first homology group H_{1} of a path connected topological space X satisfy:

$$
\pi_{1}^{\mathrm{ab}}(X, x)=\pi_{1}(X, x) /\left[\pi_{1}(X, x), \pi_{1}(X, x)\right]=\mathrm{H}_{1}(X, \mathbb{Z})
$$

Next, we turn to finitely generated groups.
Definition. G is finitely generated if $G=H(S)$ for a finite subset $S \subset G$.
Evidently finite groups are finitely generated, as are the groups \mathbb{Z}^{n}.
Definition. The free group F_{S} on a (finite) set S is made up of equivalence classes of words $w(S)$ in the elements $s_{1}, \ldots, s_{n} \in S$ and their (formal) inverses $s_{1}^{-1}, \ldots, s_{n}^{-1}$.

Concatenation of words is multiplication (with the empty word as identity), and:

$$
w_{1}(S) s s^{-1} w_{2}(S) \sim w_{1}(S) w_{2}(S) \text { for words } w_{1}(S), w_{2}(S)
$$

generates the equivalence relation, so that, for example:

$$
\left(s_{1} \cdots s_{n}\right)^{-1}=s_{n}^{-1} \cdots s_{1}^{-1} \text { is the two-sided inverse }
$$

Example. The abelianization of the free group on n generators is \mathbb{Z}^{n}.
Redefinition. G is generated by n elements if there is a surjection:

$$
\text { (*) } q: F_{n} \rightarrow G
$$

from the free group on n generators, and a word $w \in F_{n}$ is a relation if $q(w)=e$.
Definition. The normal subgroup $N(S)$ generated by a subset $S \subset G$ is the smallest normal subgroup of G containing S. Evidently, $H(S) \subset N(S)$, but if $H(S)$ fails to be normal, then evidently $N(S)$ is a larger subset.
Definition. A finite generation $(*)$ above of G is a finite presentation if:

$$
\operatorname{ker}(q)=N(S) \text { for a finite set of relations } S=\left\{w_{1}, \ldots ., w_{m}\right\} \subset F_{n}
$$

In practice, each word $w \in F_{n}$ enlarges the equivalence relation via:

$$
u w v \sim_{w} u v \text { for words } u, v \in F_{n}
$$

and $F_{n} / N(S)$ is the quotient group by the relation generated by the $\sim_{w_{i}}$.
Example. If $|G|=n$, then G is finitely generated by all elements of G, and:

$$
w_{i j}=g_{i} g_{j}\left(g_{j} \cdot g_{j}\right)^{-1} \text { for } i \neq j
$$

is a finite set presenting $q: F_{n} \rightarrow G$.

Note. There are finite generations of infinite groups that are not finite presentations.
Notation. Generators and relations finitely presenting a group G may be written:

$$
\left\langle x_{1}, \ldots, x_{n} \mid w_{1}, \ldots . ., w_{r}\right\rangle
$$

and many groups have particularly nice presentations.
Example. (a) $\left\langle x \mid x^{n}\right\rangle$ is a presentation of the finite cyclic group C_{n}.
(b) S_{n} is finitely generated by transpositions $\tau_{i}=(i i+1)$ with relations:

$$
\tau_{i}^{2},\left(\tau_{i} \tau_{i+1}\right)^{3} \text { and }\left(\tau_{i} \tau_{j}\right)^{2} \text { when }|i-j| \geq 2
$$

Proposition 2. If $G=N \rtimes_{\phi} H$ is a semi-direct product, and:
(a) $\left\langle x_{1}, \ldots, x_{n} \mid w_{1}, \ldots ., w_{r}\right\rangle$ is a presentation of N and
(b) $\left\langle y_{1}, \ldots, y_{k} \mid v_{1}, \ldots, v_{s}\right\rangle$ is a presentation of H, then

$$
\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots ., y_{k} \mid w_{1}, \ldots ., w_{r}, v_{1}, \ldots ., v_{s},\left\{y_{i} a_{j} y_{i}^{-1} \phi_{i j}(a)^{-1}\right\}\right\rangle
$$

is a presentation of G, where $\phi_{i j}(a)$ are words in the a 's that map to $\phi_{h_{i}}\left(a_{j}\right) \in N$.
Proof. Exercise.
Corollary. A presentation of the dihedral group $D_{2 n}$ is given by:

$$
\left\langle x, y \mid x^{n}, y^{2},(y x)^{2}\right\rangle
$$

since $y x y^{-1}=x^{-1}$ in the semi-direct product (and $y=y^{-1}$).
More generally, a semi-direct product of cyclic groups $C_{n} \rtimes C_{m}$ has presentation:

$$
\left\langle x, y \mid x^{n}, y^{m}, y x y^{-1} x^{-d}\right\rangle
$$

given that $\phi_{y}(x)=x^{d}\left(\operatorname{and} d\right.$ solves $\left.x^{m} \equiv 1(\bmod n)\right)$.
Corollary. A presentation of \mathbb{Z}^{n} is given by generators x_{1}, \ldots, x_{n} with relations:

$$
x_{i} x_{j} x_{i}^{-1} x_{j}^{-1}
$$

Sometimes a group may have a surprising set of generators and relations:
Example. The dihedral group $D_{2 n}$ is also generated by y and $z=y x$ with:

$$
D_{2 n}=\left\langle y, z \mid y^{2}, z^{2},(y z)^{n}\right\rangle
$$

Definition. A (finite) Coxeter group has generators $x_{1}, \ldots ., x_{n}$ and relations x_{i}^{2} (i.e. G is generated by reflections) with additional relations.

Coxeter groups are classified by their Dynkin diagrams and include $D_{2 n}$ and S_{n}. Possible additional topics: group cohomology, filtrations.

